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Conway’s Game of Life: Glider Gun

click for movie of Glider Gun

movie made of Troy Kidd’s presentation (August 2025)
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http://www.javakade.nl/research/talk/ggtrim.mov
http://osoi.dev/inet-slides


Conway’s Game of Life: Cellular Automaton

Troy Kidd; osoi.dev/inet-slides
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http://osoi.dev/inet-slides


Conway’s Game of Life: CA Glider Step
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Conway’s Game of Life: CA Glider Step
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Conway’s Game of Life: Graph Rewrite System

Idea: discrete topology

• labelled nodes represent cells

• ports (8 per node, ordered deosil) discretely represent cell boundaries

• wires (links; between ports) represent adjacency of cell boundaries
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Conway’s Game of Life: GRS Glider Step
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Conway’s Game of Life: GRS Glider Step
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■ (other cells empty / dead)

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

(an oscillator)

• but may be empty if evaluate asynchronously
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously
(strategy: update alive cells first, outside–in; then all counts ≤ 1 so all die)
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Conway’s Game of Life: Orthogonal GRS?

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously
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Conway’s Game of Life: Orthogonal GRS!

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously

Solution here

• let each cell interact once with each of its neighbours before update

• orchestrate these interactions by rotating (through all 8 ports of each cell)
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Conway’s Game of Life: Orthogonal GRS!

Orthogonal: local, asynchronous, parallel rewriting

• problem: CA cells must be updated synchronously

• GoL state ■ ■ ■

• next GoL state should be
■
■
■

• but may be empty if evaluate asynchronously

Solution here

• let each cell interact once with each of its neighbours before update

• orchestrate these interactions by rotating (through all 8 ports of each cell)
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CA ©lockwork

click for movie of ©lockwork

made using gear generator (August 2025)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 6

http://www.javakade.nl/research/talk/geargeneratorGoL.mov
http://www.geargenerator.com


GoL ©lockwork for Glider Step
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Initialise alive-neighbour counters to 0

00 0

0

0 0 0 0

0 0 0 0

0 0 0 0

0

0

0

0 0

00 0 0
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Increment each counter •-opposite ◦-alive neighbour

01 1

0

0 0 0 0

0 0 0 1

0 0 1 1

0

0

0

0 0

00 0 0
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Rotate cogwheels in ©lockstep

1 1 0

0

0

0 0

1

0 0

0 1 0

000

0 0 0

0 0 0 0

10
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Increment each counter •-opposite ◦-alive neighbour

1 1 1

0

0

0 1

1

0 0

0 1 1

100

0 0 0

0 0 0 0

11
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Rotate cogwheels in ©lockstep

1 1

0

1

0 0
0 1

0 1
0 0

1 1
0 0 0

1 1
0 0 1

0 0
0
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Increment each counter •-opposite ◦-alive neighbour

1 1

0

2

0 0
0 1

0 1
0 1

1 1
0 0 0

1 1
0 1 2

1 0
0
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Rotate cogwheels in ©lockstep

0

0 1 1

0 0

0 1 2

0 1

0 0 1

1 1

0 0 0

1 1

0 1 2

1
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Increment each counter •-opposite ◦-alive neighbour

0

0 1 1

0 0

0 1 2

1 1

0 1 2

1 1

0 0 1

1 1

0 1 3

1
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Rotate cogwheels in ©lockstep

0

0 1 1

0 0

0 1 2

1 1

0 1 2

1 1

0 0 1

1 1

0 1 3

1
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Increment each counter •-opposite ◦-alive neighbour

1

0 1 1

0 1

0 1 2

1 2

0 1 2

1 1

0 0 1

1 1

0 2 3

2
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Rotate cogwheels in ©lockstep

0 1 1

1

0 1

0 2

1 2

0 1 2

1 1

0 0 1

1 1

0 2 3

2 1
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Increment each counter •-opposite ◦-alive neighbour

0 1 1

1

0 1

0 2

1 3

1 2 2

1 1

0 1 1

1 1

0 3 3

2 1
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Rotate cogwheels in ©lockstep

1
0 1 1

0 1
0 1 2

1 3
1 2 2

1 1
0 1 1

1 1
0 3 3

2

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 7



Increment each counter •-opposite ◦-alive neighbour

2
0 1 1

0 1
0 2 2

1 3
1 3 2

1 1
0 1 1

1 1
1 4 3

2
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Rotate cogwheels in ©lockstep

2

0 1 1

0 1

0 2 2

1 3

1 3 2

1 1

0 1 1

1 1

1 4 3

2
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Increment each counter •-opposite ◦-alive neighbour

2

0 2 1

0 1

1 3 2

1 3

1 3 2

1 2

0 1 1

1 1

1 5 3

2
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Rotate cogwheels in ©lockstep

