
Conway’s Game of Life and
other orthogonal rewrite systems

Vincent van Oostrom

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 0

Part I: Game of Life as Orthogonal Graph Rewriting

Part II: Orthogonal Structured Rewriting

Part III: Premium content

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 1

Conway’s Game of Life: Glider Gun

click for movie of Glider Gun

movie made of Troy Kidd’s presentation (August 2025)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 2

http://www.javakade.nl/research/talk/ggtrim.mov
http://osoi.dev/inet-slides

Conway’s Game of Life: Cellular Automaton

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 3

http://osoi.dev/inet-slides

Conway’s Game of Life: CA Glider Step

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 3

Conway’s Game of Life: CA Glider Step

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 3

Conway’s Game of Life: Graph Rewrite System

Idea: discrete topology

• labelled nodes represent cells

• ports (8 per node, ordered deosil) discretely represent cell boundaries

• wires (links; between ports) represent adjacency of cell boundaries

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 4

Conway’s Game of Life: GRS Glider Step

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 4

Conway’s Game of Life: GRS Glider Step

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 4

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■ (other cells empty / dead)

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

(an oscillator)

• but may be empty if evaluate asynchronously

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously
(strategy: update alive cells first, outside–in; then all counts ≤ 1 so all die)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5

Conway’s Game of Life: Orthogonal GRS!

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously

Solution here

• let each cell interact once with each of its neighbours before update

• orchestrate these interactions by rotating (through all 8 ports of each cell)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5

Conway’s Game of Life: Orthogonal GRS!

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously

Solution here

• let each cell interact once with each of its neighbours before update

• orchestrate these interactions by rotating (through all 8 ports of each cell)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5

CA ©lockwork

click for movie of ©lockwork

made using gear generator (August 2025)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 6

http://www.javakade.nl/research/talk/geargeneratorGoL.mov
http://www.geargenerator.com

GoL ©lockwork for Glider Step

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Initialise alive-neighbour counters to 0

00 0

0

0 0 0 0

0 0 0 0

0 0 0 0

0

0

0

0 0

00 0 0

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Increment each counter •-opposite ◦-alive neighbour

01 1

0

0 0 0 0

0 0 0 1

0 0 1 1

0

0

0

0 0

00 0 0

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Rotate cogwheels in ©lockstep

1 1 0

0

0

0 0

1

0 0

0 1 0

000

0 0 0

0 0 0 0

10

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Increment each counter •-opposite ◦-alive neighbour

1 1 1

0

0

0 1

1

0 0

0 1 1

100

0 0 0

0 0 0 0

11

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Rotate cogwheels in ©lockstep

1 1

0

1

0 0
0 1

0 1
0 0

1 1
0 0 0

1 1
0 0 1

0 0
0

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Increment each counter •-opposite ◦-alive neighbour

1 1

0

2

0 0
0 1

0 1
0 1

1 1
0 0 0

1 1
0 1 2

1 0
0

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Rotate cogwheels in ©lockstep

0

0 1 1

0 0

0 1 2

0 1

0 0 1

1 1

0 0 0

1 1

0 1 2

1

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Increment each counter •-opposite ◦-alive neighbour

0

0 1 1

0 0

0 1 2

1 1

0 1 2

1 1

0 0 1

1 1

0 1 3

1

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Rotate cogwheels in ©lockstep

0

0 1 1

0 0

0 1 2

1 1

0 1 2

1 1

0 0 1

1 1

0 1 3

1

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Increment each counter •-opposite ◦-alive neighbour

1

0 1 1

0 1

0 1 2

1 2

0 1 2

1 1

0 0 1

1 1

0 2 3

2

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Rotate cogwheels in ©lockstep

0 1 1

1

0 1

0 2

1 2

0 1 2

1 1

0 0 1

1 1

0 2 3

2 1

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Increment each counter •-opposite ◦-alive neighbour

0 1 1

1

0 1

0 2

1 3

1 2 2

1 1

0 1 1

1 1

0 3 3

2 1

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Rotate cogwheels in ©lockstep

