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Completeness

Definition

rewrite system→ := ⟨A,Φ, src, tgt⟩ with objects A and steps Φ

ϕ : a→ b or a→ϕ b denotes step ϕ with source src(ϕ) = a, target tgt(ϕ) = b

Lemma (Complete iff)

• locally confluent and terminating

• ordered locally confluent and normalising

Theorem ()

ordered local confluence ⇐⇒ random descent :

if convertible to nf max reductions same length: NF ∋ a n↔m b =⇒ a n−̇m← b
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Completeness

Definition

rewrite system→ := ⟨A,Φ, src, tgt⟩ with objects A and steps Φ

rewrite systems have same data as multigraphs, quivers, pre-categories

Lemma (Complete iff)

• locally confluent and terminating

• ordered locally confluent and normalising

Theorem ()

ordered local confluence ⇐⇒ random descent :

if convertible to nf max reductions same length: NF ∋ a n↔m b =⇒ a n−̇m← b
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Completeness

Definition

rewrite system is complete if confluent (CR) and terminating (SN)

Lemma (Complete iff)

• locally confluent and terminating

• ordered locally confluent and normalising

Theorem ()

ordered local confluence ⇐⇒ random descent :

if convertible to nf max reductions same length: NF ∋ a n↔m b =⇒ a n−̇m← b
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Completeness

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

• locally confluent (WCR) and terminating (SN) (Newman 1942)

• ordered locally confluent and normalising

WCR

Theorem ()

ordered local confluence ⇐⇒ random descent :

if convertible to nf max reductions same length: NF ∋ a n↔m b =⇒ a n−̇m← b
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Completeness

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

• locally confluent and terminating

• ordered locally confluent (OWCR) and normalising (WN) (this talk)

≤

WCR ∈ SNOWCR

Theorem ()

ordered local confluence ⇐⇒ random descent :

if convertible to nf max reductions same length: NF ∋ a n↔m b =⇒ a n−̇m← b
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Completeness

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

• locally confluent and terminating

• ordered locally confluent and normalising

≤

WCR OWCR

Theorem ()

ordered local confluence ⇐⇒ random descent :

if convertible to nf max reductions same length: NF ∋ a n↔m b =⇒ a n−̇m← b
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Completeness

Definition

rewrite system is complete if confluent and terminating

Lemma (Complete iff)

• locally confluent and terminating

• ordered locally confluent and normalising

Theorem (Newman 1942, 2007)

ordered local confluence ⇐⇒ random descent (RD):

if convertible to nf max reductions same length: NF ∋ a n↔m b =⇒ a n−̇m← b
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Example 1: Sorting by swapping adjacent inversions

Example (RTA 2007)

→ swaps adjacent out-of-order letters in finite strings of letters

c

a

c b a

c

b

b a bc

b a c a c b

a

• → is ordered weak Church–Rosser
• → is normalising by termination of some sorting algorithm

hence→ is complete
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Example 1: Sorting by swapping

Example (RTA 2007)

→ swaps adjacent out-of-order letters in finite strings of letters

• → is ordered weak Church–Rosser:

overlap

ab ab=

ba bayx

abyx baxy

abxy

bca

abc

bac acb

cab

cba

same orthogonal

• → is normalising by termination of some sorting algorithm

hence→ is complete
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Example 1: Sorting by swapping

Example (RTA 2007)

→ swaps adjacent out-of-order letters in finite strings of letters

• → is ordered weak Church–Rosser

• → is normalising by termination of some sorting algorithm, e.g. bubble sort

hence→ is complete
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Example 1: Sorting by swapping

Example (RTA 2007)

→ swaps adjacent out-of-order letters in finite strings of letters

• → is ordered weak Church–Rosser

• → is normalising by termination of some sorting algorithm

hence→ is complete because it has random descent
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Example 1: Sorting by swapping

Example (RTA 2007)

→ swaps adjacent out-of-order letters in finite strings of letters

• → is ordered weak Church–Rosser

• → is normalising by termination of some sorting algorithm

hence→ is complete

and all ways of sorting a string by swapping have same length; O(n2)
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Example 2: Bowls and beans

Example (RTA 2007)

→ moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

sequence s may be modelled as s : Z→ N with
∑

s <∞ (finite number of beans)

• → is ordered weak Church–Rosser
• → is normalising since repeatedly dropping beans is

hence→ is complete
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Example 2: Bowls and beans

Example (RTA 2007)

→ moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

0

1

1

1

2

2

1

• → is ordered weak Church–Rosser
• → is normalising since repeatedly dropping beans is

hence→ is complete
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Example 2: Bowls and beans

Example (RTA 2007)

→ moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

• → is ordered weak Church–Rosser:

distinct

=

same

• → is normalising since repeatedly dropping beans is

hence→ is complete
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Example 2: Bowls and beans

Example (RTA 2007)

→ moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

• → is ordered weak Church–Rosser
• → is normalising since repeatedly dropping beans on normal sequences is:

hence→ is complete because it has random descent
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Example 2: Bowls and beans

Example (RTA 2007)

→ moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

• → is ordered weak Church–Rosser

• → is normalising since repeatedly dropping beans is

hence→ is complete
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Example 2: Bowls and beans

Example (RTA 2007)

→ moves a bean to both adjacent bowls in two-sided infinite sequence of bowls

• → is ordered weak Church–Rosser

• → is normalising since repeatedly dropping beans is

hence→ is complete

and all bean runs have same length
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Incompleteness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor in paper)

⟨M,⊥,+,≤⟩ derivation monoid

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Incompleteness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

but reductions from a to c do not have same length (1 or 2)

Definition (Toyama, 2016; with minor in paper)

⟨M,⊥,+,≤⟩ derivation monoid

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Incompleteness for length

Example

→ with steps a→ b, b→ c and a→ c trivially complete

→ cannot be proven complete by OWCR & WN; method of ( 2007) incomplete

Definition (Toyama, 2016; with minor in paper)

⟨M,⊥,+,≤⟩ derivation monoid

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Idea

allow to measure steps by appropriate weights (Toyama, 2016)

Definition (Toyama, 2016; with minor in paper)

⟨M,⊥,+,≤⟩ derivation monoid

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in .

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in .

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in 2nd.

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in 2nd.

main example: ordinals with zero, addition, less–than–or–equal

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid

• measure on→ maps steps to M− {⊥};

• measure of finite reduction is sum of steps ;

• measure of infinite reduction is ⊤ (fresh top greater than all m ∈ M).

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid

• measure on→ maps steps to M− {⊥};
• measure of finite reduction is sum (+; tail to head) of steps (starting with ⊥);

• measure of infinite reduction is ⊤ (fresh top greater than all m ∈ M).

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid

• measure on→ maps steps to M− {⊥};
• measure of finite reduction is sum of steps ;

• measure of infinite reduction is ⊤ (fresh top greater than all m ∈ M).

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ with steps a→ b, b→ c and a→ c trivially complete

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid

• measure on→ maps steps to M− {⊥};
• measure of finite reduction is sum of steps ;

• measure of infinite reduction is ⊤ (fresh top greater than all m ∈ M).

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent (PR):
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Completeness

Example

→ has PR, since a→1 b, b→1 c and a→2 c is OWCR

Definition (Toyama, 2016; with minor refinements in paper)

⟨M,⊥,+,≤⟩ derivation monoid

• measure on→ maps steps to M− {⊥};
• measure of finite reduction is sum of steps ;

• measure of infinite reduction is ⊤ (fresh top greater than all m ∈ M).

Theorem (Toyama, 2016 & paper)

ordered local confluence (OWCR; wrt measure) ⇐⇒ peak random descent :
peak to nf reductions same weight: NF ∋ a ∗

n← ·→◦
µ b =⇒ ∃ k.a ∗

k← b& k +µ = n
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Uniform completeness

Definition (for property Π of objects)

→ is uniformly Π if all objects convertible to nf are Π

Theorem

uniformly complete iff has peak random descent wrt some measure
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

• uniform termination: if c→n b ∈ SN and, say, b ↠m a ∈ NF, then m + n is an
upperbound on measures of reductions from c;

• NF-property: object convertible to nf reduces to it, by induction on # peaks
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

• uniform termination: if c→n b ∈ SN and, say, b ↠m a ∈ NF, then m + n is an
upperbound on measures of reductions from c;

• NF-property: object convertible to nf reduces to it, by induction on # peaks
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of if-direction.

