
Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Higher-Order (Non-)Modularity

Claus Appel & Vincent van Oostrom & Jakob Grue
Simonsen

RTA 2010



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Outline

1 Modularity

2 Flavours of Higher-Order Rewriting

3 Counterexamples

4 Positive results: Non-duplicating systems

5 Conclusion



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Modularity

The Game
We want to prove properties of “large” rewriting systems by
splitting them into “small”, manageable pieces.

Basic tool: Define the “large” system as the union of the
“small” pieces.
Call a property P modular if: P holds for the union of two
systems iff P holds for each of the systems.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Modularity

The game
We denote by A ! B the disjoint union of sets A and B, and
we denote by T0 ⊕ T1 = (Σ0 ! Σ1,R0 ! R1) the disjoint
union of the rewrite systems Ti = (Σi ,Ri) for i ∈ {0,1}.
A property P of a class C of rewrite systems is modular if
P(T0 ⊕ T1) ⇔ P(T0) & P(T1) for all T0,T1 ∈ C



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Warmup example

Termination is not modular (Toyama ’87)
The TRS

R0 =

{

g(x , y) → x
g(x , y) → y

}

is terminating (terms get strictly smaller).
The TRS

R1 = {f (a,b, x) → f (x , x , x)}

is also terminating (no new redexes can be created).
But . . .



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Warmup example

Termination is not modular (Toyama ’87)

R0 =

{

g(x , y) → x
g(x , y) → y

}

R1 = {f (a, b, x) → f (x , x , x)}

In R0 ⊕ R1:

f (a, b, g(a, b)) → f (g(a, b), g(a, b), g(a, b))
→ f (a, g(a, b), g(a, b))
→ f (a, b, g(a, b))



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Modularity

Modularity has a long and varied history
Conditional rewriting, context-sensitive rewriting, graph
rewriting, infinitary rewriting . . .

Mostly studied for first-order rewriting and its variants.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Modularity

But what about higher-order constructs?
Lambda calculus:

(λx .M)N→M{N/x}

or map:

map(F , nil) → nil
map(F , cons(X ,XS)) → cons(F (X ),map(F ,XS))

Topic of today’s talk.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Outline

1 Modularity

2 Flavours of Higher-Order Rewriting

3 Counterexamples

4 Positive results: Non-duplicating systems

5 Conclusion



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Higher-Order Rewriting

Two possible extensions of first-order TRSs
Variables can occur applied in terms: X (a,b)

Terms can have bound variables: λx .x x .
These are orthogonal to each other! (We can have one without
the other without too much hassle.)



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Higher-Order Rewriting

But in general, both extensions are used

(λx .Z )W→Z{W/x}

is often written as a combinatory reduction system (CRS):

app(abs([x ]Z (x)),W )→Z (W )



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Higher-Order Rewriting

Same with map
As an STTRS:

map(F , nil) → nil
map(F , cons(X ,XS)) → cons(F (X ),map(F ,XS))

As a CRS:

map(F , nil) → nil
map([x ]F (x), cons(X ,XS)) → cons(F (X ),map(F ,XS))



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Various flavours of higher-order rewriting

No generally accepted single format
In this paper:

Combinatory Reduction Systems (CRSs), Klop ∼ ’80.
Pattern Rewrite Systems (PRSs), Nipkow ∼ ’90.
Simply Types TRSs (STTRSs), Yamada ∼ ’00 (no bound
variables).

(+ applicative TRSs — not in this talk, though.)

Both CRSs and PRSs use patterns (consequence: Left-hand
sides of rules have no nesting of meta-variables or appliation of
meta-variables to function symbols). Thus, we can have
f ([x ]Z (x)) → rhs, but not X ([x ]Z (x)) → rhs.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Commonalities

Features common to the standard higher-order formats
Function symbols and variables are (simply) typed to
constrain term formation (in particular, X (X ) is usually not
allowed — instead use app(X ,X )).
Every TRS is a higher-order system in any of the formats
(good design!)
If no bound variables⇒ examples can usually be
translated from one format to the other.
Bound variables⇒ examples from CRSs and PRSs can
usually be translated to each other.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Outline

1 Modularity

2 Flavours of Higher-Order Rewriting

3 Counterexamples

4 Positive results: Non-duplicating systems

5 Conclusion



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Nothing good ever lasts

The (short) story in (ordinary) first-order rewriting
Property TRS
Confluence Yes
Normalization Yes
Termination No
Completeness No

Completeness, for left-linear systems Yes
Unique normal forms Yes



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Nothing good ever lasts

Attack confluence and normalization!
Every counterexample for first-order systems is also a
counterexample for higher-order systems. So: A non-modular
property of TRSs is also non-modular i higher-order systems.
Confluence and Normalization are modular for TRSs. However:

Neither property is modular for any of the higher-order
formats.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Confluence

Counterexample
R0 = {µZ → Z (µZ )}

R1 = {f W W → a, f W (sW ) → b}
But:

a← f (µ s) (µ s) → f (µ s) (s (µ s)) → b.

Variations on an old theme: Klop essentially had the counterex-
ample down in his 1980 PhD thesis.
Note: Example has no bound variables.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Confluence

Great! What if one of the systems has no rules (and application
is shared)?

Confluence is not preserved under signature extension

R0 =







f (f (W )) → f (W )
f ([x ]Z (x)) → f (Z (a))
f ([x ]Z (x)) → f ([x ]Z (Z (x)))







is confluent (use induction on terms)
But after extending the signature with a unary g:

f (g(a)) ← f ([x ]g(x)) → f ([x ]g(g(x))) → f (g(g(a)))



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

All is not lost: Left-linearity saves confluence

Theorem
Confluence is modular for left-linear systems.

Proof: Standard orthogonality argument using the
Hindley-Rosen Lemma.
Not new: Known since the early 1990ies (see e.g. van
Oostrom’s 1994 PhD thesis, or earlier papers by Nipkow).



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Normalization is not modular

Counterexample for mod. of norm. for PRSs

R0 =

{

f (x .Z (x), y .y) → f (x .Z (x), y .Z (Z (y)))
f (x .x , y .Z (y)) → a

}

is normalizing (shown by induction on terms).

R1 = {g(g(x)) → x}

is also normalizing.
But . . .

f (x .g(x), y .y) ↔ f (x .g(x), y .g(g(y)))



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

A plethora of counterexamples

In the paper: ∼15 counterexamples
Property TRS STTRS CRS PRS
Confluence Yes No No No
Normalization Yes No (†) No (†) No (†)
Termination No No No No
Completeness No No No No

Confluence, for left-linear systems Yes Yes Yes Yes
Completeness, for left-linear systems Yes No (†) No (†) No (†)

Unique normal forms Yes No (†) No (†) No (†)



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Outline

1 Modularity

2 Flavours of Higher-Order Rewriting

3 Counterexamples

4 Positive results: Non-duplicating systems

5 Conclusion



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

The trouble with modularity proofs

Basic technique
Decompose terms into maximal monochrome

components—“chunks” of the term containing only symbols
from one system.

(See picture on the next slide)



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

The trouble with modularity proofs

The key to most positive results in first-order systems
The rank of a term is the maximal number of signature changes
in paths from the root to leaves.
The rank is non-decreasing across reduction . . .

a

a

a

f

h

g

a

h

a

h

g

h



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

The trouble with modularity proofs

Problem: Exceedingly hard to do for higher-order systems

g ga

f

g

a

f

The “white” system is R0 = {f a Z → f (Z a)Z} and the “black”
system is R1 = {gW →W}



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Thee-pronged attack strategy

For higher-order systems:

Decompose-and-type
Abstract away to consider reductions in an algebra of
components.
Include type sizes in the definition of rank.
Use the sum instead of the max in the definition of rank.

(We can handle variable application this way, but not bound
variables.)
Furter restriction: Simply Typed Term Rewriting Systems with
pattern left-hand sides.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Components (no types yet!)

Components
For γ either black or white, a γ-component is a non-empty
context built from γ-symbols and γ-holes, which does not have
active holes, i.e. holes are not applied.