21 1

3

0 0 1 1

1 1 5 3

0 1 2 2

1

3

1

1 3

21 2 2
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Next GoL state (repeat . . . )
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8 GRS ©locksteps for 1 GoL Glider Step

alternating rows of inactive and active links

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 8



GRS ©locksteps for GoL Glider Step

•⟳ 0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

increment if other alive; rotate deosil / widdershins if row+column odd / even
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GRS ©locksteps for GoL Glider Step

0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

•⟳ 0

0 0 0 0

0 1

0 0

0 0 0

0 1 1

1

1

1 1

1 1

1

00

0

increment if other alive; rotate deosil / widdershins if row+column odd / even
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GRS ©locksteps for GoL Glider Step

0

0 0 0 0

0 1

0 0

0 0 0

0 1 1

1

1

1 1

1 1

1

00

0

•⟳ 0

0 0 0 0

0 1

0

0

0 1 1

1

1 1

2

1 2

1 1

1

1

00

0

increment if other alive; rotate deosil / widdershins if row+column odd / even
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GRS ©locksteps for GoL Glider Step

0

0 0 0 0

0 1

0

0

0 1 1

1

1 1

2

1 2

1 1

1

1

00

0

•⟳ 1

0 0 0

0 1

0

0

0 1 1

1

1 1

2

1

1

1

3

2

1

1

01

0

increment if other alive; rotate deosil / widdershins if row+column odd / even
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GRS ©locksteps for GoL Glider Step

1

0 0 0

0 1

0

0

0 1 1

1

1 1

2

1

1

1

3

2

1

1

01

0

•⟳ 1

0 0

0 1

0

0

0 1 1

1

1 1

2

1

3

2

1

2

2

1

2

11

0

increment if other alive; rotate deosil / widdershins if row+column odd / even
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GRS ©locksteps for GoL Glider Step

1

0 0

0 1

0

0

0 1 1

1

1 1

2

1

3

2

1

2

2

1

2

11

0

•⟳ 1

0

0 1

0

0 1 1

1

1 1

2

1

3

2

1

2

1

3

1

1

3

12

0

increment if other alive; rotate deosil / widdershins if row+column odd / even
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GRS ©locksteps for GoL Glider Step

1

0

0 1

0

0 1 1

1

1 1

2

1

3

2

1

2

1

3

1

1

3

12

0

•⟳ 1

0

0 1

0 1 11 1

2

1

3

2

1

2

1

1

2

1 4

1

3

23

0

increment if other alive; rotate deosil / widdershins if row+column odd / even
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GRS ©locksteps for GoL Glider Step

1

0

0 1

0 1 11 1

2

1

3

2

1

2

1

1

2

1 4

1

3

23

0

•⟳

increment, rotate and update according to GoL
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GRS ©locksteps for GoL Glider Step

result after 8 GRS ©locksteps
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GRS ©locksteps for GoL Glider Step

⇒

Combining all 8 GRS ©locksteps into 1 Glider Step
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Orthogonal GRS: Interaction Nets (Lafont 1990)

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 9

http://osoi.dev/inet-slides


Orthogonal GRS: IN rule

Troy Kidd; osoi.dev/inet-slides
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http://osoi.dev/inet-slides


Orthogonal GRS: IN step

Troy Kidd; osoi.dev/inet-slides
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http://osoi.dev/inet-slides


Orthogonal GRS: IN reduction

Troy Kidd; osoi.dev/inet-slides
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http://osoi.dev/inet-slides


Orthogonal GRS: IN parallel

Troy Kidd; osoi.dev/inet-slides
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http://osoi.dev/inet-slides


Orthogonal GRS: IN parallel reduction

Troy Kidd; osoi.dev/inet-slides

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 14

http://osoi.dev/inet-slides


Interaction Nets: Orthogonal GRS?

steps and multisteps

• local!
(size of left- and right-hand side of rule bounded; for GoL 2 linked nodes)

• asynchronous!

• parallel!

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 15



Interaction Nets: Orthogonal GRS?

steps and multisteps

• local!

• asynchronous!
(each node or link occurs in ≤ 1 redex-pattern; non-overlapping)

• parallel!
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Interaction Nets: Orthogonal GRS?

steps and multisteps

• local!

• asynchronous!

• parallel!
(result of contracting set of redex-patterns independent of order)
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Interaction Nets: Orthogonal GRS!

steps and multisteps

• local!

• asynchronous!

• parallel!
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Interaction Nets: Orthogonal GRS!

steps and multisteps

• local!

• asynchronous!

• parallel!
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GoL signature

• symbols (arity 8): 101 1 . . .

(≤ 2 × 2 × 10 × 8 = 320 symbols: alive?,rot,#neighbours,principal port)

• rule symbols:

ϱ2ϱ1

1 1

10

. . .

• normalised rewriting modulo Substitution Calculus (SC):
(indirection)
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GoL rule signature

• symbols: 101 1 . . .

• rule symbols (arity 14):

ϱ2ϱ1

1 1

10

. . .

(≤ (2 × 10)2 × 2 × 8 = 6400 rule symbols: symbol,rot,port,symbol)

• normalised rewriting modulo Substitution Calculus (SC):
(indirection)
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GoL signature

• symbols: 101 1 . . .

