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Part I: Game of Life as Orthogonal Graph Rewriting

Part II: Orthogonal Structured Rewriting
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Conway’s Game of Life: Glider Gun

click for movie of Glider Gun

movie made of Troy Kidd’s presentation (August 2025)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX


http://www.javakade.nl/research/talk/ggtrim.mov
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Conway’s Game of Life: Cellular Automaton

Cellular Automata

Typically, a cellular automaton (CA) is a regular network
(line/grid/etc.) of cells with discrete states.

Cells update simultaneously as a function of neighboring cells.
Each cell replaces its state with f(s1,ss,...) € S, where s; are
states of the cells in its neighborhood.

A configuration describes the state of all cells at some point in
time. It is considered to extend infinitely in all directions, and
can be represented as a function ¢ : Z¢ — S.
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Figure 10. Examples of one step of
computation, for 1-dimensional and
2-dimensional automatons.

Troy Kidd; osoi.dev/inet-slides
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Conway’s Game of Life: CA Glider Step
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Conway’s Game of Life: CA Glider Step
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Conway’s Game of Life: Graph Rewrite System

Idea: discrete topology

® |abelled nodes represent cells
® ports (8 per node, ordered deosil) discretely represent cell boundaries
® wires (links; between ports) represent adjacency of cell boundaries
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Conway’s Game of Life: GRS Glider Step

ssssssss



Conway’s Game of Life: GRS Glider Step

UNIVERSITY  WC, Leipzig, Deutschland, Tuesday, September 2nd 2025
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: rewriting

® problem: CA cells must be updated synchronously
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

(]
® next Gol state should be m (an oscillator)
(]

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5
OF SUSSEX



Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously

® GoL state mmm
]
® next GoL state should be m
]
® but may be empty if evaluate asynchronously
(strategy: update alive cells first, outside-in; then all counts < 1 so all die)
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

]
® next Gol state should be m
]

® but may be empty if evaluate asynchronously
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Conway’s Game of Life: Orthogonal GRS!

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

]
® next Gol state should be m
]

® but may be empty if evaluate asynchronously

Solution here

® |et each cell interact once with each of its neighbours before update
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Conway’s Game of Life: Orthogonal GRS!

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

]
® next Gol state should be m
]

® but may be empty if evaluate asynchronously

Solution here

® |et each cell interact once with each of its neighbours before update
® orchestrate these interactions by rotating (through all 8 ports of each cell)
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CA ©lockwork

click for movie of ©lockwork

made using gear generator (August 2025)
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http://www.javakade.nl/research/talk/geargeneratorGoL.mov
http://www.geargenerator.com

GoL ©lockwork for Glider Step




Initialise alive-neighbour counters to 0
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Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX



Rotate cogwheels in ©lockstep
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Increment each counter e-opposite o-alive neighbour
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Rotate cogwheels in ©lockstep

UNIVERSITY  WC, Leipzig, Deutschland, Tuesday, September 2nd 2025
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Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX



Rotate cogwheels in ©lockstep




Increment each counter e-opposite o-alive neighbour
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Rotate cogwheels in ©lockstep




Increment each counter e-opposite o-alive neighbour
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Rotate cogwheels in ©lockstep
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Increment each counter e-opposite o-alive neighbour
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Rotate cogwheels in ©lockstep

UNIVERSITY  WC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss



Increment each counter e-opposite o-alive neighbour
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Rotate cogwheels in ©lockstep
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Increment each counter e-opposite o-alive neighbour
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Rotate cogwheels in ©lockstep




)

Next GolL state (repeat..




8 GRS

for 1 GoL Glider Step

alternating rows of inactive and active links
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GRS for GoL Glider Step

XX

SSSSSSSS



GRS for GoL Glider Step
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GRS for GoL Glider Step

|
|
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GRS for GoL Glider Step
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GRS for GoL Glider Step
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GRS for GoL Glider Step
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GRS for GoL Glider Step
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GRS

for GoL Glider Step

XIXTXTX
|
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|
|
|
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increment, rotate and update according to GoL

|||||||||| IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
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GRS

XXX

for GoL Glider Step

|
|

X

X

|
X IXIXIX]
|

|
|
|
|
|
|

result after 8 GRS
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GRS

for GoL Glider Step

|
|
X

|

U
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|
|
|

Combining all 8 GRS into 1 Glider Step
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Orthogonal GRS: Interaction Nets (Lafont 1990)

Definition 1. An interaction netis a finite set of

labeled cells (each having some number of ports), a ‘
set of free ports not associated with any cells, and a v Q
set of wires, connecting each port to another one.
Cells have one principal port and n > 0 auziliary ports A
T Yy z w

(numbered in clockwise order), where n is the arity of
the cell’s symbol.

Wires may connect ports of the same cell or exist as a Figure 1. An interaction net.
cyclic wire not connecting any ports.

Troy Kidd; osoi.dev/inet-slides
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Orthogonal GRS: IN rule

Definition 2. An interaction rule is a pair of interaction
nets having the same set of free ports.

