Conway’s Game of Life and
other orthogonal rewrite systems

Vincent van Oostrom

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 0
OF SUSSEX

Part I: Game of Life as Orthogonal Graph Rewriting

Part II: Orthogonal Structured Rewriting

Part IlI: Premium content

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

Conway’s Game of Life: Glider Gun

click for movie of Glider Gun

movie made of Troy Kidd’s presentation (August 2025)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

http://www.javakade.nl/research/talk/ggtrim.mov
http://osoi.dev/inet-slides

Conway’s Game of Life: Cellular Automaton

Cellular Automata

Typically, a cellular automaton (CA) is a regular network
(line/grid/etc.) of cells with discrete states.

Cells update simultaneously as a function of neighboring cells.
Each cell replaces its state with f(s1,ss,...) € S, where s; are
states of the cells in its neighborhood.

A configuration describes the state of all cells at some point in
time. It is considered to extend infinitely in all directions, and
can be represented as a function ¢ : Z¢ — S.

U) 4

[=1=]
a
[1T1]
I
I

Figure 10. Examples of one step of
computation, for 1-dimensional and
2-dimensional automatons.

Troy Kidd; osoi.dev/inet-slides

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

http://osoi.dev/inet-slides

Conway’s Game of Life: CA Glider Step

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Conway’s Game of Life: CA Glider Step

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Conway’s Game of Life: Graph Rewrite System

Idea: discrete topology

® |abelled nodes represent cells
® ports (8 per node, ordered deosil) discretely represent cell boundaries
® wires (links; between ports) represent adjacency of cell boundaries

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 4
OF SUSSEX

Conway’s Game of Life: GRS Glider Step

ssssssss

Conway’s Game of Life: GRS Glider Step

UNIVERSITY WC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: rewriting

® problem: CA cells must be updated synchronously

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5
OF SUSSEX

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5
OF SUSSEX

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

(]
® next Gol state should be m (an oscillator)
(]

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5
OF SUSSEX

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously

® GoL state mmm
]
® next GoL state should be m
]
® but may be empty if evaluate asynchronously
(strategy: update alive cells first, outside-in; then all counts < 1 so all die)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5
OF SUSSEX

Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

]
® next Gol state should be m
]

® but may be empty if evaluate asynchronously

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5
OF SUSSEX

Conway’s Game of Life: Orthogonal GRS!

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

]
® next Gol state should be m
]

® but may be empty if evaluate asynchronously

Solution here

® |et each cell interact once with each of its neighbours before update

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5
OF SUSSEX

Conway’s Game of Life: Orthogonal GRS!

Orthogonal: local, asynchronous, parallel rewriting

® problem: CA cells must be updated synchronously
® GoL state mmm

]
® next Gol state should be m
]

® but may be empty if evaluate asynchronously

Solution here

® |et each cell interact once with each of its neighbours before update
® orchestrate these interactions by rotating (through all 8 ports of each cell)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 5
OF SUSSEX

CA ©lockwork

click for movie of ©lockwork

made using gear generator (August 2025)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

http://www.javakade.nl/research/talk/geargeneratorGoL.mov
http://www.geargenerator.com

GoL ©lockwork for Glider Step

Initialise alive-neighbour counters to 0

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Rotate cogwheels in ©lockstep

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Rotate cogwheels in ©lockstep

UNIVERSITY WC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss

Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Rotate cogwheels in ©lockstep

Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Rotate cogwheels in ©lockstep

Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Rotate cogwheels in ©lockstep

UNIVERSITY WC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss

Increment each counter e-opposite o-alive neighbour

UNIVERSITY WC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss

Rotate cogwheels in ©lockstep

UNIVERSITY WC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss

Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Rotate cogwheels in ©lockstep

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Increment each counter e-opposite o-alive neighbour

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Rotate cogwheels in ©lockstep

)

Next GolL state (repeat..

8 GRS

for 1 GoL Glider Step

alternating rows of inactive and active links

ssssssss

GRS for GoL Glider Step

XX

SSSSSSSS

GRS for GoL Glider Step

ssssssss

GRS for GoL Glider Step

|
|
|

ssssssss

GRS for GoL Glider Step

ssssssss

GRS for GoL Glider Step

ssssssss

GRS for GoL Glider Step

ssssssss

GRS for GoL Glider Step

ssssssss

GRS

for GoL Glider Step

XIXTXTX
|
<

|
|
|
|

increment, rotate and update according to GoL

|||||||||| IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

SSSSSSSS

GRS

XXX

for GoL Glider Step

|
|

X

X

|
X IXIXIX]
|

|
|
|
|
|
|

result after 8 GRS

UNIVERSITY W, Leipzig, Deutschland, Tuesday, September 2nd 2025

ssssssss

GRS

for GoL Glider Step

|
|
X

|

U

X IXIXIX

|
|
|

Combining all 8 GRS into 1 Glider Step

UNIVERSITY W, Leipzig, Deutschland, Tuesday, September 2nd 2025

ssssssss

Orthogonal GRS: Interaction Nets (Lafont 1990)

Definition 1. An interaction netis a finite set of

labeled cells (each having some number of ports), a ‘
set of free ports not associated with any cells, and a v Q
set of wires, connecting each port to another one.
Cells have one principal port and n > 0 auziliary ports A
T Yy z w

(numbered in clockwise order), where n is the arity of
the cell’s symbol.

Wires may connect ports of the same cell or exist as a Figure 1. An interaction net.
cyclic wire not connecting any ports.

Troy Kidd; osoi.dev/inet-slides

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

http://osoi.dev/inet-slides

Orthogonal GRS: IN rule

Definition 2. An interaction rule is a pair of interaction
nets having the same set of free ports.

The left-side net must consist of two cells with a wire
between their principal ports, and a wire between
each free port and an auxiliary port.

Rules may have more than two cells on the right,
allowing for an exponentially increasing number of
computations per step.

1120

M

8
<
8
<

A
%

Figure 2. Two interaction rules.

<

The first represents inferring y = z from
y=0+z.

Troy Kidd; osoi.dev/inet-slides

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

10

http://osoi.dev/inet-slides

Orthogonal GRS: IN step

Definition 2. An interaction rule is a pair of interaction
nets having the same set of free ports.