• rule symbols:

ϱ2ϱ1

1 1

10

. . .

• normalised rewriting modulo Substitution Calculus (SC):
(indirection)
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GoL step →

0

0

0

1

0

1

ϱ1

SC

LHS

SC

RHS
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GoL ©lockstep (full multistep)

locating a redex-pattern
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GoL ©lockstep

locating another redex-pattern (non-overlapping)
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GoL ©lockstep

locating yet other redex-patterns (all pairwise non-overlapping)
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GoL ©lockstep

locating all redex-patterns (each node occurs in some redex-pattern)
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GoL ©lockstep

ϱ0

ϱ1 ϱ0 ϱ2 ϱ0

ϱ3 ϱ4ϱ0 ϱ5

ϱ0

abstracting all redex-patterns into rule symbols; arity 14 (= 2 · (8 − 1))

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18



GoL ©lockstep

ϱ0

ϱ1 ϱ0 ϱ2 ϱ0

ϱ3 ϱ4ϱ0 ϱ5

ϱ0

0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 1 1 0

0

1

1

0 0

0

0

replacing all rule symbols by rhss; ©lockstep

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 18



GoL ©lockstep

0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 1 1 0

0

1

1

0 0

0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

0 0

substituting rhss in graph (by substitution calculus)
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GoL ©lockstep

◦−→

0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

0 0

(includes deosil / widdershins rotation))
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GoL ©lockstep; multistep ◦−→

1

0

0

1

1

0 0

0

0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1

ϱ0 ϱ1 ϱ0 ϱ2 ϱ0

ϱ3 ϱ4ϱ0 ϱ5 ϱ0

LHS RHS

SC SC
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GoL ©lockstep; full multistep •−→

1

0

0

1

1

0 0

0

0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 1 1 0

1

1

00

0

0 0 0 0

0 1 0 0

0 0 0

0 0 0

0 0 1 1

ϱ0 ϱ1 ϱ0 ϱ2 ϱ0

ϱ3 ϱ4ϱ0 ϱ5 ϱ0

LHS RHS

SC SC
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GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)
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GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property
(by residuation)

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)
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GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube
(entails co-initial reductions form semi-lattice; least upperbounds)

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)
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GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite
(development of multistep is reduction only contracting residuals)

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)
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GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy (©lockstep) is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 20



GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)
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GoL is orthogonal

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• cube: tiling 3-peak with diamonds yields a cube

• finite developments: every development of ◦−→ is finite

• full multistep strategy is normalising

• . . .

INs are linear so have random descent
(WN =⇒ SN for nets; reductions to normal form all same length)
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Pólya’s triangle

Mathematics and Plausible Reasoning, Volume1, 1954, Fig. 2.3
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Pólya’s triangle in structured rewriting

rewrite step C[ℓ]↓ → C[r]↓ for rewrite rule ϱ : ℓ → r and context C

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22



Pólya’s triangle in structured rewriting

C[ϱ]

substitutionmatching

ϱ

rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for rule ϱ : ℓ → r and context C

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22



Pólya’s triangle in structured rewriting

matching

C[ϱ]

][x:=x

matching for rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule ϱ : ℓ → r
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Pólya’s triangle in structured rewriting

]

C[ϱ]

[x:=x ϱ

rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule ϱ : ℓ → r
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Pólya’s triangle in structured rewriting

substitution

[x:= ]

C[ϱ]

x

substitution for rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule
ϱ : ℓ → r

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 22



Pólya’s triangle in string rewriting

ab a

rewrite step abb → ab for rewrite rule ϱ : ab → b and context b
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Pólya’s triangle in string rewriting

ϱb

substitutionmatching

ϱ

aab

rewrite step ϱb : abb → ab for rewrite rule ϱ : ab → b and context b
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Pólya’s triangle in string rewriting

[x:= ]

ϱb

matching

x ab

ab a

matching for rewrite step ϱb : abb → ab for structure xb and rule ϱ : ab → b
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Pólya’s triangle in string rewriting

][x:=

ϱb

x ϱ

ab a

rewrite step ϱb : abb → ab for structure xb and rule ϱ : ab → b
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Pólya’s triangle in string rewriting

substitution

[x:= ]

ϱb

x a

ab a

substitution for rewrite step ϱb : abb → ab for structure xb and rule ϱ : ab → b

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 23



Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

• structures over a signature having variables x, y, . . . over structures

• substitution calculus →SC on structures; ↓ denotes SC-normal form (SC-nf)

• rules ϱ : ℓ → r with ϱ in signature and ℓ, r structures

• contexts like C[x], D[x, y] indicating variable occurrences

• C[s] denotes replacement of variable occurrence x by structure s in C
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Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

• structures over a signature having variables x, y, . . . over structures

• substitution calculus →SC on structures; ↓ denotes SC-normal form (SC-nf)

• rules ϱ : ℓ → r with ϱ in signature and ