Conﬂu y in Agda for LFA

Vincent van Oostrom
University of Sussex
vvo@sussex.ac.uk

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

mailto:vvo@sussex.ac.uk

Pen-and-paper confluence of A\ (cf. Barendregt 84)

Definition (\-term; Church 32)

A A\-term either is a variable x or an application MN or a A-abstraction Ax.M

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 *
OF SUSSEX

Pen-and-paper confluence of A\

Definition (\-term)

A A\-term either is a variable x or an application MN or a A-abstraction A\x.M

A-terms up to a-congruence induced by Ax.M = \y.M[x:=y], for y not in M

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

Pen-and-paper confluence of A\

Definition (\-term)

A A\-term either is a variable x or an application MN or a A-abstraction A\x.M

A-terms up to a-congruence induced by Ax.M = \y.M[x:=y], for y not in M

Definition (5-reduction)

— g on A-terms is compatible closure of 3-scheme (Ax.M) N = M[x:=N]

US

UNIVERSITY

IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

Ve

Pen-and-paper confluence of A\

Definition (\-term)

A A\-term either is a variable x or an application MN or a A-abstraction A\x.M

A-terms up to a-congruence induced by Ax.M = \y.M[x:=y], for y not in M

Definition (5-reduction)

— g on A-terms is compatible closure of 3-scheme (Ax.M) N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 *
OF SUSSEX

Ve

Pen-and-paper confluence of A\

Definition (\-term)

A A\-term either is a variable x or an application MN or a A-abstraction A\x.M

A-terms up to a-congruence induced by Ax.M = \y.M[x:=y], for y not in M

Definition (5-reduction)

— g on A-terms is compatible closure of 3-scheme (Ax.M) N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church-Rosser 36)

— g has the Church-Rosser property

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 *
OF SUSSEX

Ve

Pen-and-paper confluence of A\

Definition (\-term)

A A\-term either is a variable x or an application MN or a A-abstraction A\x.M

A-terms up to a-congruence induced by Ax.M = \y.M[x:=y], for y not in M

Definition (5-reduction)

— g on A-terms is compatible closure of 3-scheme (Ax.M) N = M[x:=N]

M[x:=N] the capture-avoiding substitution of N for x in M

Theorem (Church-Rosser)

— g has the Church-Rosser property

<= —gis confluent <= —»43 has the diamond property

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 *
OF SUSSEX

Definition (- -property of — for -function e on objects)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

Definition (Z-property of — for ¢; Loader 98, Dehornoy & V/ 08)

for every stepa — b
(upperbound) b — a°®
(monotonic) a®* — b*®

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

Z

Definition (Z-property of — for e)

a——b
’

/'Lpperbound

a® ----m hH*
monotonic

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

Z
Definition (Z-property of — for e)

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (Z — (Barendregt 84))

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

Definition (Z-property of — for e)

‘N

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (— confluence)

a » b > > -

/

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

Definition (Z-property of — for e)

‘N

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (— confluence)

a » b > > -

/

3 ——p-a°

ub

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

Definition (Z-property of — for e)

‘N

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (— confluence)

a » b > > -

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

Z

Definition (Z-property of — for e)

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (— confluence)

\J
Y
Y

{

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

Z

Definition (Z-property of — for e)

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (— confluence)

\J
\J
Y

{

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

Z

Definition (Z-property of — for e)

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (— confluence)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

Z

Definition (Z-property of — for e)

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (— confluence)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

Z

Definition (Z-property of — for e)

for every step a — b, both b — a°® (ub) and a® — b® (mon)

Lemma (Z — strip — confluence)

Y
Y
Y

strip

— e

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

Z for \j3

Theorem (Loader 98)

for every step a — 3 b, both b — 3 a*® (ub) and a®* —3 b® (mon), where

x* = X
(AMX.M)* = Ax.M®
(MM)N)® = M°[x:=N°]
(MN)* = M°N°® otherwise (if M = x or M = PQ)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 3
OF SUSSEX

Z for \j3

Theorem (Loader 98)

for every step a — 3 b, both b — 3 a*® (ub) and a®* —3 b® (mon), where

x* = X
(AMX.M)* = Ax.M®
(M.M)N)* = M°[x:=N°]
(MN)* = M°N°® otherwise

full development map e contracting all g-redex-patterns in A-term
(Church-Rosser 30s; Gross—-Knuth, preprint 70s; Takahashi, Loader 90s)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 3
OF SUSSEX