The left-side net must consist of two cells with a wire
between their principal ports, and a wire between
each free port and an auxiliary port.

Rules may have more than two cells on the right,
allowing for an exponentially increasing number of
computations per step.
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Figure 2. Two interaction rules.

<

The first represents inferring y = z from
y=0+z.

Troy Kidd; osoi.dev/inet-slides
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Orthogonal GRS: IN step

Definition 2. An interaction rule is a pair of interaction
nets having the same set of free ports.

The left-side net must consist of two cells with a wire
between their principal ports, and a wire between
each free port and an auxiliary port.

Rules may have more than two cells on the right,
allowing for an exponentially increasing number of
computations per step.
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Figure 2. Two interaction rules.

<

The first represents inferring y = z from
y=0+z.

Troy Kidd; osoi.dev/inet-slides

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

11


http://osoi.dev/inet-slides

Orthogonal GRS: IN reduction

;ﬁm X
z y z y

1

z=1+1+1 z=3

Troy Kidd; osoi.dev/inet-slides
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Orthogonal GRS: IN parallel

Interaction nets were developed by Yves Lafont in 1990,
as a practical model for parallel programming. .

In this model, information is represented with a : Q
collection of cells and ports, connected by wires. a

During one computational step, if a pair of cells matches
arule, they are replaced in a way that doesn’t leave Ty z w
disconnected wires.

Figure 1. An interaction net.
Many replacements can occur in parallel and can be
repeated until there are no rule matches (in the case of
a terminating computation).

Troy Kidd; osoi.dev/inet-slides
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Orthogonal GRS: IN parallel reduction

O10 O O
29 922 92
A 4

Figure 5. All reduction paths from net V to net R.

Troy Kidd; osoi.dev/inet-slides
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Interaction Nets: Orthogonal GRS?

and multisteps

e local v/

(size of left- and right-hand side of rule bounded; for GoL 2 linked nodes)
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Interaction Nets: Orthogonal GRS?

and multisteps

e local v/

® asynchronous v
(each node or link occurs in < 1 redex-pattern; non-overlapping)
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Interaction Nets: Orthogonal GRS?

e local v/
® asynchronous v

e parallel v
(result of contracting set of redex-patterns independent of order)
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Interaction Nets: Orthogonal GRS!

steps and multisteps

e local v/
® asynchronous v
e parallel v
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Interaction Nets: Orthogonal GRS!

steps and multisteps

e local v/
® asynchronous v
e parallel v
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GoL signature

® symbols (arity 8): .- ‘ .
(<2><2><10><8f320 sym

e
X
(N
bols:

®0O

alive?,rot,#neighbours,principal port)
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GoL rule signature

® symbols: s°,

e e e

® rule symbols (ar|ty 14):

*

T
- - 1

(< (2 x 10)? x 2 x 8 = 6400 rule symbols: symbol,rot,port,symbol)
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GoL signature

® symbols: .:':. ' I 0 ‘ ‘ 0

® rule symbols:

*

l

Q1 [ 2

® normalised rewriting modulo Substitution Calculus (SC):
e — _ (indirection)
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GoL step —

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss
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GoL (full multistep)

locating a redex-pattern

|||||||||| IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
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GoL

locating another redex-pattern (non-overlapping)

|||||||||| IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
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GoL

ssssssss



GoL

N
/0
N
/
AN

‘ ‘ T< }N(
‘ T ‘ ‘ (4 % N/ N
2NN e < b P
/ N/ AN
| DN | P [ 2
| X | X e
< /P P NIZRN %
pd x
/S N/ AN

locating all redex-patterns (each node occurs in some redex-pattern)
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GoL ©lockstep

N
/1

N
/1

A A N
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AN RN /

00 01
/ NA AN
{\ ‘ / 1\ ] /{
L/ \l/i N
NN /
X w0 X o
/N AN

@0

22

04

@0

@0

abstracting all redex-patterns into rule symbols; arity 14 (=2 - (8 — 1))
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GoL ©lockstep

\
\
\
N

|

|

|

|
1\

NN /i\ VA RNEA
[

replacing all rule symbols by rhss; ©lockstep
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GoL

o H—HEH €€ &

IN. N N SN /0

pan A

0 -— 1 4—= 0 -— )
AN N

LR
/ /

0 -— - 0

i\ | VAN | /i

L/ N N\

0 ——= 0"~ 0
N/

| X |
7N\

0 -— 00— 1441 4-0

substituting rhss in graph (by substitution calculus)
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GoL

0——0
0 —— 0

(includes deosil / widdershins rotation))

— 11— 1 — 0
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GoL ; multistep ——

Lo L - - - - 0

0 ——=0-—=0-—=0
SN INC 0N N N
N

2

N/ N/ N

L/ N1/ N/ N

0 —— 0 ——0——10

[ X

X

— 11— 0
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GoL ; full multistep —e—

Lo L - - - - 0

0 ——=0-—=0-—=0
SN INC 0N N N
N

2

N/ N/ N

2

L/ N1/ N/ N

0 —— 0 ——0——10

[ X

X

— 11— 0
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GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C - C —
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GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —

® confluence-by-parallelism: —e+ has the diamond property
(by residuation)
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GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —
e confluence-by-parallelism: —e+ has the diamond property

® cube: tiling 3-peak with diamonds yields a cube
(entails co-initial reductions form semi-lattice; least upperbounds)
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GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —
e confluence-by-parallelism: —e+ has the diamond property
® cube: tiling 3-peak with diamonds yields a cube

® finite developments: every development of —e- is finite
(development of multistep is reduction only contracting residuals)

US

UNIVERSITY  |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 20
OF SUSSEX



GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —

® confluence-by-parallelism: —e—+ has the diamond property
® cube: tiling 3-peak with diamonds yields a cube

® finite developments: every development of —e- is finite

full multistep strategy ( ) is normalising
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GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —

® confluence-by-parallelism: —e—+ has the diamond property
® cube: tiling 3-peak with diamonds yields a cube

® finite developments: every development of —e- is finite

full multistep strategy is normalising

US

UNIVERSITY  |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 20
OF SUSSEX



GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —

® confluence-by-parallelism: —e—+ has the diamond property
® cube: tiling 3-peak with diamonds yields a cube

® finite developments: every development of —e- is finite

full multistep strategy is normalising

INs are linear so have random descent
(WN == SN for nets; reductions to normal form all same length)
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Pélya’s triangle

Y
N =

%

I anarogy I j

Mathematics and Plausible Reasoning, Volumel, 1954, Fig. 2.3
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Pélya’s triangle in structured rewriting

rewrite step C[¢]| — C[r]|. for rewrite rule p: ¢/ — r and context C
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Pélya’s triangle in structured rewriting

0

matching% \jubstitution

rewrite step C[g] : C[¢]{ — C][r]{ for rule p: ¢ — r and context C
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Pélya’s triangle in structured rewriting

re=QV]

matchin%/

Cle]

matching for rewrite step Cl[y] : C[¢]{ — C][r]{ for structure C[x] and rule p: ¢ — r
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Pélya’s triangle in structured rewriting

[X:=@]

Cle]

rewrite step C[g] : C[¢{]{ — C][r]{ for structure C[x] and rule p: ¢ —r
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Pélya’s triangle in structured rewriting

substitution for rewrite step C[g| : C[¢]] — C]r]{. for structure C[x] and rule

us” 7

UNIVERSITY io7i
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Pélya’s triangle in string rewriting

ab —_— a

rewrite step abb — ab for rewrite rule p: ab — b and context b
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Pélya’s triangle in string rewriting

Y
matching// \jubstitution
ab — a
ob

rewrite step ob : abb — ab for rewrite rule o: ab — b and context b
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Pélya’s triangle in string rewriting

~(ab ]

matchin%/

ab/ ——

ob

matching for rewrite step pb : abb — ab for structure xb and rule p:ab — b
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Pélya’s triangle in string rewriting

[X:=@]

ab/ ——

ob

rewrite step ob : abb — ab for structure xb and rule p:ab — b
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Pélya’s triangle in string rewriting

x - =(a ]

\ju bstitution

ab —_— a

ob

substitution for rewrite step ob : abb — ab for structure xb and rule p:ab — b
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Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

e structures over a signature having variables x, y, ... over structures

® substitution calculus —s¢ on structures; | denotes SC-normal form (SC-nf)
® rules po: ¢ — r with p in signature and /, r structures

¢ contexts like C[x], D[x,y] indicating variable occurrences

¢ (C[s] denotes replacement of variable occurrence x by structure s in C
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Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

® structures over a signature having variables x, y, ... over structures

® substitution calculus —g¢ on structures; | denotes SC-normal form (SC-nf)
® rules o: /¢ — r with p in signature and /, r structures

e contexts like C[x], D[x, y] indicating variable occurrences

¢ C[s] denotes replacement of variable occurrence x by structure s in C

Definition (of structured rewrite step)

step Clo] : s — t, for context C and structures s, t in SC-nfand rule p: ¢ — r if

s = C[{]} sc« C[/] —o Clr] »sc Clrl{ =t
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Structured rewriting: step

replacement
Cl(] —= Clr]

matching / \substitution
{t ——» s

step

Definition (of structured rewrite step)

step Clo] : s — t, for context C and structures s,t in SC-nf and rule o : ¢ — rif

s = Cl sce ClA —, Clr] »sc Clrlb =t
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Structured rewriting: multistep

replacement
C[/]_,AH ]—» C[rl

matching substitution

multlstep

Definition (of structured rewrite multistep)

multistep C[g] : s —e— t, for context C, structures s, t in SC-nf, rules g; : ¢; — r; if

S:C[glv"'vgn]\J/SCéF C[glw'-ygn] —e—>§C[r1,...,rn] —S8C C[r1>"'7rn]~l/:t
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Structured Orthogonality

AN
AN
N
ppel
&~
PR

S
asy)

N

occurrences of redex-patterns can be abstracted from in parallel
(¢m is union of £ and m)
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Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
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Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX



Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus
® interaction net: indirection-calculus —e— — —
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Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus

® interaction net: indirection-calculus —e— — —

® net rewriting: proofnet-calculus (PN)
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Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
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Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)
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Theory of Orthogonality

® sequentialisation: - C > C —»
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Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

® sequentialisation: - C > C —»
® confluence-by-parallelism: —e—+ has the diamond property

® finite developments: every development of —e- is finite
(development of multistep is reduction only contracting residuals)
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Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

® sequentialisation: - C > C —»
® confluence-by-parallelism: —e—+ has the diamond property
® finite developments: every development of —e- is finite

® cube: tiling 3-peak with diamonds yields a cube
(entails co-initial reductions form semi-lattice; least upperbounds)
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Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

® sequentialisation: - C > C —»

® confluence-by-parallelism: —e—+ has the diamond property
® finite developments: every development of —e- is finite

® cube: tiling 3-peak with diamonds yields a cube

e full multistep strategy is normalising
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Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Clto, 4] »C[ro. » Clro, 7]

\ Cloo. / \ s /
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Termgraphs as structures

e structures: rooted dags over a signature extended with indirection e
® substitution calculus: the xk-calculus

[Xg)
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Termgraphs as structures

e structures: rooted dags over a signature extended with indirection e
® substitution calculus: the xk-calculus

® x-calculus has implicit garbage collection
® termgraphs in x&-normal form are maximally shared
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Termgraphs as structures

e structures: rooted dags over a signature extended with indirection e
® substitution calculus: the xk-calculus

Example (of termgraph step modulo x)

mul mul mul
' ’ ' / / P
rule pul : mul 0 ,step pul : mul — 0
-\ ™
0 suc suc
L]
0 0
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Termgraphs as structures

e structures: rooted dags over a signature extended with indirection e
® substitution calculus: the xk-calculus

Example (of termgraph step modulo x)

mul mul mul
' ’ ’ /
rule  pul @ mul 0 ,step pul : mul —
N\ AN AN
0 suc suc
[ )
0 0

cost: substitution may knock-on erasures and sharing (bounded by graph size)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 28
OF SUSSEX



Conclusions

® normalised rewriting with respect to substitution calculus (SC)
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Conclusions

® normalised rewriting with respect to substitution calculus (SC)

® orthogonality guarantees redex-patterns simultaneously abstractable
(structure obtained by simultaneous substitution redex-patterns by SC)
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Conclusions
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Conclusions

® normalised rewriting with respect to substitution calculus (SC)
® orthogonality guarantees redex-patterns simultaneously abstractable

® steps as structures
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Conclusions

® normalised rewriting with respect to substitution calculus (SC)
® orthogonality guarantees redex-patterns simultaneously abstractable

® steps as structures
® theory of orthogonality
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Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |hss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching
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Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
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Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |lhss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

NN

—_—

deterministic rewrite system — dipper SC
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Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |lhss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

——
matching trivial = cascading SC
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Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |lhss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

AN

___e—>l
substitution trivial = stepping SC
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Implementation of @®

Motivation for @®

® TRSs interesting as target when compiling functional programming

® matching is simple (lhss linear and exactly two function symbols; cascading)
® substitution can be made to avoid replication by termgraph rewriting

® cost (time and space) linear by combining the above two items
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Applicative Inductive Interaction System (®)

Definition (of an )

TRS with signature {@/2,C;/n1,C;/ny, ...} and for each i, rule o¢,(xo, X1, ..., Xn,):

C,‘(X]_, 500 ,an.)Xo — I
right-hand side r constructed from variables, ©, and constructors C;, forj < i

notational conventions:
® application @ infix, implicit as in Combinatory Logic (CL)
® usually leave arguments of rule symbols implicit (derivable from |lhs of rule)
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Applicative Inductive Interaction System (®)

Definition (of an ®)

TRS with signature {@/2,C;/n1,C;/ny, ...} and for each i, rule o¢,(xo, X1, ..., Xn,):

C,‘(X]_, . 7an.)Xo — I

right-hand side r constructed from variables, ©, and constructors C;, forj < i

Example (of an ®)

oc(Xo0,x1,%x2) : C(X1,X2)Xo — X1(X2Xo)
QD(XO) . DX() — C(X(),Xo)
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Applicative Inductive Interaction System (®)

Definition (of an ®)

TRS with signature {@/2,C;/n1,C;/ny, ...} and for each i, rule o¢,(xo, X1, ..., Xn,):

C,‘(X]_, . 7an.)X() — I

right-hand side r constructed from variables, ©, and constructors C;, forj < i

Example (® confluent (via orthogonality), Turing complete (via CL))

0s, 152(X17X2)Xo — (X1Xo) (X2Xo) 0K 1K1(X1)X0 — X1
0s,:  Si(x1)Xo — Sa(x1,x0) ok : Kxo — Ki(xo)
0s: Sxo — Si(xo)
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Applicative Inductive Interaction System (®)

Example (of an ®)

oc(Xo,X1,%x2) : C(x1,X2)X0 — X1 (X2X0)
QD(XQ) . DX() — C(Xo,Xo)

Example (two-step reduction (9c(D,D)z1) - (op(Dz1)))

C(D,D) Z1 —79c(z1,D,D) D (DZ]_) —7op(Dz1) C(DZ]_,DZ]_)

duplicates D z; redex; ends in (constructor C-)head normal form
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Implementing @&

Question (on implementation of ®)

do @@ have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space
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Implementing @&

Question (on implementation of ®)

do @@ have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

® spine strategy is (hyper-(head-))normalising
since every @ is left-normal orthogonal TRSs

® matching-phase is trivial (since lhss left-linear, comprise two symbols)
substitution-phase not trivial (rhss may replicate arguments)
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Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.

Spine Head Spine
| |
d Q@
/o~
K/S t 1/K/S s
I |
@ Q@
/= -\
@ t 51 52
/7
S ty

Example
S(SISI)(K(IK))
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Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.

Spine Head Spine
I |
@ Q@
/=
K/S t 1/K/S s
I |
@ Q@
/= —/\
@ t 51 2
/7~
S ty

Lemma

Every term not in normal form has Spine redex
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Spine strategy for &

Definition (of spine for ®-terms)

® spine: torxty,..., t,
® head spine: x or C(t,...,tp) orts

Lemma (normalising strategy)

® every term not in normal form has redex-pattern on spine, so a strategy
® spine strategy is a normalising strategy having random descent

random descent: reductions to normal form have same length / measure

leftmost—-outermost strategy is a spine-strategy
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Implementing @ in termgraphs by cascading x

Recall termgraph rewriting with k-calculus as SC, and cascading:

Lo
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UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

35



Implementing @ in termgraphs by cascading x

Lo

Idea (minimal unsharing; Wadsworth’s )}

® instead of maximal sharing, unshare only constructors in redex-patterns
® goal: amortise cost of x-steps by charging ®-steps
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Termgraph a-spine strategy

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® o-spine: spine prefix; fringe nodes: nodes covered by a-spine

a-spine

@  fringe node (only one)
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Termgraph «a-spine strategy

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® qa-spine: spine prefix; fringe nodes: nodes covered by a-spine

every termgraph not in normal form has a spine redex-pattern, and any (proper)
a-spine prefix of it has a non-empty fringe

by minimality using acyclicity of termgraphs O
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Termgraph a-spine strategy

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® q-spine: spine prefix; fringe nodes: nodes covered by a-spine

Definition (of a-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is a-spine (in nf)
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Example a-spine reduction (Java code=-dot=>graphs)

recall @-rules:

oc : C(x1,x2) X0 — x1 (X2 X0)
oD : DX() — C(Xo,XQ)

as termgraph rules:
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Correspondence between termgraphs and terms

® «-spine step maps to multistep having at least one spine redex
((hyper-)(head) normalising strategy)
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Correspondence between termgraphs and terms

® a-spine step maps to multistep having at least one spine redex

® multistep comprises redex-patterns having same creation history
(family-step, so optimal strategy (qua horizontal sharing))
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Correspondence between termgraphs and terms

® a-spine step maps to multistep having at least one spine redex
® multistep comprises redex-patterns having same creation history

® cost and size linear in number of termgraph steps
(graph grows linearly; strategy visits links only few times a la DFS)
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Correspondence between termgraphs and terms

® a-spine step maps to multistep having at least one spine redex
® multistep comprises redex-patterns having same creation history
® cost and size linear in number of termgraph steps

® q-spine reduction length not longer than spine
(@@ are orthogonal for which doing more in parallel is better)

® number of spine steps always the same (random descent property)
® reduction length not longer than that of leftmost-outermost stategy
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Decompiling @ to the A-calculus

Definition (of tree homomorphism into \-terms)

C,'(tl, 500y tn) = ()\X().(f')/\)[Xl7 500 ,XnZ:tl, 500 f.'n]

® capture avoiding subs_ti>tution (avoid capture of free variables of the ty)
o (t[X:=t])x = (t)A[X:=(t)x] (substitution lemma)
* well-defined by ® being inductive (in r only C; for j < i may occur)
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Decompiling & to the \-calculus

Definition (of tree homomorphism ( ), into \-terms)

C,’(tl, 500y tn) — ()\Xo.(r))\)[Xl, ey Xpi=ty, o tn]

Example (of tree homomorphism for example ®)

rule tree homomorphism
QciC(Xl,Xz)Xo — X1 (XzXo) C(tl,tz) — )\Xo.tl (tho)
oD - Dxy — C(Xo,Xo) D )\XOX6.X0 (Xo X6)

as D — AXo.(C(xo,X0))x = AXo.(AXo.X1 (X2 X0))[X1, X2:=X0, X0] =a AX0Xg-Xo (X0 X)
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Decompiling & to the \-calculus

Definition (of tree homomorphism ( ), into \-terms)

C,’(tl, 500y tn) — ()\Xo.(r))\)[Xl, ey Xpi=ty, o tn]

Example (of tree homomorphism for example ®)

rule tree homomorphism
QciC(Xl,Xz)Xo — X1 (X2Xo) C(tl,tz) — )\Xo.tl (tho)
oD - Dxy — C(Xo,Xo) D )\XOX6.X0 (Xo X6)

® D maps to the Church numeral 2 forn := \sz.s" z
® Smaps to Axyz.xz(yz) and K to Axy.x as expected / hoped for
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Decompiling @ to the A-calculus

Definition (of tree homomorphism ( ), into \-terms)

C,'(tl, cey t'n) — (/\X().(I’))\)[Xl7 ey Xpi=t1, ..., t'n]

Lemma (implementation of & by \j)

ift =@ s then (t)y —p (s)x
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Decompiling @ to the A-calculus

Definition (of tree homomorphism ( ), into \-terms)

Ci(ty, ..., tn) = (Axo0.(NA)[X1,- - s Xn:i=t1,. .., ts]

Lemma (implementation of & by \j)

ift -@ s then (t)x —g (S)a

Example (of implementing D (D z;) - C(D z1,D z1))

(D(Dz1))x = (Mxyx(xy))(2z1) =g A\y.221(221y) =a (C(Dz1,D 21))»
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Compiling the A-calculus to ®

if M —3 N then (M)@ —1 (N)@ for 7 an &
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Compiling the A-calculus to ®

if M —3 N then (M)@ —1 (N)@ for 7 an &

no implementation ( )@ can achieve that, for full g

for weak 5 (wg3; contract redex if has no variable bound outside) it can:
weak g is first-order (a-conversion never needed), and

weak [ basis of Haskell (no contraction under A, but that’s not confluent)
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Compiling the A-calculus to ®

if M —3 N then (M)@ —1 (N)@ for 7 an &

Definition (of ( )@ mapping a \-term to a pair of an ® and term in it)

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} ULZ,C(t1,...,t5)), where

(
° (Ml Mz)@ = (Il UZp,tp tz), where (I,'./t,') = (M,)@ fori e {1, 2}
(
(Z,r[ts,...,ts]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

do allow components to share constructors when these have the same rules
compilation known variation on the abstraction algorithm (custom combinators)
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Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))
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Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

* (x(xy))® = (0,x (xy)) using only first two items of the definition
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Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

* (xX(xy)® = (0.x(xy)), so

* (x(xy))e = ({oc: C(z1,22) y = 21 (22¥)},C(x, X))
since x and x are maximal y-free subterm occurrences in x (x y)
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Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

* (xX(xy)® = (0.x(xy)), so
¢ ()\y.x (Xy))© = ({QC : C(Z1,Zz)y — 21 (22 y)},C(X7x)), so

o (Axyx(xy))® = {oc:C(z1,22)y = z1(22¥), 00 : Dx — C(x,x)},D)
since no x-free subterm occurrence in C(x, x)
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Compiling the A-calculus to ®

Definition (of ®-lifting)

=
B

@ = (I]_ UZy,tp tz), where (I,',t,') = (M,)@ fori e {1, 2}

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

* x(xy)e = (0:x(xy)), so
° Ay x(xy)e® = ({oc:C(z1,22)y — z1 (22¥)},C(x, X)), so
o (Axyx(xy))® = {oc:C(z1,22)y = z1(22¥), 00 : Dx — C(x,x)},D)
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Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n) X = r[z1,...,25|} UZ,C(t1,...,tn)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Lemma (®-lifting)
if M —ws N then (M)@ —1 (N)@ for some ®-lifting Z.

if M —ws N and (Z,t) := (M)e then t —1 s for some (Z’,s) := (N)@ withZ D 7' O
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Implementing w3-reduction via @&

® w/3 never needs a-conversion, so essentially first-order
(that’s why it was chosen for Haskell)

® indeed, any A\-term M compiles to an @ and term t in it,
such that rewriting from M respectively t is isomorphic

e compilation (finding mfss) can be done efficiently in time and space
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Implementing w3-reduction via @&

® wf never needs a-conversion, so essentially first-order

® indeed, any A\-term M compiles to an @ and term t in it,
such that rewriting from M respectively t is isomorphic

® compilation can be done efficiently in time and space

Corollary

results for @™ carry over to wf3
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Implementing w3-reduction via @&

® wf never needs a-conversion, so essentially first-order

® indeed, any A\-term M compiles to an @ and term t in it,
such that rewriting from M respectively t is isomorphic

® compilation can be done efficiently in time and space

Corollary

results for @™ carry over to wf3

Perspective

Haskell is based on orthogonal 15t-order term rewriting (@®), not A-calculus
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What about Spine strategies for full 57
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Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.

Spine Head Spine
| |
Ax y
|
/\3(2
|
Axk Az
| L
o N
AN
.~@ M
SN\ |
@ M, Q@
/N -/ \
x M, P Q

Example
x((Ax.(Az.zz))y) (xx)(11)
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Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.