1
0 1 1

0 1
0 1 2

1 3
1 2 2

1 1
0 1 1

1 1
0 3 3

2

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Increment each counter •-opposite ◦-alive neighbour

2
0 1 1

0 1
0 2 2

1 3
1 3 2

1 1
0 1 1

1 1
1 4 3

2

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Rotate cogwheels in ©lockstep

2

0 1 1

0 1

0 2 2

1 3

1 3 2

1 1

0 1 1

1 1

1 4 3

2

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Increment each counter •-opposite ◦-alive neighbour

2

0 2 1

0 1

1 3 2

1 3

1 3 2

1 2

0 1 1

1 1

1 5 3

2

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Rotate cogwheels in ©lockstep

21 1

3

0 0 1 1

1 1 5 3

0 1 2 2

1

3

1

1 3

21 2 2

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

Next GoL state (repeat . . .)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7

8 GRS ©locksteps for 1 GoL Glider Step

alternating rows of inactive and active links

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

•⟳ 0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

increment if other alive; rotate deosil / widdershins if row+column odd / even

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

•⟳ 0

0 0 0 0

0 1

0 0

0 0 0

0 1 1

1

1

1 1

1 1

1

00

0

increment if other alive; rotate deosil / widdershins if row+column odd / even

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

0

0 0 0 0

0 1

0 0

0 0 0

0 1 1

1

1

1 1

1 1

1

00

0

•⟳ 0

0 0 0 0

0 1

0

0

0 1 1

1

1 1

2

1 2

1 1

1

1

00

0

increment if other alive; rotate deosil / widdershins if row+column odd / even

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

0

0 0 0 0

0 1

0

0

0 1 1

1

1 1

2

1 2

1 1

1

1

00

0

•⟳ 1

0 0 0

0 1

0

0

0 1 1

1

1 1

2

1

1

1

3

2

1

1

01

0

increment if other alive; rotate deosil / widdershins if row+column odd / even

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

1

0 0 0

0 1

0

0

0 1 1

1

1 1

2

1

1

1

3

2

1

1

01

0

•⟳ 1

0 0

0 1

0

0

0 1 1

1

1 1

2

1

3

2

1

2

2

1

2

11

0

increment if other alive; rotate deosil / widdershins if row+column odd / even

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

1

0 0

0 1

0

0

0 1 1

1

1 1

2

1

3

2

1

2

2

1

2

11

0

•⟳ 1

0

0 1

0

0 1 1

1

1 1

2

1

3

2

1

2

1

3

1

1

3

12

0

increment if other alive; rotate deosil / widdershins if row+column odd / even

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

1

0

0 1

0

0 1 1

1

1 1

2

1

3

2

1

2

1

3

1

1

3

12

0

•⟳ 1

0

0 1

0 1 11 1

2

1

3

2

1

2

1

1

2

1 4

1

3

23

0

increment if other alive; rotate deosil / widdershins if row+column odd / even

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

1

0

0 1

0 1 11 1

2

1

3

2

1

2

1

1

2

1 4

1

3

23

0

•⟳

increment, rotate and update according to GoL

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

result after 8 GRS ©locksteps

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

GRS ©locksteps for GoL Glider Step

⇒

Combining all 8 GRS ©locksteps into 1 Glider Step

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8

Orthogonal GRS: Interaction Nets (Lafont 1990)

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 9

http://osoi.dev/inet-slides

Orthogonal GRS: IN rule

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 10

http://osoi.dev/inet-slides

Orthogonal GRS: IN step

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 11

http://osoi.dev/inet-slides

Orthogonal GRS: IN reduction

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 12

http://osoi.dev/inet-slides

Orthogonal GRS: IN parallel

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 13

http://osoi.dev/inet-slides

Orthogonal GRS: IN parallel reduction

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 14

http://osoi.dev/inet-slides

Interaction Nets: Orthogonal GRS?

steps and multisteps

• local!
(size of left- and right-hand side of rule bounded; for GoL 2 linked nodes)

• asynchronous!