The left-side net must consist of two cells with a wire
between their principal ports, and a wire between
each free port and an auxiliary port.

Rules may have more than two cells on the right,
allowing for an exponentially increasing number of
computations per step.

1120

M

8
<
8
<

A
%

Figure 2. Two interaction rules.

<

The first represents inferring y = z from
y=0+z.

Troy Kidd; osoi.dev/inet-slides

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

11

http://osoi.dev/inet-slides

Orthogonal GRS: IN reduction

;ﬁm X
z y z y

1

z=1+1+1 z=3

Troy Kidd; osoi.dev/inet-slides

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

12

http://osoi.dev/inet-slides

Orthogonal GRS: IN parallel

Interaction nets were developed by Yves Lafont in 1990,
as a practical model for parallel programming. .

In this model, information is represented with a : Q
collection of cells and ports, connected by wires. a

During one computational step, if a pair of cells matches
arule, they are replaced in a way that doesn’t leave Ty z w
disconnected wires.

Figure 1. An interaction net.
Many replacements can occur in parallel and can be
repeated until there are no rule matches (in the case of
a terminating computation).

Troy Kidd; osoi.dev/inet-slides

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

http://osoi.dev/inet-slides

Orthogonal GRS: IN parallel reduction

O10 O O
29 922 92
A 4

Figure 5. All reduction paths from net V to net R.

Troy Kidd; osoi.dev/inet-slides

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

http://osoi.dev/inet-slides

Interaction Nets: Orthogonal GRS?

and multisteps

e local v/

(size of left- and right-hand side of rule bounded; for GoL 2 linked nodes)

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 15
OF SUSSEX

Interaction Nets: Orthogonal GRS?

and multisteps

e local v/

® asynchronous v
(each node or link occurs in < 1 redex-pattern; non-overlapping)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 15
OF SUSSEX

Interaction Nets: Orthogonal GRS?

e local v/
® asynchronous v

e parallel v
(result of contracting set of redex-patterns independent of order)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 15
OF SUSSEX

Interaction Nets: Orthogonal GRS!

steps and multisteps

e local v/
® asynchronous v
e parallel v

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 15
OF SUSSEX

Interaction Nets: Orthogonal GRS!

steps and multisteps

e local v/
® asynchronous v
e parallel v

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 15
OF SUSSEX

GoL signature

® symbols (arity 8): .- ‘ .
(<2><2><10><8f320 sym

e
X
(N
bols:

®0O

alive?,rot,#neighbours,principal port)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

16

GoL rule signature

® symbols: s°,

e e e

® rule symbols (ar|ty 14):

*

T
- - 1

(< (2 x 10)? x 2 x 8 = 6400 rule symbols: symbol,rot,port,symbol)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

GoL signature

® symbols: .:':. ' I 0 ‘ ‘ 0

® rule symbols:

*

l

Q1 [2

® normalised rewriting modulo Substitution Calculus (SC):
e — _ (indirection)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

16

GoL step —

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss

17

GoL (full multistep)

locating a redex-pattern

|||||||||| IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss

GoL

locating another redex-pattern (non-overlapping)

|||||||||| IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
ssssssss

GoL

ssssssss

GoL

N
/0
N
/
AN

‘ ‘ T< }N(
‘ T ‘ ‘ (4 % N/ N
2NN e < b P
/ N/ AN
| DN | P [2
| X | X e
< /P P NIZRN %
pd x
/S N/ AN

locating all redex-patterns (each node occurs in some redex-pattern)

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

18

GoL ©lockstep

N
/1

N
/1

A A N
S
AN RN /

00 01
/ NA AN
{\ ‘ / 1\] /{
L/ \l/i N
NN /
X w0 X o
/N AN

@0

22

04

@0

@0

abstracting all redex-patterns into rule symbols; arity 14 (=2 - (8 — 1))

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

18

GoL ©lockstep

\
\
\
N

|

|

|

|
1\

NN /i\ VA RNEA
[

replacing all rule symbols by rhss; ©lockstep

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

GoL

o H—HEH €€ &

IN. N N SN /0

pan A

0 -— 1 4—= 0 -—)
AN N

LR
/ /

0 -— - 0

i\ | VAN | /i

L/ N N\

0 ——= 0"~ 0
N/

| X |
7N\

0 -— 00— 1441 4-0

substituting rhss in graph (by substitution calculus)

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

18

GoL

0——0
0 —— 0

(includes deosil / widdershins rotation))

— 11— 1 — 0

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 18
OF SUSSEX

GoL ; multistep ——

Lo L - - - - 0

0 ——=0-—=0-—=0
SN INC 0N N N
N

2

N/ N/ N

L/ N1/ N/ N

0 —— 0 ——0——10

[X

X

— 11— 0

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

GoL ; full multistep —e—

Lo L - - - - 0

0 ——=0-—=0-—=0
SN INC 0N N N
N

2

N/ N/ N

2

L/ N1/ N/ N

0 —— 0 ——0——10

[X

X

— 11— 0

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C - C —

US

UNIVERSITY i
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 2

GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —

® confluence-by-parallelism: —e+ has the diamond property
(by residuation)

US

UNIVERSITY i
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 2

GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —
e confluence-by-parallelism: —e+ has the diamond property

® cube: tiling 3-peak with diamonds yields a cube
(entails co-initial reductions form semi-lattice; least upperbounds)

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 20
OF SUSSEX

GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —
e confluence-by-parallelism: —e+ has the diamond property
® cube: tiling 3-peak with diamonds yields a cube

® finite developments: every development of —e- is finite
(development of multistep is reduction only contracting residuals)

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 20
OF SUSSEX

GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —

® confluence-by-parallelism: —e—+ has the diamond property
® cube: tiling 3-peak with diamonds yields a cube

® finite developments: every development of —e- is finite

full multistep strategy () is normalising

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 20
OF SUSSEX

GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —

® confluence-by-parallelism: —e—+ has the diamond property
® cube: tiling 3-peak with diamonds yields a cube

® finite developments: every development of —e- is finite

full multistep strategy is normalising

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 20
OF SUSSEX

GolL is orthogonal

Theory of Orthogonality

® sequentialisation: — C —e» C —

® confluence-by-parallelism: —e—+ has the diamond property
® cube: tiling 3-peak with diamonds yields a cube

® finite developments: every development of —e- is finite

full multistep strategy is normalising

INs are linear so have random descent
(WN == SN for nets; reductions to normal form all same length)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 20
OF SUSSEX

Pélya’s triangle

Y
N =

%

I anarogy I j

Mathematics and Plausible Reasoning, Volumel, 1954, Fig. 2.3

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Pélya’s triangle in structured rewriting

rewrite step C[¢]| — C[r]|. for rewrite rule p: ¢/ — r and context C

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

22

Pélya’s triangle in structured rewriting

0

matching% \jubstitution

rewrite step C[g] : C[¢]{ — C][r]{ for rule p: ¢ — r and context C

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

22

Pélya’s triangle in structured rewriting

re=QV]

matchin%/

Cle]

matching for rewrite step Cl[y] : C[¢]{ — C][r]{ for structure C[x] and rule p: ¢ — r

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22
OF SUSSEX

Pélya’s triangle in structured rewriting

[X:=@]

Cle]

rewrite step C[g] : C[¢{]{ — C][r]{ for structure C[x] and rule p: ¢ —r

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

22

Pélya’s triangle in structured rewriting

substitution for rewrite step C[g| : C[¢]] — C]r]{. for structure C[x] and rule

us” 7

UNIVERSITY io7i
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Pélya’s triangle in string rewriting

ab —_— a

rewrite step abb — ab for rewrite rule p: ab — b and context b

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

23

Pélya’s triangle in string rewriting

Y
matching// \jubstitution
ab — a
ob

rewrite step ob : abb — ab for rewrite rule o: ab — b and context b

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

23

Pélya’s triangle in string rewriting

~(ab]

matchin%/

ab/ ——

ob

matching for rewrite step pb : abb — ab for structure xb and rule p:ab — b

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

23

Pélya’s triangle in string rewriting

[X:=@]

ab/ ——

ob

rewrite step ob : abb — ab for structure xb and rule p:ab — b

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 23
OF SUSSEX

Pélya’s triangle in string rewriting

x - =(a]

\ju bstitution

ab —_— a

ob

substitution for rewrite step ob : abb — ab for structure xb and rule p:ab — b

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

23

Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

e structures over a signature having variables x, y, ... over structures

® substitution calculus —s¢ on structures; | denotes SC-normal form (SC-nf)
® rules po: ¢ — r with p in signature and /, r structures

¢ contexts like C[x], D[x,y] indicating variable occurrences

¢ (C[s] denotes replacement of variable occurrence x by structure s in C

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 24
OF SUSSEX

Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

® structures over a signature having variables x, y, ... over structures

® substitution calculus —g¢ on structures; | denotes SC-normal form (SC-nf)
® rules o: /¢ — r with p in signature and /, r structures

e contexts like C[x], D[x, y] indicating variable occurrences

¢ C[s] denotes replacement of variable occurrence x by structure s in C

Definition (of structured rewrite step)

step Clo] : s — t, for context C and structures s, t in SC-nfand rule p: ¢ — r if

s = C[{]} sc« C[/] —o Clr] »sc Clrl{ =t

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 24
OF SUSSEX

Structured rewriting: step

replacement
Cl(] —= Clr]

matching / \substitution
{t ——» s

step

Definition (of structured rewrite step)

step Clo] : s — t, for context C and structures s,t in SC-nf and rule o : ¢ — rif

s = Cl sce ClA —, Clr] »sc Clrlb =t

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 24
OF SUSSEX

Structured rewriting: multistep

replacement
C[/]_,AH]—» C[rl

matching substitution

multlstep

Definition (of structured rewrite multistep)

multistep C[g] : s —e— t, for context C, structures s, t in SC-nf, rules g; : ¢; — r; if

S:C[glv"'vgn]\J/SCéF C[glw'-ygn] —e—>§C[r1,...,rn] —S8C C[r1>"'7rn]~l/:t

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 24
OF SUSSEX

Structured Orthogonality

AN
AN
N
ppel
&~
PR

S
asy)

N

occurrences of redex-patterns can be abstracted from in parallel
(¢m is union of £ and m)

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

25

Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX

Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX

Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus
® interaction net: indirection-calculus —e— — —

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX

Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus

® interaction net: indirection-calculus —e— — —

® net rewriting: proofnet-calculus (PN)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX

Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus

® interaction net: indirection-calculus —e— — —

® net rewriting: proofnet-calculus (PN)

® term rewriting: linear substitution calculus (LSC)?

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX

Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus

® interaction net: indirection-calculus —e— — —

® net rewriting: proofnet-calculus (PN)

® term rewriting: linear substitution calculus (LSC)?

® sharing graph rewriting: deep inference?

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX

Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus

® interaction net: indirection-calculus —e— — —

® net rewriting: proofnet-calculus (PN)

® term rewriting: linear substitution calculus (LSC)?

® sharing graph rewriting: deep inference?

® sub-calculi and strategies for A\3: machines?

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX

Substitution Calculi (SC)

¢ (higher-order) term rewriting: simply typed Aafn-calculus
® termgraph rewiting: the x-calculus

® interaction net: indirection-calculus —e— — —

® net rewriting: proofnet-calculus (PN)

® term rewriting: linear substitution calculus (LSC)?

® sharing graph rewriting: deep inference?

® sub-calculi and strategies for A\3: machines?

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 26
OF SUSSEX

Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 27
OF SUSSEX

Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

® sequentialisation: - C > C —»

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 27
OF SUSSEX

Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

® sequentialisation: - C > C —»
® confluence-by-parallelism: —e+ has the diamond property

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 27
OF SUSSEX

Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

® sequentialisation: - C > C —»
® confluence-by-parallelism: —e—+ has the diamond property

® finite developments: every development of —e- is finite
(development of multistep is reduction only contracting residuals)

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 27
OF SUSSEX

Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

® sequentialisation: - C > C —»
® confluence-by-parallelism: —e—+ has the diamond property
® finite developments: every development of —e- is finite

® cube: tiling 3-peak with diamonds yields a cube
(entails co-initial reductions form semi-lattice; least upperbounds)

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 27
OF SUSSEX

Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

® sequentialisation: - C > C —»

® confluence-by-parallelism: —e—+ has the diamond property
® finite developments: every development of —e- is finite

® cube: tiling 3-peak with diamonds yields a cube

e full multistep strategy is normalising

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 27
OF SUSSEX

Axioms on substitution calculi (SC)

Al the SCis complete (confluent and terminating)
A2 the SC is only needed for gluing (rules are closed)
A3 multisteps can be sequentialised / serialised (some development)

Clto, 4] »C[ro. » Clro, 7]

\ Cloo. / \ s /

D[(o) ———= Dro] El] —e— EI7]

NN

e t,

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 27
OF SUSSEX

Termgraphs as structures

e structures: rooted dags over a signature extended with indirection e
® substitution calculus: the xk-calculus

[Xg)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 28
OF SUSSEX

Termgraphs as structures

e structures: rooted dags over a signature extended with indirection e
® substitution calculus: the xk-calculus

® x-calculus has implicit garbage collection
® termgraphs in x&-normal form are maximally shared

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 28
OF SUSSEX

Termgraphs as structures

e structures: rooted dags over a signature extended with indirection e
® substitution calculus: the xk-calculus

Example (of termgraph step modulo x)

mul mul mul
' ’ ' / / P
rule pul : mul 0 ,step pul : mul — 0
-\ ™
0 suc suc
L]
0 0

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

Termgraphs as structures

e structures: rooted dags over a signature extended with indirection e
® substitution calculus: the xk-calculus

Example (of termgraph step modulo x)

mul mul mul
' ’ ’ /
rule pul @ mul 0 ,step pul : mul —
N\ AN AN
0 suc suc
[)
0 0

cost: substitution may knock-on erasures and sharing (bounded by graph size)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 28
OF SUSSEX

Conclusions

® normalised rewriting with respect to substitution calculus (SC)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

29

Conclusions

® normalised rewriting with respect to substitution calculus (SC)

® orthogonality guarantees redex-patterns simultaneously abstractable
(structure obtained by simultaneous substitution redex-patterns by SC)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

29

Conclusions

® normalised rewriting with respect to substitution calculus (SC)
® orthogonality guarantees redex-patterns simultaneously abstractable

COEED I CPERED

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

29

Conclusions

® normalised rewriting with respect to substitution calculus (SC)
® orthogonality guarantees redex-patterns simultaneously abstractable

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

29

Conclusions

® normalised rewriting with respect to substitution calculus (SC)
® orthogonality guarantees redex-patterns simultaneously abstractable

CD G/ OO

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

29

Conclusions

® normalised rewriting with respect to substitution calculus (SC)
® orthogonality guarantees redex-patterns simultaneously abstractable

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

29

Conclusions

® normalised rewriting with respect to substitution calculus (SC)
® orthogonality guarantees redex-patterns simultaneously abstractable

® steps as structures

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

29

Conclusions

® normalised rewriting with respect to substitution calculus (SC)
® orthogonality guarantees redex-patterns simultaneously abstractable

® steps as structures
® theory of orthogonality

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

29

Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |hss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

[V VAL

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 30
OF SUSSEX

Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |hss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 30
OF SUSSEX

Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |hss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

TN

v

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 30
OF SUSSEX

Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |lhss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

NN

—_—

deterministic rewrite system — dipper SC

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 30
OF SUSSEX

Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |lhss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

——
matching trivial = cascading SC

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 30
OF SUSSEX

Exploiting substitution calculi to redistribute steps

Cost-saving observations

® should avoid substitution and subsequent matching inverse to each other
® matching more |lhss simultaneously (multisteps) enables parallelism
® by not going to SC-normal forms we may sometimes eliminate matching

AN

___e—>l
substitution trivial = stepping SC

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 30
OF SUSSEX

Implementation of @®

Motivation for @®

® TRSs interesting as target when compiling functional programming

® matching is simple (lhss linear and exactly two function symbols; cascading)
® substitution can be made to avoid replication by termgraph rewriting

® cost (time and space) linear by combining the above two items

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

31
OF SUSSEX

Applicative Inductive Interaction System (®)

Definition (of an)

TRS with signature {@/2,C;/n1,C;/ny, ...} and for each i, rule o¢,(xo, X1, ..., Xn,):

C,‘(X]_, 500 ,an.)Xo — I
right-hand side r constructed from variables, ©, and constructors C;, forj < i

notational conventions:
® application @ infix, implicit as in Combinatory Logic (CL)
® usually leave arguments of rule symbols implicit (derivable from |lhs of rule)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 32
OF SUSSEX

Applicative Inductive Interaction System (®)

Definition (of an ®)

TRS with signature {@/2,C;/n1,C;/ny, ...} and for each i, rule o¢,(xo, X1, ..., Xn,):

C,‘(X]_, . 7an.)Xo — I

right-hand side r constructed from variables, ©, and constructors C;, forj < i

Example (of an ®)

oc(Xo0,x1,%x2) : C(X1,X2)Xo — X1(X2Xo)
QD(XO) . DX() — C(X(),Xo)

US

UNIVERSITY

INIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Applicative Inductive Interaction System (®)

Definition (of an ®)

TRS with signature {@/2,C;/n1,C;/ny, ...} and for each i, rule o¢,(xo, X1, ..., Xn,):

C,‘(X]_, . 7an.)X() — I

right-hand side r constructed from variables, ©, and constructors C;, forj < i

Example (® confluent (via orthogonality), Turing complete (via CL))

0s, 152(X17X2)Xo — (X1Xo) (X2Xo) 0K 1K1(X1)X0 — X1
0s,: Si(x1)Xo — Sa(x1,x0) ok : Kxo — Ki(xo)
0s: Sxo — Si(xo)

US

UNIVERSITY

INIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Applicative Inductive Interaction System (®)

Example (of an ®)

oc(Xo,X1,%x2) : C(x1,X2)X0 — X1 (X2X0)
QD(XQ) . DX() — C(Xo,Xo)

Example (two-step reduction (9c(D,D)z1) - (op(Dz1)))

C(D,D) Z1 —79c(z1,D,D) D (DZ]_) —7op(Dz1) C(DZ]_,DZ]_)

duplicates D z; redex; ends in (constructor C-)head normal form

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 32
OF SUSSEX

Implementing @&

Question (on implementation of ®)

do @@ have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

33

Implementing @&

Question (on implementation of ®)

do @@ have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

® spine strategy is (hyper-(head-))normalising
since every @ is left-normal orthogonal TRSs

® matching-phase is trivial (since lhss left-linear, comprise two symbols)
substitution-phase not trivial (rhss may replicate arguments)

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 33
OF SUSSEX

Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.