Spine Head Spine
| |
Axi y
|
Ax
|
Axi Az
| L
@ N
/7
:@ M
SN |
Q@ M, Q
/ -/ \
x M, P Q

Lemma
Every term not in normal form has Spine redex
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Termgraph a-spine strategy adapted to spine-5

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® o-spine: spine prefix; fringe nodes: nodes covered by a-spine

a-spine

O  fringe node (only one)
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Termgraph a-spine strategy adapted to spine-5

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® q-spine: spine prefix; fringe nodes: nodes covered by a-spine

Definition (of a-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t;,...,t,;) to Ax.C(ty,...,t,) x for x fresh

idea: a combinator on fringe / a-spine is a A-abstraction (in the 3-nf), so may
iterate on its body, effectuated in @ by suppling a fresh variable
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Example a-spine reduction (Java code=-dot=>graphs)

recall @-rules:

oc : C(x1,x2) X0 — x1 (X2 X0)
oD : DX() — C(Xo,XQ)

and termgraph rules:

. 4
{\ec(\@
N (2

515 N

s
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NN
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o 4
{\ac(‘@
N (N

515 N
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N (N

515 N
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root
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515 N
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Implementing some spine-5-strategy via &

® 3 can be implemented via iterating wg (for same ®)
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Implementing some spine-(-strategy via &

® 3 can be implemented via iterating wg (for same ®)
® constructor-steps correspond to needed a-conversions
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Implementing some spine-(-strategy via &

® 3 can be implemented via iterating wg (for same ®)
® constructor-steps correspond to needed a-conversions
® how many a-conversions needed to S-reduce ((28)(49))(57)(42) to nf?
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Implementing some spine-(-strategy via &

® 3 can be implemented via iterating wg (for same ®)

® constructor-steps correspond to needed a-conversions

® how many a-conversions needed to S-reduce ((28)(49))(57)(42) to nf?
® answer: < 2 because output is a Church numeral, which has 2 A\s

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 45
OF SUSSEX



Implementing some spine-(-strategy via &

® 3 can be implemented via iterating wg (for same ®)

® constructor-steps correspond to needed a-conversions

® how many a-conversions needed to S-reduce ((28)(49))(57)(42) to nf?
® answer: < 2 because output is a Church numeral, which has 2 A\s

® cost of constructor-steps amortised by other steps, for the same reason
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Implementing some spine-(-strategy via &

Corollary

results for w3 carry over to spine-3, in particular that the cost of reduction to
B-normal form is linear in the number of leftmost-outermost (-steps to B-nf
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Implementing some spine-5-strategy via &

Corollary

results for w3 carry over to spine-3, in particular that the cost of reduction to
B-normal form is linear in the number of leftmost-outermost (-steps to B-nf

classical 15t-order term(graph) rewrite theory trivialises (extant) cost-analyses
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Implementing S3-reduction

Complexity unavoidable

convertibility of simply typed A-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into 8 and substitutions) that can’t be overcome.
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Implementing S3-reduction

Complexity unavoidable

convertibility of simply typed A-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into 8 and substitutions) that can’t be overcome.

Non-consequence

Optimal reduction for full 5 is non-interesting. By the same token all
implementations shown here would be non-interesting as they are optimal but
for wp.
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Inpla: Interaction nets as a programming language

# Whatis Inpla

The Vine Programming Language

vine.dev

Springtime for interaction nets!

WELCOME TO
THE PARALLEL
FUTURE OF COMPUTATION

A PARALLEL LANGUAGE

higherorderco.com
Optiscope
it ntive unction clls, i hen-ele expr P —

witten in portable C99, it s als
d functions at native
Juation with side

jebraic effect handler:

github.com/etiams/optiscope
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https://deltanets.org

More conclusions

® unit-time steps a priori unreasonable for structured rewriting
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More conclusions

® unit-time steps a priori unreasonable for structured rewriting

® rewriting useful both for simple description and efficient implementation
(do away with abstract machines)
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More conclusions

® unit-time steps a priori unreasonable for structured rewriting
® rewriting useful both for simple description and efficient implementation

® substitution calculi give a way to account for the cost of substitution
(how to slice the pie, between replacement and substitution)
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More conclusions

® unit-time steps a priori unreasonable for structured rewriting
® rewriting useful both for simple description and efficient implementation
® substitution calculi give a way to account for the cost of substitution

® a-spine is 15t-order optimal for @, w3 and 3
(only need skeletons present in initial A-term; no creation of such)
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More conclusions

® unit-time steps a priori unreasonable for structured rewriting

® rewriting useful both for simple description and efficient implementation
® substitution calculi give a way to account for the cost of substitution

® a-spine is 15t-order optimal for @, w3 and 3

® o-spine time and space linear in #steps (via TGRS, in Java)
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More conclusions

® unit-time steps a priori unreasonable for structured rewriting

® rewriting useful both for simple description and efficient implementation
® substitution calculi give a way to account for the cost of substitution

® a-spine is 15t-order optimal for @, w3 and 3

® o-spine time and space linear in #steps (via TGRS, in Java)

® amortised analysis: discounting e-steps via #nodes, a-steps via §-steps
(former based on path-compression of in-edges of e-nodes)
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More conclusions

® unit-time steps a priori unreasonable for structured rewriting

® rewriting useful both for simple description and efficient implementation
® substitution calculi give a way to account for the cost of substitution

® a-spine is 15t-order optimal for @, w3 and 3

® o-spine time and space linear in #steps (via TGRS, in Java)

® amortised analysis: discounting e-steps via #nodes, a-steps via §-steps
e higher-order term rewriting useful to bridge \-calculus and @®
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Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent
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Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent
® Wadsworth (1971): graph rewriting implementation of 3-reduction

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

49



Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent
® Wadsworth (1971): graph rewriting implementation of 3-reduction
© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
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Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy
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Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising
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Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .



Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
@ Lamping (1990): sharing graph implementation of S-families
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Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
@ Lamping (1990): sharing graph implementation of S-families

® Asperti, Mairson (1998): complexity of 5-family reduction is non-elementary
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Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
@ Lamping (1990): sharing graph implementation of S-families

® Asperti, Mairson (1998): complexity of 5-family reduction is non-elementary
© Grégoire, Leroy (2002): 3 via iterated w3
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Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
@ Lamping (1990): sharing graph implementation of S-families

® Asperti, Mairson (1998): complexity of 5-family reduction is non-elementary
© Grégoire, Leroy (2002): 3 via iterated w3

i Blanc, Lévy, Maranget (2005): wg-family, implemented here (Wadsworth)
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Contributions

@ concept of substitution calculus (1994)

® optimal implementation of Imo-3-family by scope nodes (2004)

© wg being isomorphic to orthogonal TRS, given a A-term (2005)

@ optimality of w3 being an instance of optimality of orthogonal TRSs (2005)
O the a-spine strategy for @® (2024)

® Haskell code implementing w3 into an @ and vice versa (2024);

@ linear TGRS implementation of &/ wf / spine-3 (2024)

@ Java code for that implementation (2025)

© naming applicative inductive interaction systems @® (2025)
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Amortised complexity

measure complexity by averaging over reductions (Tarjan)
(instead of measuring per step)
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Amortised complexity

measure complexity by averaging over reductions

incrementing a counter in binary 011 —j,c 111 —j,c 0001 —jc 1001 —jpc - . .
(—inc-steps not unit-time; #bit-flips unbounded)
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Amortised complexity

measure complexity by averaging over reductions

incrementing a counter in binary 011 —j,c 111 —j,c 0001 —jc 1001 —jpc - - .

Example (inc as term rewrite system; —,..= —; - —>},)

s —i(s) i(0(x)) —p 1(x) i(1(x)) —p 0(i(x)) i(e) —p 1(e)
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Amortised complexity

measure complexity by averaging over reductions

incrementing a counter in binary 011 —j,c 111 —j,c 0001 —jc 1001 —jpc - - .

Example (inc as term rewrite system; —,..= —; - —>},)

s —i(s) i(0(x)) —p 1(x) i(1(x)) —p 0(i(x)) i(e) —p 1(e)

0(1(1(e))) =i i(0(1(1(e)))) —b L(1(1(e))) =i ((L(1(1(e)))) —p O(i(1(1(®)))) —b
0(0(i(1(e)))) —» 0(0(0(i(e)))) —» 0(0(0(1(e)))) =i - --

VVVVVVVVVV IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 51
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Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges
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Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

s—312(5)  2(0(x) =1 1) 2(A1(x)) =5, 0(P(x))  i2(e) =54 11(s)
(no need to label 0’s or e’s)
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Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

s —3,1°(s)  (0(x)) =5, 1

[
X
N—r
-
N>
~—~
=
=
X
N—r
~—
o>
[y
o
~—
-
N>
x
o
N—r
-
N>

(o) =51 11(e)

e 7initially labels (closed): charge i with 2 and 1 with 1; preserved by steps
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Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

s —3,1°(s)  (0(x)) =5, 1

>
X
N—r
-
N>
~—~
=
>
X
N—r
~—
o>
[y
o
~—
-
N>
x
o
N—r
-
N>
~—~
[ ]
o
(=}
=
=
[ErY
—~
(]
N

e 7initially labels: charge i with 2 and 1 with 1; preserved by steps
e is a labelling: if t — s, then t& — s?
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Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

S5 2(s)  P0(x) 7o, 110 2(13(x)) =4 O(Z(x)  2(s) =g 11(e)
e initially labels: charge i with 2 and 1 with 1; preserved by steps
e is a labelling: if t — s, then t’ — s’
(in general: cost subtracted; charges must remain non-negative, cover
costs of steps; ¢+ > ¢ > c+ ) rfor each (linear) rule £ —¢ . r)
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Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

s —3,1°(s)  (0(x)) =5, 1

>
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N—r
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~—~
[ ]
o
(=}
=
=
[ErY
—~
(]
N

e 7initially labels: charge i with 2 and 1 with 1; preserved by steps
e is a labelling: if t — s, then & — s?
e cost of reduction from t bounded by amortized cost, < 3 - #i+ > i
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