• parallel!

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 15

Interaction Nets: Orthogonal GRS?

steps and multisteps

• local!

• asynchronous!
(each node or link occurs in ≤ 1 redex-pattern; non-overlapping)

• parallel!

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 15

Interaction Nets: Orthogonal GRS?

steps and multisteps

• local!

• asynchronous!

• parallel!
(result of contracting set of redex-patterns independent of order)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 15

Interaction Nets: Orthogonal GRS!

steps and multisteps

• local!

• asynchronous!

• parallel!

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 15

Interaction Nets: Orthogonal GRS!

steps and multisteps

• local!

• asynchronous!

• parallel!

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 15

GoL signature

• symbols (arity 8): 101 1 . . .

(≤ 2 × 2 × 10 × 8 = 320 symbols: alive?,rot,#neighbours,principal port)

• rule symbols:

ϱ2ϱ1

1 1

10

. . .

• normalised rewriting modulo Substitution Calculus (SC):
(indirection)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 16

GoL rule signature

• symbols: 101 1 . . .

• rule symbols (arity 14):

ϱ2ϱ1

1 1

10

. . .

(≤ (2 × 10)2 × 2 × 8 = 6400 rule symbols: symbol,rot,port,symbol)

• normalised rewriting modulo Substitution Calculus (SC):
(indirection)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 16

GoL signature

• symbols: 101 1 . . .

• rule symbols:

ϱ2ϱ1

1 1

10

. . .

• normalised rewriting modulo Substitution Calculus (SC):
(indirection)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 16

GoL step →

0

0

0

1

0

1

ϱ1

SC

LHS

SC

RHS

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 17

GoL ©lockstep (full multistep)

locating a redex-pattern

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18

GoL ©lockstep

locating another redex-pattern (non-overlapping)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18

GoL ©lockstep

locating yet other redex-patterns (all pairwise non-overlapping)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18

GoL ©lockstep

locating all redex-patterns (each node occurs in some redex-pattern)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18

GoL ©lockstep

ϱ0

ϱ1 ϱ0 ϱ2 ϱ0

ϱ3 ϱ4ϱ0 ϱ5

ϱ0

abstracting all redex-patterns into rule symbols; arity 14 (= 2 · (8 − 1))

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18

GoL ©lockstep

ϱ0

ϱ1 ϱ0 ϱ2 ϱ0

ϱ3 ϱ4ϱ0 ϱ5

ϱ0

0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 1 1 0

0

1

1

0 0

0

0

replacing all rule symbols by rhss; ©lockstep

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18

GoL ©lockstep

0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 1 1 0

0

1

1

0 0

0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

0 0

substituting rhss in graph (by substitution calculus)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18

GoL ©lockstep

◦−→

0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

0 0

(includes deosil / widdershins rotation))

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18

GoL ©lockstep; multistep ◦−→

1

0

0

1

1

0 0

0

0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1

ϱ0 ϱ1 ϱ0 ϱ2 ϱ0

ϱ3 ϱ4ϱ0 ϱ5 ϱ0

LHS RHS

SC SC

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 19

GoL ©lockstep; full multistep •−→

1

0

0

1

1

0 0

0

0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1

ϱ0 ϱ1 ϱ0 ϱ2 ϱ0

ϱ3 ϱ4ϱ0 ϱ5 ϱ0

LHS RHS

SC SC

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 19

GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 20

GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property
(by residuation)

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 20

GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube
(entails co-initial reductions form semi-lattice; least upperbounds)

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 20

GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite
(development of multistep is reduction only contracting residuals)

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 20

GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy (©lockstep) is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 20

GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 20

GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 20

Pólya’s triangle

Mathematics and Plausible Reasoning, Volume1, 1954, Fig. 2.3

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 21

Pólya’s triangle in structured rewriting

rewrite step C[ℓ]↓ → C[r]↓ for rewrite rule ϱ : ℓ → r and context C

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22

Pólya’s triangle in structured rewriting

C[ϱ]

substitutionmatching

ϱ

rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for rule ϱ : ℓ → r and context C

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22

Pólya’s triangle in structured rewriting

matching

C[ϱ]

][x:=x

matching for rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule ϱ : ℓ → r

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22

Pólya’s triangle in structured rewriting

]

C[ϱ]

[x:=x ϱ

rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule ϱ : ℓ → r

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22

Pólya’s triangle in structured rewriting

substitution

[x:=]

C[ϱ]

x

substitution for rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule
ϱ : ℓ → r

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22

Pólya’s triangle in string rewriting

ab a

rewrite step abb → ab for rewrite rule ϱ : ab → b and context b

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 23

Pólya’s triangle in string rewriting

ϱb

substitutionmatching

ϱ

aab

rewrite step ϱb : abb → ab for rewrite rule ϱ : ab → b and context b

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 23

Pólya’s triangle in string rewriting

[x:=]

ϱb

matching

x ab

ab a

matching for rewrite step ϱb : abb → ab for structure xb and rule ϱ : ab → b

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 23

Pólya’s triangle in string rewriting

][x:=

ϱb

x ϱ

ab a

rewrite step ϱb : abb → ab for structure xb and rule ϱ : ab → b

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 23

Pólya’s triangle in string rewriting

substitution

[x:=]

ϱb

x a

ab a

substitution for rewrite step ϱb : abb → ab for structure xb and rule ϱ : ab → b

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 23

Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

• structures over a signature having variables x, y, . . . over structures

• substitution calculus →SC on structures; ↓ denotes SC-normal form (SC-nf)

• rules ϱ : ℓ → r with ϱ in signature and ℓ, r structures

• contexts like C[x], D[x, y] indicating variable occurrences

• C[s] denotes replacement of variable occurrence x by structure s in C

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 24

Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

• structures over a signature having variables x, y, . . . over structures

• substitution calculus →SC on structures; ↓ denotes SC-normal form (SC-nf)

• rules ϱ : ℓ → r with ϱ in signature and ℓ, r structures

• contexts like C[x], D[x, y] indicating variable occurrences

• C[s] denotes replacement of variable occurrence x by structure s in C

Definition (of structured rewrite step)

step C[ϱ] : s → t, for context C and structures s, t in SC-nf and rule ϱ : ℓ → r if

s = C[ℓ]↓ SC↞ C[ℓ] →ϱ C[r] ↠SC C[r]↓ = t

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 24

Structured rewriting: step

step

C[ℓ] C[r]

t s

replacement

substitutionmatching

Definition (of structured rewrite step)

step C[ϱ] : s → t, for context C and structures s, t in SC-nf and rule ϱ : ℓ → r if

s = C[ℓ]↓ SC↞ C[ℓ] →ϱ C[r] ↠SC C[r]↓ = t

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 24

Structured rewriting: multistep

multistep

C[ℓ1, . . . , ℓn] C[r1, . . . , rn]

t s

replacement

substitutionmatching

Definition (of structured rewrite multistep)

multistep C[ϱ⃗] : s ◦−→ t, for context C, structures s, t in SC-nf, rules ϱi : ℓi → ri if

s = C[ℓ1, . . . , ℓn]↓ SC↞ C[ℓ1, . . . , ℓn] ◦−→ϱ⃗ C[r1, . . . , rn] ↠SC C[r1, . . . , rn]↓ = t

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 24

Structured Orthogonality

t

C[
−→
ℓm]

D[ℓ⃗] E[m⃗]

occurrences of redex-patterns can be abstracted from in parallel
(
−→
ℓm is union of ℓ⃗ and m⃗)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 25

Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26

Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26

Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−

• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26

Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26

Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26

Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26

Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26

Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 27

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property
(by residuation)

• finite developments: every development of ◦−→ is finite

• cube: tiling 3-peak with diamonds yields a cube

• full multistep strategy is normalising

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 27

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• finite developments: every development of ◦−→ is finite