Spine Head Spine
| |
d Q@
/o~
K/S t 1/K/S s
I |
@ Q@
/= -\
@ t 51 52
/7
S ty

Example
S(SISI)(K(IK))

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.

Spine Head Spine
I |
@ Q@
/=
K/S t 1/K/S s
I |
@ Q@
/= —/\
@ t 51 2
/7~
S ty

Lemma

Every term not in normal form has Spine redex

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Spine strategy for &

Definition (of spine for ®-terms)

® spine: torxty,..., t,
® head spine: x or C(t,...,tp) orts

Lemma (normalising strategy)

® every term not in normal form has redex-pattern on spine, so a strategy
® spine strategy is a normalising strategy having random descent

random descent: reductions to normal form have same length / measure

leftmost—-outermost strategy is a spine-strategy

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 34
OF SUSSEX

Implementing @ in termgraphs by cascading x

Recall termgraph rewriting with k-calculus as SC, and cascading:

Lo

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

35

Implementing @ in termgraphs by cascading x

Lo

Idea (minimal unsharing; Wadsworth’s)}

® instead of maximal sharing, unshare only constructors in redex-patterns
® goal: amortise cost of x-steps by charging ®-steps

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 35
OF SUSSEX

Termgraph a-spine strategy

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® o-spine: spine prefix; fringe nodes: nodes covered by a-spine

a-spine

@ fringe node (only one)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 36
OF SUSSEX

Termgraph «a-spine strategy

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® qa-spine: spine prefix; fringe nodes: nodes covered by a-spine

every termgraph not in normal form has a spine redex-pattern, and any (proper)
a-spine prefix of it has a non-empty fringe

by minimality using acyclicity of termgraphs O

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 36
OF SUSSEX

Termgraph a-spine strategy

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® q-spine: spine prefix; fringe nodes: nodes covered by a-spine

Definition (of a-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is a-spine (in nf)

US

UNIVERSITY

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 36
OF SUSSEX

Example a-spine reduction (Java code=-dot=>graphs)

recall @-rules:

oc : C(x1,x2) X0 — x1 (X2 X0)
oD : DX() — C(Xo,XQ)

as termgraph rules:

. 4
{\ec(\@
N (2

515 N

s

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

37

/é->é\
C\QC(@
¢ (N
| |
© C

510 N

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

/é*é\
C\QC(@
< ()

515 N

s

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

37

/é*é\
C\QC(@
N (N
| |
Q C

'SFAN

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

37

. 4
{\Qc(‘@
N (N

515 N

s

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

37

/é->é\
C\QC(@
¢ (N
| |
@ C

SAFIAN

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

0 0
NN
C\QC(@
<N (N

i)

19N

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

37

/é->é\
C\QC(@
¢ (N

515 N

s

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

37

/é->é\
C\QC(@
¢ (N

515 N

s

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

37

/é*é\
C\QC(@
N (N

s

15N

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

37

0 0
NN
C\QC(@
¢ (N

¢ C

515 N

s

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Correspondence between termgraphs and terms

® «-spine step maps to multistep having at least one spine redex
((hyper-)(head) normalising strategy)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 38
OF SUSSEX

Correspondence between termgraphs and terms

® a-spine step maps to multistep having at least one spine redex

® multistep comprises redex-patterns having same creation history
(family-step, so optimal strategy (qua horizontal sharing))

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 38
OF SUSSEX

Correspondence between termgraphs and terms

® a-spine step maps to multistep having at least one spine redex
® multistep comprises redex-patterns having same creation history

® cost and size linear in number of termgraph steps
(graph grows linearly; strategy visits links only few times a la DFS)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 38
OF SUSSEX

Correspondence between termgraphs and terms

® a-spine step maps to multistep having at least one spine redex
® multistep comprises redex-patterns having same creation history
® cost and size linear in number of termgraph steps

® q-spine reduction length not longer than spine
(@@ are orthogonal for which doing more in parallel is better)

® number of spine steps always the same (random descent property)
® reduction length not longer than that of leftmost-outermost stategy

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 38
OF SUSSEX

Decompiling @ to the A-calculus

Definition (of tree homomorphism into \-terms)

C,'(tl, 500y tn) = ()\X().(f')/\)[Xl7 500 ,XnZ:tl, 500 f.'n]

® capture avoiding subs_ti>tution (avoid capture of free variables of the ty)
o (t[X:=t])x = (t)A[X:=(t)x] (substitution lemma)
* well-defined by ® being inductive (in r only C; for j < i may occur)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 39
OF SUSSEX

Decompiling & to the \-calculus

Definition (of tree homomorphism (), into \-terms)

C,’(tl, 500y tn) — ()\Xo.(r))\)[Xl, ey Xpi=ty, o tn]

Example (of tree homomorphism for example ®)

rule tree homomorphism
QciC(Xl,Xz)Xo — X1 (XzXo) C(tl,tz) —)\Xo.tl (tho)
oD - Dxy — C(Xo,Xo) D)\XOX6.X0 (Xo X6)

as D — AXo.(C(xo,X0))x = AXo.(AXo.X1 (X2 X0))[X1, X2:=X0, X0] =a AX0Xg-Xo (X0 X)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 39
OF SUSSEX

Decompiling & to the \-calculus

Definition (of tree homomorphism (), into \-terms)

C,’(tl, 500y tn) — ()\Xo.(r))\)[Xl, ey Xpi=ty, o tn]