Z for A3 proof

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

Z for A3 proof

M —6> N
/"upperbound

M® - - - - *
monotonic

(ub) and (mon) by inductionon M —3 N

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 4
OF SUSSEX

Z for A3 proof

(AX.M)N —6> M[x:=N]
"upperbound

M*[x:=N°] - - - - M[x:=N]*
monotonic

(ub) and (mon) by induction on M —3 N with base case 3

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 4
OF SUSSEX

Z for A3 proof

()\X.M)N _ﬁ> M[X::N]
‘ extensive & term rewrite system

M*[x:=N°] - - - - M[x:=N]*
right-hand side

(ub) and (mon) by induction on M —3 N with base case 3, using:
(extensive) M —3 M*®

(ctx,sub) if M -5 N and P —5 Q, then M[x:=P] — 45 N[y:=Q]
(right-hand side) M*[x:=N°®] —3 M[x:=N]*

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 4
OF SUSSEX

Z for A3 proof

()\X.M)N _ﬁ> M[X::N]
‘ extensive & term rewrite system

M*[x:=N°] - - - - M[x:=N]*
right-hand side

(ub) and (mon) by induction on M —3 N with base case 3, using:

(extensive) M —3 M*®

(ctx,sub) if M -5 N and P —53 Q, then M[x:=P] — 4 N[y:=Q]

(right-hand side) M*[x:=N°®] —3 M[x:=N]*

(ext),(rhs),(ctx) by induction on M; (sub) by induction on M —g N O

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 4
OF SUSSEX

Substitution lemma

Lemma (3-critical peak)

((AX.M) N)[y:=0Q] g+ (Ay.(Ax.M)N) Q —3 (Ay-M[x:=N]) Q is single-step joinable

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 >
OF SUSSEX

Substitution lemma

Lemma (3-critical peak)

((AX.M) N)[y:=0Q] g+ (Ay.(Ax.M)N) Q —3 (Ay-M[x:=N]) Q is single-step joinable

(M) M)y =Q] = (x.Mly:=0]) Nly=Q] 5
Mly:=Q][x:=N[y:=Q]] =s. M[x:=N][y:=0] g+ (Ay.-M[x:=N]) Q O

US

ssssssss

Substitution lemma

Lemma (3-critical peak)

((AX.M) N)[y:=0Q] g+ (Ay.(Ax.M)N) Q —3 (Ay-M[x:=N]) Q is single-step joinable

(M) M)y =Q] = (x.Mly:=0]) Nly=Q] 5
Mly:=Q][x:=N[y:=Q]] =s. M[x:=N][y:=0Q] g+ (Ay.M[x:=N]) Q O

closure of — 4 under substitution (sub) <= [-critical peak lemma <= SL

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 >
OF SUSSEX

Substitution lemma

Lemma (3-critical peak)

((AX.M) N)[y:=0Q] g+ (Ay.(Ax.M)N) Q —3 (Ay-M[x:=N]) Q is single-step joinable

(M) M)y =Q] = (x.Mly:=0]) Nly=Q] 5
Mly:=Q][x:=N[y:=Q]] =s. M[x:=N][y:=0Q] g+ (Ay.M[x:=N]) Q O

closure of — 4 under substitution (sub) <= [-critical peak lemma <= SL
proof of (rhs) uses substitution lemma

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 >
OF SUSSEX

Substitution lemma

Lemma (3-critical peak)

((AX.M) N)[y:=0Q] g+ (Ay.(Ax.M)N) Q —3 (Ay-M[x:=N]) Q is single-step joinable

(M) M)y =Q] = (x.Mly:=0]) Nly=Q] 5
Mly:=Q][x:=N[y:=Q]] =s. M[x:=N][y:=0Q] g+ (Ay.M[x:=N]) Q O

closure of — 4 under substitution (sub) <= [-critical peak lemma <= SL
proof of (rhs) uses substitution lemma
B-redexes do have overlap (redex-patterns do not)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 >
OF SUSSEX

Substitution lemma

Lemma (3-critical peak)

((AX.M) N)[y:=0Q] g+ (Ay.(Ax.M)N) Q —3 (Ay-M[x:=N]) Q is single-step joinable

(M) M)y =Q] = (x.Mly:=0]) Nly=Q] 5
Mly:=Q][x:=N[y:=Q]] =s. M[x:=N][y:=0Q] g+ (Ay.M[x:=N]) Q O

closure of — 4 under substitution (sub) <= [-critical peak lemma <= SL
proof of (rhs) uses substitution lemma
B-redexes do have overlap; SL needed to have term rewrite system