• cube: tiling 3-peak with diamonds yields a cube

• full multistep strategy is normalising

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 27

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• finite developments: every development of ◦−→ is finite
(development of multistep is reduction only contracting residuals)

• cube: tiling 3-peak with diamonds yields a cube

• full multistep strategy is normalising

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 27

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• finite developments: every development of ◦−→ is finite

• cube: tiling 3-peak with diamonds yields a cube
(entails co-initial reductions form semi-lattice; least upperbounds)

• full multistep strategy is normalising

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 27

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• finite developments: every development of ◦−→ is finite

• cube: tiling 3-peak with diamonds yields a cube

• full multistep strategy is normalising

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 27

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 27

Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

h →
E

→
I

h h h→
C

Example (of termgraph step modulo �)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 28

Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

• �-calculus has implicit garbage collection

• termgraphs in �-normal form are maximally shared

Example (of termgraph step modulo �)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 28

Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

Example (of termgraph step modulo �)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 28

Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

Example (of termgraph step modulo �)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

cost: substitution may knock-on erasures and sharing (bounded by graph size)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 28

Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable

•
• steps as structures

• theory of orthogonality

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 29

Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable
(structure obtained by simultaneous substitution redex-patterns by SC)

•
• steps as structures

• theory of orthogonality

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 29

Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable

•

λβ GoL 4CL

• steps as structures

• theory of orthogonality

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 29

Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable

•

OCRS CA OTGRSOTRS

• steps as structures

• theory of orthogonality

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 29

Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable

•

OCRS IN OTGRSOTRS

OPRS

• steps as structures

• theory of orthogonality

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 29

Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable

•

OSRS

OCRS CA OTGRSOTRS

OPRS

• steps as structures

• theory of orthogonality

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 29

Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable

•

OSRS

OCRS CA OTGRSOTRS

OPRS

• steps as structures

• theory of orthogonality

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 29

Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable

•

OSRS

OCRS CA OTGRSOTRS

OPRS

• steps as structures

• theory of orthogonality

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 29

Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 30

Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 30

Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 30

Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

deterministic rewrite system =⇒ dipper SC

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 30

Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

matching trivial =⇒ cascading SC

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 30

Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

substitution trivial =⇒ stepping SC

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 30

Implementation of 44

Motivation for 44

• TRSs interesting as target when compiling functional programming

• matching is simple (lhss linear and exactly two function symbols; cascading)

• substitution can be made to avoid replication by termgraph rewriting

• cost (time and space) linear by combining the above two items

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 31

Applicative Inductive Interaction System (4)

Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

notational conventions:
• application @ infix, implicit as in Combinatory Logic (CL)
• usually leave arguments of rule symbols implicit (derivable from lhs of rule)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1) →ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 32

Applicative Inductive Interaction System (4)

Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

Example (of an 4)

ϱC(x0, x1, x2) : C(x1, x2) x0 → x1 (x2 x0)

ϱD(x0) : D x0 → C(x0, x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1) →ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 32

Applicative Inductive Interaction System (4)

Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

Example (4 confluent (via orthogonality), Turing complete (via CL))

ϱS2 :S2(x1, x2) x0 → (x1 x0) (x2 x0) ϱK1 :K1(x1) x0 → x1

ϱS1 : S1(x1) x0 → S2(x1, x0) ϱK : K x0 → K1(x0)

ϱS : S x0 → S1(x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1) →ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 32

Applicative Inductive Interaction System (4)

Example (of an 4)

ϱC(x0, x1, x2) : C(x1, x2) x0 → x1 (x2 x0)

ϱD(x0) : D x0 → C(x0, x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1) →ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 32

Implementing 44

Question (on implementation of 4)

do 44 have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

• spine strategy is (hyper-(head-))normalising
since every 4 is left-normal orthogonal TRSs

• matching-phase is trivial (since lhss left-linear, comprise two symbols)
substitution-phase not trivial (rhss may replicate arguments)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 33

Implementing 44

Question (on implementation of 4)

do 44 have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

• spine strategy is (hyper-(head-))normalising
since every 4 is left-normal orthogonal TRSs