Example (of tree homomorphism for example ®)

rule tree homomorphism
QciC(Xl,Xz)Xo — X1 (X2Xo) C(tl,tz) —)\Xo.tl (tho)
oD - Dxy — C(Xo,Xo) D)\XOX6.X0 (Xo X6)

® D maps to the Church numeral 2 forn := \sz.s" z
® Smaps to Axyz.xz(yz) and K to Axy.x as expected / hoped for

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 39
OF SUSSEX

Decompiling @ to the A-calculus

Definition (of tree homomorphism (), into \-terms)

C,'(tl, cey t'n) — (/\X().(I’))\)[Xl7 ey Xpi=t1, ..., t'n]

Lemma (implementation of & by \j)

ift =@ s then (t)y —p (s)x

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 39
OF SUSSEX

Decompiling @ to the A-calculus

Definition (of tree homomorphism (), into \-terms)

Ci(ty, ..., tn) = (Axo0.(NA)[X1,- - s Xn:i=t1,. .., ts]

Lemma (implementation of & by \j)

ift -@ s then (t)x —g (S)a

Example (of implementing D (D z;) - C(D z1,D z1))

(D(Dz1))x = (Mxyx(xy))(2z1) =g A\y.221(221y) =a (C(Dz1,D 21))»

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 39
OF SUSSEX

Compiling the A-calculus to ®

if M —3 N then (M)@ —1 (N)@ for 7 an &

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Compiling the A-calculus to ®

if M —3 N then (M)@ —1 (N)@ for 7 an &

no implementation ()@ can achieve that, for full g

for weak 5 (wg3; contract redex if has no variable bound outside) it can:
weak g is first-order (a-conversion never needed), and

weak [basis of Haskell (no contraction under A, but that’s not confluent)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Compiling the A-calculus to ®

if M —3 N then (M)@ —1 (N)@ for 7 an &

Definition (of ()@ mapping a \-term to a pair of an ® and term in it)

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} ULZ,C(t1,...,t5)), where

(
° (Ml Mz)@ = (Il UZp,tp tz), where (I,'./t,') = (M,)@ fori e {1, 2}
(
(Z,r[ts,...,ts]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

do allow components to share constructors when these have the same rules
compilation known variation on the abstraction algorithm (custom combinators)

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

* (x(xy))® = (0,x (xy)) using only first two items of the definition

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

* (xX(xy)® = (0.x(xy)), so

* (x(xy))e = ({oc: C(z1,22) y = 21 (22¥)},C(x, X))
since x and x are maximal y-free subterm occurrences in x (x y)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

* (xX(xy)® = (0.x(xy)), so
¢ ()\y.x (Xy))© = ({QC : C(Z1,Zz)y — 21 (22 y)},C(X7x)), so

o (Axyx(xy))® = {oc:C(z1,22)y = z1(22¥), 00 : Dx — C(x,x)},D)
since no x-free subterm occurrence in C(x, x)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Compiling the A-calculus to ®

Definition (of ®-lifting)

=
B

@ = (I]_ UZy,tp tz), where (I,',t,') = (M,)@ fori e {1, 2}

(
(

* (MM)e = ({oc:C(z1,...,2n)X = r|z1,...,2n|} UZ,C(t1,...,t5)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Example (of (2)@; recall 2 := \xy.x(xy))

* x(xy)e = (0:x(xy)), so
° Ay x(xy)e® = ({oc:C(z1,22)y — z1 (22¥)},C(x, X)), so
o (Axyx(xy))® = {oc:C(z1,22)y = z1(22¥), 00 : Dx — C(x,x)},D)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Compiling the A-calculus to ®

Definition (of ®-lifting)

(
(

* (MM)e = ({oc:C(z1,...,2n) X = r[z1,...,25|} UZ,C(t1,...,tn)), where
(Z,r[t1,...,t7]) := (M)®, r skeleton, t; maximal x-free subterm occurrences

Lemma (®-lifting)
if M —ws N then (M)@ —1 (N)@ for some ®-lifting Z.

if M —ws N and (Z,t) := (M)e then t —1 s for some (Z’,s) := (N)@ withZ D 7' O

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 40
OF SUSSEX

Implementing w3-reduction via @&

® w/3 never needs a-conversion, so essentially first-order
(that’s why it was chosen for Haskell)

® indeed, any A\-term M compiles to an @ and term t in it,
such that rewriting from M respectively t is isomorphic

e compilation (finding mfss) can be done efficiently in time and space

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

41

Implementing w3-reduction via @&

® wf never needs a-conversion, so essentially first-order

® indeed, any A\-term M compiles to an @ and term t in it,
such that rewriting from M respectively t is isomorphic

® compilation can be done efficiently in time and space

Corollary

results for @™ carry over to wf3

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 41
OF SUSSEX

Implementing w3-reduction via @&

® wf never needs a-conversion, so essentially first-order

® indeed, any A\-term M compiles to an @ and term t in it,
such that rewriting from M respectively t is isomorphic

® compilation can be done efficiently in time and space

Corollary

results for @™ carry over to wf3

Perspective

Haskell is based on orthogonal 15t-order term rewriting (@®), not A-calculus

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 41
OF SUSSEX

What about Spine strategies for full 57

US

UNIVERSITY iozi
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

42

Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.

Spine Head Spine
| |
Ax y
|
/\3(2
|
Axk Az
| L
o N
AN
.~@ M
SN\ |
@ M, Q@
/N -/ \
x M, P Q

Example
x((Ax.(Az.zz))y) (xx)(11)

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

42

Spine strategy

Definition
Spine: if head normal form recur, else Head Spine.
Head Spine: recur on left.