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 >
OF SUSSEX

Formalisation of confluence by Z for A3

confluence of \3-calculus PL-litmus test for proof assistants
(inductive A-terms and (-steps, binding, substitution, modulo «)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 6
OF SUSSEX

Formalisation of confluence by Z for A3

confluence of \3-calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of \j3

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 6
OF SUSSEX

Formalisation of confluence by Z for A5 in Agda

confluence of \3-calculus PL-litmus test for proof assistants
claim: Z gives shortest proof of confluence of \j3

here: test claim in Agda; had wanted to learn some Agda for some time
(done in 2021; learned at IWC 2023 of Andrea Laretto’s Ba thesis)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 6
OF SUSSEX

Formalisation of confluence by Z in Agda based on PLFA

confluence of A\S-calculus PL-litmus test for proof assistants

claim: Z gives shortest proof of confluence of \j3

here: test claim in Agda

design decision: adapt extant PLFA proof (by triangle property; Takahashi 95)
(Programming Language Foundations in Agda by Wadler, Kokke, Siek 20

adaptation allowed reuse of inductive A-terms, 5-steps and SL
reuse good software engineering and useful since absolute Agda beginner)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 6
OF SUSSEX

Formalisation of confluence by Z in Agda based on PLFA

confluence of A\S-calculus PL-litmus test for proof assistants
claim: Z gives shortest proof of confluence of \j3
here: test claim in Agda

design decision: adapt extant PLFA proof (by triangle property

also means have to stick with design decisions of PLFA

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 6
OF SUSSEX

A-terms in PLFA

Definition (Nameless)\-term; de Bruijn 72)

PLFA design decision: scoped nameless A-terms
(avoids a-renaming at the expense of re-indexing)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 ’
OF SUSSEX

A-terms in PLFA

Definition (Nameless \-term)

PLFA design decision: scoped nameless A-terms

Az A —A

| | |

Ay A

| | |

Q@ — @ Q — @ Q — @

o R

x T y S S 0 S—S—0
] B
0 0 L—0—0

2: named Ax.\y.x (xy), nameless A\SO0 ((S0) 0), scoped 0 - AASO ((S0) 0)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 ’
OF SUSSEX

A-terms in PLFA

Definition (Nameless \-term)

PLFA design decision: scoped nameless A-terms

Definition (Scoped \-term; V/ & van der Looij & Zwitserlood 04??)

i = tis nameless A\-term t in scope i
(think of i as binding-stack with t closed within it; i is upperbound on indices in t)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 ’
OF SUSSEX

A-terms in PLFA

Definition (Nameless \-term)

PLFA design decision: scoped nameless A-terms

Definition (Scoped \-term)

i = tis nameless A\-term t in scope i (bottom-up) inductively derivable by:

Sik0 SiFSt ik ik tits
0 S A - ,
ikt SiFt | ibty it

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 ’
OF SUSSEX

A-terms in PLFA

Definition (Nameless \-term)

PLFA design decision: scoped nameless A-terms

Definition (Scoped)\-term)

i = tis nameless A\-term t in scope i

Sik0 SiFSt ik ik tits
0 S A - ,
ikt SiFt | ibty it

these are generalised nameless A-terms (Bird & Paterson 99; Hendriks & W 03)
PLFA only allows S on 0 and on other Ss; nameless A-terms; no ho-signature

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 ’
OF SUSSEX

— 3-steps in PLFA

Definition (Nameless S-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 — s,Si i
(substitute s for the free Os in t; decrement other indices)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 8
OF SUSSEX

— 3-steps in PLFA

Definition (Nameless S-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 — 5,Si — i
— 3 on nameless A\-terms is compatible closure of 3-scheme i (At)s =i | t[s]

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 8
OF SUSSEX

— 3-steps in PLFA

Definition (Nameless S-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 — 5,Si i
— g on nameless A-terms is compatible closure of 3-scheme j - (At)s =i - t[s]

replication extrusion
9 scope removal

Q
\
A
\
A A
\ - |
@ - @ ‘ Q
\ \
S—S—0 S
\ \
0 2

0+22 —30F (AS0((S0)0))[2

A
@ @
2 2

= 0F AS2((52)0) = 0 A2(20)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

— 3-Steps in PLFA

Definition (Nameless S-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 — 5,Si — i
— 3 on nameless A\-terms is compatible closure of 3-scheme i+ (At)s =i | t[s]