• matching-phase is trivial (since lhss left-linear, comprise two symbols)
substitution-phase not trivial (rhss may replicate arguments)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 33

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 34

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 34

Spine strategy for 4

Definition (of spine for 4-terms)

• spine: t or x t1 , . . . , tn

• head spine: x or C(t1, . . . ,tn) or t s

Lemma (normalising strategy)

• every term not in normal form has redex-pattern on spine, so a strategy

• spine strategy is a normalising strategy having random descent

• random descent: reductions to normal form have same length / measure

• leftmost–outermost strategy is a spine-strategy

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 34

Implementing 4 in termgraphs by cascading �

Recall termgraph rewriting with �-calculus as SC, and cascading:

h →
E

→
I

h h h→
C

Idea

• instead of maximal sharing, unshare only constructors in redex-patterns

• goal: amortise cost of �-steps by charging 4-steps

@

C

@

CC

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 35

Implementing 4 in termgraphs by cascading �

h →
E

→
I

h h h→
C

Idea (minimal unsharing; Wadsworth’s admissibility)

• instead of maximal sharing, unshare only constructors in redex-patterns

• goal: amortise cost of �-steps by charging 4-steps

@

C

@

CC

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 35

Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

α-spine

@
Z

Z

Z

@

Z

fringe node (only one)

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 36

Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Lemma

every termgraph not in normal form has a spine redex-pattern, and any (proper)
α-spine prefix of it has a non-empty fringe

Proof.

by minimality using acyclicity of termgraphs

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 36

Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 36

Example α-spine reduction (Java code⇒dot⇒graphs)

recall 4-rules:

ϱC : C(x1, x2) x0 → x1 (x2 x0)
ϱD : D x0 → C(x0, x0)

as termgraph rules:

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 37

Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex
((hyper-)(head) normalising strategy)

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 38

Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history
(family-step, so optimal strategy (qua horizontal sharing))

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 38

Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps
(graph grows linearly; strategy visits links only few times à la DFS)

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 38

Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 38

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

• capture avoiding substitution (avoid capture of free variables of the tk)
• (t[⃗x:=⃗t])λ = (t)λ [⃗x:=

−−→
(t)λ] (substitution lemma)

• well-defined by 4 being inductive (in r only Cj for j < i may occur)

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1) →β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 39

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Example (of tree homomorphism for example 4)

rule tree homomorphism

ϱC :C(x1, x2) x0 → x1 (x2 x0) C(t1, t2) 7→ λx0.t1 (t2 x0)

ϱD : D x0 → C(x0, x0) D 7→ λx0x′
0.x0 (x0 x′

0)

as D 7→ λx0.(C(x0, x0))λ = λx0.(λx0.x1 (x2 x0))[x1, x2:=x0, x0] =α λx0x′
0.x0 (x0 x′

0)

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1) →β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 39

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Example (of tree homomorphism for example 4)

rule tree homomorphism

ϱC :C(x1, x2) x0 → x1 (x2 x0) C(t1, t2) 7→ λx0.t1 (t2 x0)

ϱD : D x0 → C(x0, x0) D 7→ λx0x′
0.x0 (x0 x′

0)

• D maps to the Church numeral 2 for n := λsz.sn z
• S maps to λxyz.x z (y z) and K to λxy.x as expected / hoped for

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1) →β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 39

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1) →β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 39

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1) →β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 39

Compiling the λ-calculus to 4

Lemma (??)

if M →β N then (M)4 →I (N)4 for I an 4

Definition ()

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Compiling the λ-calculus to 4

Lemma (??)

if M →β N then (M)4 →I (N)4 for I an 4

• no implementation ()4 can achieve that, for full β
• for weak β (wβ; contract redex if has no variable bound outside) it can:
• weak β is first-order (α-conversion never needed), and
• weak β basis of Haskell (no contraction under λ, but that’s not confluent)

Definition ()

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Compiling the λ-calculus to 4

Lemma (??)

if M →β N then (M)4 →I (N)4 for I an 4

Definition (of ()4 mapping a λ-term to a pair of an 4 and term in it)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

do allow components to share constructors when these have the same rules
compilation known variation on the abstraction algorithm (custom combinators)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y))

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x))
• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)) using only first two items of the definition

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x))
• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x))
since x and x are maximal y-free subterm occurrences in x (x y)

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x)), so

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)
since no x-free subterm occurrence in C(x, x)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x)), so

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40

Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order
(that’s why it was chosen for Haskell)

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation (finding mfss) can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 41

Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 41

Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 41

What about Spine strategies for full β?