Spine Head Spine
| |
Axi y
|
Ax
|
Axi Az
| L
@ N
/7
:@ M
SN |
Q@ M, Q
/ -/ \
x M, P Q

Lemma
Every term not in normal form has Spine redex

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

42

Termgraph a-spine strategy adapted to spine-5

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® o-spine: spine prefix; fringe nodes: nodes covered by a-spine

a-spine

O fringe node (only one)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 43
OF SUSSEX

Termgraph a-spine strategy adapted to spine-5

Definition (of (head / a-)spine nodes)

® spine: head spine, or such in normal form (hsnf) with spine vertebrae
® head spine: path from root through bodies of ©,e to variable or constructor
® q-spine: spine prefix; fringe nodes: nodes covered by a-spine

Definition (of a-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t;,...,t,;) to Ax.C(ty,...,t,) x for x fresh

idea: a combinator on fringe / a-spine is a A-abstraction (in the 3-nf), so may
iterate on its body, effectuated in @ by suppling a fresh variable

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 43
OF SUSSEX

Example a-spine reduction (Java code=-dot=>graphs)

recall @-rules:

oc : C(x1,x2) X0 — x1 (X2 X0)
oD : DX() — C(Xo,XQ)

and termgraph rules:

. 4
{\ec(\@
N (2

515 N

s

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

44

0 0
NN
C\@C(@
<N (N

515 N

i)

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

44

o 4
{\ac(‘@
N (N

515 N

s}

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

44

. 4
{\QC(\@
N (N

515 N

s

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

44

root

o 4
c’\@c(\@
N (N

515 N

)

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

/é->é\
C\QC(@
N (N

(C

515 N

s

root

Azl

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

44

/é*é\
C\QC(Q
< ()

515 N

s

root

pC

0 \1

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

44

0 0
NN
C\QC(@
<N (N

515 N

s

root

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

44

0 0
NN
C\QC Q
<N (N

@ C

TN

root

Az1

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

44

0 0
NN
C\QC(@
<N (N

s

£

root

a41—aﬁ:®41—‘a E o

]

@@'

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

44

0 0
NN
c\@C Q
<N (N

@ C

TN

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

OF SUSSEX

44

/é*é\
C\QC(@
< ()

s

15N

root

Azt

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

44

Implementing some spine-5-strategy via &

® 3 can be implemented via iterating wg (for same ®)

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 45
OF SUSSEX

Implementing some spine-(-strategy via &

® 3 can be implemented via iterating wg (for same ®)
® constructor-steps correspond to needed a-conversions

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 45
OF SUSSEX

Implementing some spine-(-strategy via &

® 3 can be implemented via iterating wg (for same ®)
® constructor-steps correspond to needed a-conversions
® how many a-conversions needed to S-reduce ((28)(49))(57)(42) to nf?

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 45
OF SUSSEX

Implementing some spine-(-strategy via &

® 3 can be implemented via iterating wg (for same ®)

® constructor-steps correspond to needed a-conversions

® how many a-conversions needed to S-reduce ((28)(49))(57)(42) to nf?
® answer: < 2 because output is a Church numeral, which has 2 A\s

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 45
OF SUSSEX

Implementing some spine-(-strategy via &

® 3 can be implemented via iterating wg (for same ®)

® constructor-steps correspond to needed a-conversions

® how many a-conversions needed to S-reduce ((28)(49))(57)(42) to nf?
® answer: < 2 because output is a Church numeral, which has 2 A\s

® cost of constructor-steps amortised by other steps, for the same reason

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 45
OF SUSSEX

Implementing some spine-(-strategy via &

Corollary

results for w3 carry over to spine-3, in particular that the cost of reduction to
B-normal form is linear in the number of leftmost-outermost (-steps to B-nf

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

45

Implementing some spine-5-strategy via &

Corollary

results for w3 carry over to spine-3, in particular that the cost of reduction to
B-normal form is linear in the number of leftmost-outermost (-steps to B-nf

classical 15t-order term(graph) rewrite theory trivialises (extant) cost-analyses

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 45
OF SUSSEX

Implementing S3-reduction

Complexity unavoidable

convertibility of simply typed A-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into 8 and substitutions) that can’t be overcome.

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

46

Implementing S3-reduction

Complexity unavoidable

convertibility of simply typed A-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into 8 and substitutions) that can’t be overcome.

Non-consequence

Optimal reduction for full 5 is non-interesting. By the same token all
implementations shown here would be non-interesting as they are optimal but
for wp.

US

UNIVERSITY |W(C, Leipzig, Deutschland, Tuesday, September 2nd 2025 46
OF SUSSEX

Inpla: Interaction nets as a programming language

Whatis Inpla

The Vine Programming Language

vine.dev

Springtime for interaction nets!

WELCOME TO
THE PARALLEL
FUTURE OF COMPUTATION

A PARALLEL LANGUAGE

higherorderco.com
Optiscope
it ntive unction clls, i hen-ele expr P —

witten in portable C99, it s als
d functions at native
Juation with side

jebraic effect handler:

github.com/etiams/optiscope

US

UNIVERSITY
OF SUSSEX

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

47

https://deltanets.org

More conclusions

® unit-time steps a priori unreasonable for structured rewriting

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

48

More conclusions

® unit-time steps a priori unreasonable for structured rewriting

® rewriting useful both for simple description and efficient implementation
(do away with abstract machines)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

48

More conclusions

® unit-time steps a priori unreasonable for structured rewriting
® rewriting useful both for simple description and efficient implementation

® substitution calculi give a way to account for the cost of substitution
(how to slice the pie, between replacement and substitution)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

48

More conclusions

® unit-time steps a priori unreasonable for structured rewriting
® rewriting useful both for simple description and efficient implementation
® substitution calculi give a way to account for the cost of substitution

® a-spine is 15t-order optimal for @, w3 and 3
(only need skeletons present in initial A-term; no creation of such)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

48

More conclusions

® unit-time steps a priori unreasonable for structured rewriting

® rewriting useful both for simple description and efficient implementation
® substitution calculi give a way to account for the cost of substitution

® a-spine is 15t-order optimal for @, w3 and 3

® o-spine time and space linear in #steps (via TGRS, in Java)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

48

More conclusions

® unit-time steps a priori unreasonable for structured rewriting

® rewriting useful both for simple description and efficient implementation
® substitution calculi give a way to account for the cost of substitution

® a-spine is 15t-order optimal for @, w3 and 3

® o-spine time and space linear in #steps (via TGRS, in Java)

® amortised analysis: discounting e-steps via #nodes, a-steps via §-steps
(former based on path-compression of in-edges of e-nodes)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

48

More conclusions

® unit-time steps a priori unreasonable for structured rewriting

® rewriting useful both for simple description and efficient implementation
® substitution calculi give a way to account for the cost of substitution

