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Natural Deduction
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Excluded middle proof

Proofs
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proof for g+ C v - C, for all formulas substituted for C.
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Proofs as terms

(Standard) Ideas
» formalisation of informal devices (triangles,withdrawing) Proofterms
» propositional formulas as base types
» proof rules as simply typed symbols over base types
» proofs as terms over the symbols
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Proofs as terms

(Standard) Ideas
» formalisation of informal devices (triangles,withdrawing) Proofterms
» propositional formulas as base types
» proof rules as simply typed symbols over base types
» proofs as terms over the symbols

Change in perspective:
formulas and how proved = proofs and what they prove
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Proofs as terms

(Standard) Ideas
» formalisation of informal devices (triangles,withdrawing) Proofterms
» propositional formulas as base types
» proof rules as simply typed symbols over base types
» proofs as terms over the symbols

Change in perspective:
formulas and how proved = proofs and what they prove

Notations to suggest correspondence rules and symbols:
» product types (A x B) as juxtaposition (A B);
» function types (A — B) as fractions %;
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Natural deduction proofsignature
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set of typed (free) variables + type of proofterm
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Excluded middle proofterm

Proofterms

RAA(x.-E(VIR(=I(y.-E(VIL(Y), x))), x))

proofterm for @+ C v - C, for all formulas substituted for C
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Excluded middle proofterm

Proofterms

RAA(x.-E(VIR(=I(y.-E(vIL(y), x))),x))

proofterm for @+ C v - C, for all formulas substituted for C

Lemma
There is a bijection between proofs and proofterms.
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Proofs as graphs

Ideas
» liberation from the inductive bottom—up straitjacket

» proof rules as nodes with ports labelled by formulas Proofgraphs
(input: premiss, output: conclusion, bound: assumption)

» proofs as graphs over the nodes

» partial correctness via conditions on proofgraph
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Proofs as graphs

Ideas
» liberation from the inductive bottom—up straitjacket

» proof rules as nodes with ports labelled by formulas Proofgraphs
(input: premiss, output: conclusion, bound: assumption)

» proofs as graphs over the nodes

» partial correctness via conditions on proofgraph

Proof construction by iteration
» introduce a fresh copy of a proofnode

» click two proofpieces together on their ports
(formulas should unify; lego)

and undoing these actions
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Natural deduction proofnodes

set-of labelled (free) ports ~ label of conclusion port

Proofgraphs

A%
W

Universiteit Utrecht

/A
|

9



Excluded middle proofgraph

Proofgraphs

proofgraph for @+ C v = C, for all formulas substituted for C
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Excluded middle proofgraph

Proofgraphs

proofgraph for @+ C v = C, for all formulas substituted for C
Lemma NI
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There is a bijection between proofs and correct proofgrap%‘.Lw
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Correctness

Proofgraphs
Idea:

Correctness

The proof-like graph should be completable by further
constructions, but without destruction, into a proofgraph
(graph corresponding to a proofterm)
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Correctness 1: unification
Definition
The unification problem of a proof-like graph is the set of

equations arising from identifying the formulae of the ports

connected by click-edges.
Proofgraphs
Example

Unification problem for excluded middle proof
1 = 1 B CvD -B = -A

D = -E 1 =1 F = GvH
-F = -A G = E

Most general solution

A=B=F=Cv-C E=G6=C D=H=-C
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Correctness 1: unification

Definition
The unification problem of a proof-like graph is the set of
equations arising from identifying the formulae of the ports

connected by click-edges.

Proofgraphs
Example

Unification problem for excluded middle proof
1 = 1 B CvD -B = -A

D = -E 1 =1 F = GvH
-F = -A G = E

Most general solution

A=B=F=Cv-C E=G6=C D=H=-C

Correctness
For a proof-like graph to be a proofgraph it is necessary Mt&]mversueltUtrecht
unification problem be solvable.
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Correctness 2: click-forest

Correctness Frocferaphs
For a proof-like graph to be a proofgraph it is necessary that its
click-edges constitute a forest, all click-edges connect input to

output ports, and no port is connected to two click-edges.
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Correctness 2: click-forest

Prooff h
Correctness roofgraphs

For a proof-like graph to be a proofgraph it is necessary that its
click-edges constitute a forest, all click-edges connect input to
output ports, and no port is connected to two click-edges.

enforced automatically by interface of app
(e.g. cannot drag one port of a proofpiece onto another)
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Correctness 3: bind-forest
Binding problems (cyclic and dag)

Proofgraphs
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Correctness 3: bind-forest
Binding problems (cyclic and dag)

Proofgraphs
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Correctness 3: bind-forest
Binding problems (cyclic and dag)

Proofgraphs

Correctness

For a proof-like graph to be a proofgraph it is necessary that

click-edges can be adjoined to yield a forest such that all;@gﬁ it et
bind-edges are click-paths. s
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Graph problem

Proofgraphs

Problem
Given a set of vertices and two sets E,P of ordered pairs of

vertices, is there a (rooted, directed) forest on the vertices such
that for each pair of vertices in E (P), there is an edge (a path)
from the first to the second in the forest?
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Graph problem

Problem Proofgraphs

Given a set of vertices and two sets E,P of ordered pairs of
vertices, is there a (rooted, directed) forest on the vertices such
that for each pair of vertices in E (P), there is an edge (a path)
from the first to the second in the forest?

cycle-checking easy; dag-checking seems hard
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Conclusions and questions

Conclusion

» Second-order signature adequate for natural deduction
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Conclusions and questions

Conclusion

» Second-order signature adequate for natural deduction

» Complexity of graph problem?
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