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 42

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 42

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 42

Termgraph α-spine strategy adapted to spine-β

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

α-spine

@
Z

Z

Z

@

Z

fringe node (only one)

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t1, . . . , tn) to λx.C(t1, . . . , tn) x for x fresh

idea: a combinator on fringe / α-spine is a λ-abstraction (in the β-nf), so may
iterate on its body, effectuated in 4 by suppling a fresh variable

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 43

Termgraph α-spine strategy adapted to spine-β

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t1, . . . , tn) to λx.C(t1, . . . , tn) x for x fresh

idea: a combinator on fringe / α-spine is a λ-abstraction (in the β-nf), so may
iterate on its body, effectuated in 4 by suppling a fresh variable

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 43

Example α-spine reduction (Java code⇒dot⇒graphs)

recall 4-rules:

ϱC : C(x1, x2) x0 → x1 (x2 x0)
ϱD : D x0 → C(x0, x0)

and termgraph rules:

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

ϱC

@

C

@

@

@

D

C

ϱD

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 44

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 45

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 45

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 45

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 45

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 45

Implementing some spine-β-strategy via 4

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 45

Implementing some spine-β-strategy via 4

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 45

Implementing β-reduction

Complexity unavoidable

convertibility of simply typed λ-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into β and substitutions) that can’t be overcome.

Non-consequence

Optimal reduction for full β is non-interesting. By the same token all
implementations shown here would be non-interesting as they are optimal but
for wβ.

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 46

Implementing β-reduction

Complexity unavoidable

convertibility of simply typed λ-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into β and substitutions) that can’t be overcome.

Non-consequence

Optimal reduction for full β is non-interesting. By the same token all
implementations shown here would be non-interesting as they are optimal but
for wβ.

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 46

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 47

https://deltanets.org

More conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 48

More conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation
(do away with abstract machines)

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 48

More conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution
(how to slice the pie, between replacement and substitution)

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 48

More conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β
(only need skeletons present in initial λ-term; no creation of such)

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 48

More conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 48

More conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps
(former based on path-compression of in-edges of •-nodes)

• higher-order term rewriting useful to bridge λ-calculus and 44

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 48

More conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 48

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction
only leftmost-outermost, no call-by-need; unsharing skeletons

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 49

Contributions

1 concept of substitution calculus (1994)

2 optimal implementation of lmo-β-family by scope nodes (2004)

3 wβ being isomorphic to orthogonal TRS, given a λ-term (2005)

4 optimality of wβ being an instance of optimality of orthogonal TRSs (2005)

5 the α-spine strategy for 44 (2024)

6 Haskell code implementing wβ into an 4 and vice versa (2024);

7 linear TGRS implementation of 4/ wβ / spine-β (2024)

8 Java code for that implementation (2025)

9 naming applicative inductive interaction systems 44 (2025)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 50

Amortised complexity

Idea

measure complexity by averaging over reductions (Tarjan)
(instead of measuring per step)

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 51

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .
(→inc-steps not unit-time; #bit-flips unbounded)

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 51

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 51

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 51

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)
(no need to label 0’s or •’s)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels (closed): charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

(in general: cost subtracted; charges must remain non-negative, cover
costs of steps; ĉ +

∑
ℓ ≥ c +

∑
r for each (linear) rule ℓ →ĉ,c r)

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52

	Part 1I: Game of Life as Orthogonal Graph Rewriting
	Part 2II: Orthogonal Structured Rewriting
	Part 3III: Premium content