® a-spine is 15t-order optimal for @, w3 and 3

® o-spine time and space linear in #steps (via TGRS, in Java)

® amortised analysis: discounting e-steps via #nodes, a-steps via §-steps
e higher-order term rewriting useful to bridge \-calculus and @®

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

49

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent
® Wadsworth (1971): graph rewriting implementation of 3-reduction

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025

49

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent
® Wadsworth (1971): graph rewriting implementation of 3-reduction
© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat

US

UNIVERSITY iozi
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

49

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025
OF SUSSEX

49

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
@ Lamping (1990): sharing graph implementation of S-families

US

UNIVERSITY iozi
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
@ Lamping (1990): sharing graph implementation of S-families

® Asperti, Mairson (1998): complexity of 5-family reduction is non-elementary

US

UNIVERSITY iozi
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
@ Lamping (1990): sharing graph implementation of S-families

® Asperti, Mairson (1998): complexity of 5-family reduction is non-elementary
© Grégoire, Leroy (2002): 3 via iterated w3

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Standing on the shoulders of giants

@ Newman (1942): for rewrite systems and random descent

® Wadsworth (1971): graph rewriting implementation of 3-reduction

© Barendregt, Bergstra, Klop, Volken (1976): no computable optimal §-strat
@ Lévy (1978): concept of S-family and optimality of Imo-S-family strategy

©® Huet, Lévy (1979): concept of needed reduction and it being normalising

@ Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
@ Lamping (1990): sharing graph implementation of S-families

® Asperti, Mairson (1998): complexity of 5-family reduction is non-elementary
© Grégoire, Leroy (2002): 3 via iterated w3

i Blanc, Lévy, Maranget (2005): wg-family, implemented here (Wadsworth)

US

UNIVERSITY iz
OF SUSSEX IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 .

Contributions

@ concept of substitution calculus (1994)

® optimal implementation of Imo-3-family by scope nodes (2004)

© wg being isomorphic to orthogonal TRS, given a A-term (2005)

@ optimality of w3 being an instance of optimality of orthogonal TRSs (2005)
O the a-spine strategy for @® (2024)

® Haskell code implementing w3 into an @ and vice versa (2024);

@ linear TGRS implementation of &/ wf / spine-3 (2024)

@ Java code for that implementation (2025)

© naming applicative inductive interaction systems @® (2025)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 50
OF SUSSEX

Amortised complexity

measure complexity by averaging over reductions (Tarjan)
(instead of measuring per step)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 51
OF SUSSEX

Amortised complexity

measure complexity by averaging over reductions

incrementing a counter in binary 011 —j,c 111 —j,c 0001 —jc 1001 —jpc - . .
(—inc-steps not unit-time; #bit-flips unbounded)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 51
OF SUSSEX

Amortised complexity

measure complexity by averaging over reductions

incrementing a counter in binary 011 —j,c 111 —j,c 0001 —jc 1001 —jpc - - .

Example (inc as term rewrite system; —,..= —; - —>},)

s —i(s) i(0(x)) —p 1(x) i(1(x)) —p 0(i(x)) i(e) —p 1(e)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 51
OF SUSSEX

Amortised complexity

measure complexity by averaging over reductions

incrementing a counter in binary 011 —j,c 111 —j,c 0001 —jc 1001 —jpc - - .

Example (inc as term rewrite system; —,..= —; - —>},)

s —i(s) i(0(x)) —p 1(x) i(1(x)) —p 0(i(x)) i(e) —p 1(e)

0(1(1(e))) =i i(0(1(1(e)))) —b L(1(1(e))) =i ((L(1(1(e)))) —p O(i(1(1(®)))) —b
0(0(i(1(e)))) —» 0(0(0(i(e)))) —» 0(0(0(1(e)))) =i - --

VVVVVVVVVV IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 51
ssssssss

Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 52
OF SUSSEX

Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

s—312(5) 2(0(x) =1 1) 2(A1(x)) =5, 0(P(x)) i2(e) =54 11(s)
(no need to label 0’s or e’s)

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52
OF SUSSEX

Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

s —3,1°(s) (0(x)) =5, 1

[
X
N—r
-
N>
~—~
=
=
X
N—r
~—
o>
[y
o
~—
-
N>
x
o
N—r
-
N>

(o) =51 11(e)

e 7initially labels (closed): charge i with 2 and 1 with 1; preserved by steps

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52
OF SUSSEX

Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

s —3,1°(s) (0(x)) =5, 1

>
X
N—r
-
N>
~—~
=
>
X
N—r
~—
o>
[y
o
~—
-
N>
x
o
N—r
-
N>
~—~
[]
o
(=}
=
=
[ErY
—~
(]
N

e 7initially labels: charge i with 2 and 1 with 1; preserved by steps
e is a labelling: if t — s, then t& — s?

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52
OF SUSSEX

Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

S5 2(s) P0(x) 7o, 110 2(13(x)) =4 O(Z(x) 2(s) =g 11(e)
e initially labels: charge i with 2 and 1 with 1; preserved by steps
e is a labelling: if t — s, then t’ — s’
(in general: cost subtracted; charges must remain non-negative, cover
costs of steps; ¢+ > ¢ > c+) rfor each (linear) rule £ —¢ . r)

US

UNIVERSITY |, Leipzig, Deutschland, Tuesday, September 2nd 2025 52
OF SUSSEX

Banker’s / accounting method in TRSs

distinguish between charge ¢ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

s —3,1°(s) (0(x)) =5, 1

>
X
N—r
-
N>
~—~
=
>
X
N—r
~—
o>
[y
o
~—
-
N>
x
o
N—r
-
N>
~—~
[]
o
(=}
=
=
[ErY
—~
(]
N

e 7initially labels: charge i with 2 and 1 with 1; preserved by steps
e is a labelling: if t — s, then & — s?
e cost of reduction from t bounded by amortized cost, < 3 - #i+ > i

US

UNIVERSITY IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 52
OF SUSSEX

	Part 1I: Game of Life as Orthogonal Graph Rewriting
	Part 2II: Orthogonal Structured Rewriting
	Part 3III: Premium content