PR entails:

• uniform termination: if c→n b ∈ SN and, say, b ↠m a ∈ NF, then m + n is an
upperbound on measures of reductions from c;

• NF-property: object convertible to nf reduces to it, by induction on # peaks

so if b convertible to nf a, SN(b) by uniform termination, ending in a by NF
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

idea: measure SN objects and steps by wf topological sorting
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

idea: measure SN objects and steps by wf topological sorting, by example
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

0
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

0 1
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

1
0 1
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

1
0 1 2
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

measure a by supremum{(measure of b) + 1 | a→ b}; step a→ b by dif a and b

1
0 1 2

2

1
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

0
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

10
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

10 2
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

10 2 3
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

10 2 3 . . .

IWC 2022, Haifa; Monday 1–8–2022 5



Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

ω

10 2 3 . . .
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Proof of only–if-direction.

ω

10 2 3 . . .

ωω
ω

ω

1 1 1
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Uniform completeness

Definition (Π := CR & SN)

→ is uniformly complete if all objects convertible to nf are complete

Theorem

uniformly complete iff has peak random descent wrt some measure

Corollary

uniformly complete iff OWCR for some measure
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Example 3: the trivial rewrite system

Example

→ with steps a→ b, b→ c and a→ c

• → OWCR for measure a→1 b, b→1 c and a→2 c, hence uniformly complete

• → is trivially WN

hence→ is complete
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Example 3: the trivial rewrite system

Example

→ with steps a→ b, b→ c and a→ c

• → OWCR for measure a→1 b, b→1 c and a→2 c, hence uniformly complete

• → is trivially WN

hence→ is complete

IWC 2022, Haifa; Monday 1–8–2022 6



Example 3: the trivial rewrite system

Example

→ with steps a→ b, b→ c and a→ c

• → OWCR for measure a→1 b, b→1 c and a→2 c, hence uniformly complete

• → is trivially WN

hence→ is complete
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Example 3: the trivial rewrite system

Example

→ with steps a→ b, b→ c and a→ c

• → OWCR for measure a→1 b, b→1 c and a→2 c, hence uniformly complete

• → is trivially WN

hence→ is complete
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Finitely branching systems

Observation

for finitely branching (FB) systems, measures in completeness proof in N
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Finitely branching systems

Observation

for finitely branching systems, measures in completeness proof in N

+ commutative, cancellative; then OWCR ⇐⇒ locally Dyck (Toyama, 2016)
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Finitely branching systems

Observation

for finitely branching systems, measures in completeness proof in N

locally Dyck if

n µ

µ′
1 n′

1

. . .

n′
kµ′

k

≥

and forward weights > backward weights: ∀ i.n +
∑

µ′
i >

∑
n′

i
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Finitely branching systems

Corollary

uniformly complete iff locally Dyck for some measure

locally Dyck if

n µ

µ′
1 n′

1

. . .

n′
kµ′

k

≥

and forward weights > backward weights: ∀ i.n +
∑

µ′
i >

∑
n′

i
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Example 4: deep valleys but shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete
• → is trivially WN

hence→ is complete

IWC 2022, Haifa; Monday 1–8–2022 8



Example 4: deep valleys but shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete:

forward 3 ≥ 3 backward

• → is trivially WN

hence→ is complete
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Example 4: deep valleys but shallow conversions

Example ( 2008)

→ with bi ← ai → ci, bi → bi+1, and ci → ci+1, for 1 ≤ i ≤ n, with bn+1 = cn+1

• → locally Dyck for length measure, hence uniformly complete:

forward 3 > 2 backward
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Conclusions / Directions

1 introduced novel notion uniform completeness (useful?)

2 updated derivation monoid =⇒ OWCR & WN is complete for completeness

3 finding measures for term rewrite systems?

4 methods / tools for proving WN?

5 proof / PL theory fertile hunting ground for WN systems?

thank you
(return to NL tomorrow night; contact me after at oostrom@javakade.nl)
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