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Natural Deduction
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Excluded middle proof
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proof for ∅ ⊢ C ∨ ¬C , for all formulas substituted for C .
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Proofs as terms

(Standard) Ideas

▸ formalisation of informal devices (triangles,withdrawing)

▸ propositional formulas as base types

▸ proof rules as simply typed symbols over base types

▸ proofs as terms over the symbols

Change in perspective:
formulas and how proved ⇒ proofs and what they prove

Notations to suggest correspondence rules and symbols:

▸ product types (A ×B) as juxtaposition (A B);

▸ function types (A→ B) as fractions A
B ;
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Natural deduction proofsignature
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Proofs

Proofterms

Proofgraphs

Conclusion

7

Excluded middle proofterm

RAA(x .¬E(∨IR(¬I(y .¬E(∨IL(y), x))), x))

proofterm for ∅ ⊢ C ∨ ¬C , for all formulas substituted for C

Lemma
There is a bijection between proofs and proofterms.
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Excluded middle proofterm
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Proofs as graphs

Ideas

▸ liberation from the inductive bottom–up straitjacket

▸ proof rules as nodes with ports labelled by formulas
(input: premiss, output: conclusion, bound: assumption)

▸ proofs as graphs over the nodes

▸ partial correctness via conditions on proofgraph

Proof construction by iteration

▸ introduce a fresh copy of a proofnode

▸ click two proofpieces together on their ports
(formulas should unify; lego)

and undoing these actions
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Natural deduction proofnodes
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Excluded middle proofgraph
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proofgraph for ∅ ⊢ C ∨ ¬C , for all formulas substituted for C

Lemma
There is a bijection between proofs and correct proofgraphs.



Proofs

Proofterms

Proofgraphs

Conclusion

10

Excluded middle proofgraph
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proofgraph for ∅ ⊢ C ∨ ¬C , for all formulas substituted for C

Lemma
There is a bijection between proofs and correct proofgraphs.
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Correctness

Idea:

Correctness
The proof-like graph should be completable by further
constructions, but without destruction, into a proofgraph
(graph corresponding to a proofterm)
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Correctness 1: unification

Definition
The unification problem of a proof-like graph is the set of
equations arising from identifying the formulae of the ports
connected by click-edges.

Example

Unification problem for excluded middle proof

� = � B = C ∨D ¬B = ¬A
D = ¬E � = � F = G ∨H

¬F = ¬A G = E

Most general solution

A = B = F = C ∨ ¬C E = G = C D = H = ¬C

Correctness
For a proof-like graph to be a proofgraph it is necessary that its
unification problem be solvable.
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Correctness 2: click-forest

Correctness
For a proof-like graph to be a proofgraph it is necessary that its
click-edges constitute a forest, all click-edges connect input to
output ports, and no port is connected to two click-edges.

enforced automatically by interface of app
(e.g. cannot drag one port of a proofpiece onto another)
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Correctness 3: bind-forest
Binding problems (cyclic and dag)
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Correctness
For a proof-like graph to be a proofgraph it is necessary that
click-edges can be adjoined to yield a forest such that all
bind-edges are click-paths.
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Graph problem

Problem
Given a set of vertices and two sets E ,P of ordered pairs of
vertices, is there a (rooted, directed) forest on the vertices such
that for each pair of vertices in E (P), there is an edge (a path)
from the first to the second in the forest?

cycle-checking easy; dag-checking seems hard
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Conclusions and questions

▸ Second-order signature adequate for natural deduction

▸ Complexity of graph problem?
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