Example
f ! ! and f (f !) are 0-components, and b, g g and g (g (g"))
are 1-components.
Non-examples: ! (empty), f g (symbols of mixed colors), ! !

(active hole), f " (same color symbol and hole), and f ! ".



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Components and Component-Type-Size

Abstract away
The set of components form a well-behaved algebra. Intuition:
Instead of terms being made from the function symbols of R0
and R1, think of them as made from “symbols” that are really
components.

The reflection of a term t as a “component term” is written in
bold as t in the following.

Think: Terms are trees of black and white legos.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Components and Component-Type-Size

First-order equivalent
“Rank”:

#t = 0 if there is only one component
#C(#t) = 1+maxi(#t i)

(Observe: No typing, no summation, just max.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Components and Component-Type-Size

Component-type size
The component-type size, |t|, of term t is defined to be the pair |t |

defined by:

|C(#t)| = (γ · #τ + ##t , γ · #τ + ##t) if C : τ has color γ

where

#b = 1
#(σ → τ) = #σ + 1+ #τ

#C(#t) = #τ + ##t ifC : τ

(So # looks very much like the size of simple types!). Very im-
portant: Themax from first-order rewriting has been replaced by
a sum (implicit in ##t) .



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Lo and behold!

Non-duplicatingness
A rewrite rule is non-duplicating if no free (meta-)variable
occurs more often in its right-hand side than in its left-hand
side.

Lemma
If t → s in the disjoint union of non-duplicating pattern STTRSs,
then |t | ≥ |s|.

(Proof by tedious induction in an auxiliary lemma, critically
employing non-duplicatingness.)
Also, |t | > |s| when two or more components are amalgamated
in a step.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Consequence

So: The component-type size in pattern STTRSs works “just
like” rank in first-order TRSs.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Consequence

Key Lemma(s)
The following hold:

The rewrite relation→ induces a rewrite relation⇒ on
component terms.
If t → s and |t | = |s| in the disjoint union of non-duplicating
pattern STTRSs, then t ⇒ s.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Consequences

Consequence I
Termination is modular for non-duplicating pattern STTRSs.

Proof: Choose, for contradiction, an infinite reduction in R0⊕R1
starting from a term of minimal component-type size.
⇒ terminates on terms if R0 and R1 terminate(!)
Simulate→ by⇒ using key lemma from previous slide.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Consequences

Consequence II
Normalization is modular for non-duplicating pattern STTRSs.

Proof: As before.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Consequences

What about bound variables?

No go!
Termination is not modular for non-duplicating PRSs. The
presence of bound variables can “simulate” dupliation (due to
substitution), even if the system is non-duplicating — see
example in the paper.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Outline

1 Modularity

2 Flavours of Higher-Order Rewriting

3 Counterexamples

4 Positive results: Non-duplicating systems

5 Conclusion



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

New bits in the paper: (†)

Whole paper in one table
Property TRS STTRS CRS PRS
Confluence Yes No No No
Normalization Yes No (†) No (†) No (†)
Termination No No No No
Completeness No No No No

Confluence, for left-linear systems Yes Yes Yes Yes
Completeness, for left-linear systems Yes No (†) No (†) No (†)

Unique normal forms Yes No (†) No (†) No (†)
Norm., non-dup. pat. systems Yes Yes (†) ? ?
Term., non-dup. pat. systems Yes Yes (†) ? No (†)



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

Future work (all of you, and all of us)

Cheap: Fill the holes in the previous table!
Find other sufficient conditions for modularity of any
interesting property.
Find some way to encompass bound variables. Obvious
possibility: Use a linear substitution calculus or only
consider the subset of linear terms.
Retrofitting: Use the method of component algebras to
re-derive classic modularity results.
Find special restricted systems: Very few interesting
higher-order systems are right-linear (we want to be able to
handle map, fold, etc.)

The final item above is probably the most important.



Modularity Flavours of Higher-Order Rewriting Counterexamples Positive results: Non-duplicating systems Conclusion

?


	Modularity
	

	Flavours of Higher-Order Rewriting
	

	Counterexamples
	

	Positive results: Non-duplicating systems
	

	Conclusion
	