Lemma (A is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions
(substitution lemma) for single substitution via parallel substitution

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 8
OF SUSSEX

— 5-steps in PLFA

Definition (Nameless 5-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 — s,Si + i
— 3 on nameless A-terms is compatible closure of 3-scheme j - (At)s =i - t[s]

Lemma (A\f is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions
(substitution lemma) for single substitution via parallel substitution

(ctx) is called congruence in PLFA (wrong; compatible)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 8
OF SUSSEX

— 5-steps in PLFA

Definition (Nameless 5-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 — s,Si + i
— 3 on nameless A-terms is compatible closure of 3-scheme j - (At)s =i - t[s]

Lemma (A\f is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions
(substitution lemma) for single substitution via parallel substitution

(ctx) is called congruence in PLFA; (sub) missing from PLFA (50 loc)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 8
OF SUSSEX

— 3-Steps in PLFA

Definition (Nameless S-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 — s,Si — i
— 5 on nameless A\-terms is compatible closure of 3-scheme i - (At)s =i |- t[s]

Lemma ()\f is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions
(substitution lemma) for single substitution via parallel substitution

(ctx) is called congruence in PLFA; (sub) missing from PLFA; (substitution lemma)
is called commutation in PLFA (wrong; self-distributivity / associativity)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 8
OF SUSSEX

— 5-steps in PLFA

Definition (Nameless 5-reduction)

PLFA design decision: single substitution t[s] by parallel substitution 0 — s,Si — i
— 5 on nameless A\-terms is compatible closure of 3-scheme i - (At)s =i |- t[s]

Lemma ()\f is a ho-term rewriting system; in PLFA)

(ctx,sub) closure of reduction under contexts,substitutions
(substitution lemma) for single substitution via parallel substitution

(ctx) is called congruence in PLFA; (sub) missing from PLFA; (substitution lemma)
is called commutation in PLFA; terms / steps ad hoc (no signature)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 8
OF SUSSEX

Basic rewriting and full development map ¢ for PLFA

app-cong: V{I'} {KLMN:I'+%} 5 K—»L—-+M—»N—-K-M——> L N
rew-rew :V{I'} {MN:I' ,xF%x}{KL:I'x}

—M—N

—K——>1L

—M[K]——N[L]

{...} indicates implicit argument; I" is scope; * is singleton type of A-terms
app-cong function taking reductions K —5 L and K —4 L yielding KM —5 LN
rew-rew same but yielding closure under contexts,substitutions

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 °
OF SUSSEX

Basic rewriting and full development map « for PLFA

app-cong : V{I'} {KLMN:I'+%} » K——»L—-+M——N—-K-M——»L-N
rew-rew :V{I'} {MN:I' ,xF%x}{KL:I'+x}

—M—N

—K——>1L

—M[K]—— NI[L]

e V{I'A} =T FA—-TFA
(“x)e="x

(AM)e =X (M)

((AM) -N)e=M-e[N-]

(M- N)e=(M=)-(N-)

prime indicates index (as \-term)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

(Extensive) M — M°* for PLFA

extensive :V{I'A} > M: T'FA) - M——» M-

extensive (*)= _m

extensive (A M) = abs-cong (extensive M)

extensive (A M) - N) = _——() rew-rew (extensive M) (extensive N)
extensive (* _- N) = appR-cong (extensive N)

extensive (L N) = app-cong (extensive (L - M)) (extensive N)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 10
OF SUSSEX

(Extensive) M — M* for PLFA

extensive :V{I'A} > M: T'FA) - M——» M-

extensive (*)= _m

extensive (A M) = abs-cong (extensive M)

extensive (A M) - N) = _——() rew-rew (extensive M) (extensive N)
extensive (* _- N) = appR-cong (extensive N)

extensive (L M - N) = app-cong (extensive (L - M)) (extensive N)

recursion on scoped nameless M : I' - A (m is empty reduction)
otherwise only compatibility (wrongly named congruence in PLFA)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 10
OF SUSSEX

(Upperbound) N — M*® if M — 3 N for PLFA

upperbound : V{I'} - {MN: ' x}

—M—N

—N——> M-
upperbound {_} {A _} (C ¢) = abs-cong (upperbound ¢)
upperbound {_} {("_) - _} {_} (£~ ¢) = appR-cong (upperbound ¢)
upperbound {_} {(A _) - M} {((A_) M)} (& (C) =_—— () rew-rew (upperbound ¢) (extensive M)
upperbound {_} {(A L) _} {.((AL)-)} (&2 ¢) = _——() rew-rew (extensive L) (upperbound ¢)
upperbound {_} {(A L) - M} {.(subst (subst-zero M) L)} 5 = rew-rew (extensive L) (extensive M)
upperbound {_} {_-_-M} {.(_-M)} (£, ¢) = app-cong (upperbound ¢) (extensive M)
upperbound {_} {K-L-_} {.(_-_-)} (£- ¢) = app-cong (extensive (K - L)) (upperbound ¢)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 H
OF SUSSEX

(Upperbound) N — M*® if M — 4 N for PLFA

upperbound : V {I'} - {MN: I} %}

—M—N

—N——> M-
upperbound {_} {A } ¢ ¢) = abs-cong (upperbound ¢)
upperbound {_} {({3 (5 ¢ = appR cong (upperbound ¢)
upperbound {_} {()\ M} {((M)} (&4 (C @) = _——() rew-rew (upperbound ¢) (extensive M)
upperbound {_} {(A L) RES (()}\ L } (&2 @) = _——() rew-rew (extensive L) (upperbound ¢)
upperbound {_} {(A L) M} {. (subst (subst -zero M) L)} B = rew-rew (extensive L) (extensive M)
upperbound {_} {_-_-M} {.(_- M)} (&, ¢) = app-cong (upperbound ¢) (extensive M)
upperbound {_} {K-L-_} {.(_-_-)} ({-> ¢) = app-cong (extensive (K - L)) (upperbound ¢)

recursion on M — 3 N ((,§,,§. traditional names of compatibility clauses)
otherwise only (extensive) and compatibility

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 1
OF SUSSEX

(Right-hand side) (M*)7" — (M”)*® for PLFA

rhss: V{I" A} M:I'tx){o7:SubstI" A} - ((x: '>%) >TX=0Xx°*)

— subst 7 (M ¢) —— (subst o M)e
rhss (‘ x) eq rewrite (eg x) = _m
rhss (A M) eq = abs-cong (rhss M (exts-bullet eq))
rhss ((* x) - M) {o} eq rewrite (eq x) = ——»-trans
(appR-cong (rhss M eq)) (app-bullet (o x) (subst o M)) where
{- auxiliary rhs/monotonicity lemma for application -}
app-bullet : V{I'} (LM :I'+%) —L e -Me—— (L-M)e
app-bullet (") _=_m
app-bullet (A) _=(_——(g8)_m)
app-bullet (_-) _=_m
rhss ((A L) - M) {7 = 7} eq rewrite (sym (subst-commute {N =L ¢} {M <} {7})) =
rew-rew (rhss L (exts-bullet eq)) (rhss M eq)
rhss (K- L - M) eqg = app-cong (rhss (K - L) eq) (rhss M eq)

US

UNIVERSITY
OF SUSSEX

IWC, Tallinn, Estonia July 9th 2024 12

(Right-hand side) (M*)?" — (M”)*® for PLFA

rhss: V{I" A} M:I'tx){o7:SubstI" A} - ((x: '>%) >TX=0Xx°*)
— subst 7 (M ¢) —— (subst o M)e
rhss (‘ x) eq rewrite (eg x) = _m
rhss (A M) eq = abs-cong (rhss M (exts-bullet eq))
rhss ((* x) - M) {o} eq rewrite (eq x) = ——»-trans
(appR-cong (rhss M eq)) (app-bullet (o x) (subst o M)) where
{- auxiliary rhs/monotonicity lemma for application -}
app-bullet : V{I'} (LM :I'+%) —L e -Me—— (L-M)e
app-bullet (") _=_m
app-bullet (A) _=(_——(g8)_m)
app-bullet (_-) _=_m
rhss ((A L) - M) {7 = 7} eq rewrite (sym (subst-commute {N =L ¢} {M <} {7})) =
rew-rew (rhss L (exts-bullet eq)) (rhss M eq)
rhss (K- L - M) eqg = app-cong (rhss (K - L) eq) (rhss M eq)

recursion on scoped nameless M : I' - x (o, T are parallel substitutions)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 2
OF SUSSEX

(Monotonic) M®* —3 N* if M — 3 N for PLFA

monotonic : V{I'} - {MN: I'F x}
—M—N
—Me——N-
monotonic (¢ ¢) = abs-cong (monotonic ¢)
monotonic {_} {(") - _} {(") _} (£&- ¢) = appR-cong (monotonic ¢)
monotonic {I'} {(A M) - N} {.(subst (subst-zero N) M)} 3 = rhss M bullet-zero where
{- bullet commutes with lifting terms to substitutions -}
bullet-zero : (x: I, x © %) — subst-zero (N ¢) x = subst-zero N x ¢
bullet-zero Z = refl
bullet-zero (S x) = refl
monotonic {_} {(A)+ _} {(A_) - _} ({1 (C ¢)) = rew-rew (monotonic ¢) (_ M)

monotonic {_} {(A M) 3o (()}\ M) -)} (&2 @) = rew-rew (M m) (monotonic ¢)
monotonic {_} {_-_-_} {(A _} (¢) = ——-trans (appL-cong (monotonic ¢)) (
monotonic {_} {_-_- _} {(_} (&4 ¢) = appL-cong (monotonic ¢)

monotonic {_} {_-_-_} {_ _} (&, ¢) = appL-cong (monotonic ¢)

monotonic {_} {_-_-_} {_ _} (&2 ¢) = appR-cong (monotonic ¢)

—(B)_

u)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

13

Conclusions

® 4 key properties 65 loc

induction on scoped nameless A-term induction on derivations

(extensive) = (upperbound)
(right-hand side) — (monotonic)

® nameless = uninamed; scopes are stacks (Hendriks & VW 03; not lists)

® basic term rewrite theory of A\ in PLFA is incomplete
(no signature; does not show it's a ho-term rewrite system, no sub)

® section on confluence of AS in PLFA is suboptimal
(shorter proof via Z; the notes attributing are incorrect / improper)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 4
OF SUSSEX

Future work

® single proof instantiating to full development,full superdevelopment maps?

full superdevelopment map e contracting 3-redex-patterns in inside-out sweep
(Aczel 80s; van Raamsdonk 90s, Dehornoy & VW 00s)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 s
OF SUSSEX

Future work

® single proof instantiating to full development,full superdevelopment maps?

ifa =3 bthenb —3a® —3 b® (Z; Dehornoy & W08), where

X® = X

(Ax.M)* = Ix.M*

(MN)* = M[x:=N°] if M* = x.M
= M°N°® otherwise

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 s
OF SUSSEX

Future work

® single proof instantiating to full development,full superdevelopment maps?
® avoid duplicates of substitution lemmata in PLFA? (for reindexing)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 s
OF SUSSEX

Future work

® single proof instantiating to full development,full superdevelopment maps?
® avoid duplicates of substitution lemmata in PLFA?

by working with generalised scoped A-terms (instead of separate indices)

generalised scoped A-terms due to Bird & Paterson 99, Hendriks & W 02 & van
der Looij & Zwitserlood 04

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 s
OF SUSSEX

Future work

® single proof instantiating to full development,full superdevelopment maps?
® avoid duplicates of substitution lemmata in PLFA?
® avoid parallel substitution in PLFA? (only single substitution)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 s
OF SUSSEX

Future work

® single proof instantiating to full development,full superdevelopment maps?
® avoid duplicates of substitution lemmata in PLFA?
® avoid parallel substitution in PLFA?

by working with single substitution at a given depth

analogous to Huet’s 94 Coq formalisation (based on 6 axioms); cf. proceedings

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024
OF SUSSEX

Future work

® single proof instantiating to full development,full superdevelopment maps?
® avoid duplicates of substitution lemmata in PLFA?
® avoid parallel substitution in PLFA?

® avoid maximal scope extrusion? (work with minimal scope extrusion)

analogous to Hendriks & W 03; cf. paper in proceedings

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 s
OF SUSSEX

Future work

® single proof instantiating to full development,full superdevelopment maps?
® avoid duplicates of substitution lemmata in PLFA?

® avoid parallel substitution in PLFA?

® avoid maximal scope extrusion?

Thanks to

Patrick Dehornoy, Christian Sternagel, Julian Nagele, Bertram Felgenhauer for Z
Andrea Laretto 24 for discussing confluence by Z in Agda (for PLFA; ongoing)

US

UNIVERSITY IWC, Tallinn, Estonia July 9th 2024 s
OF SUSSEX

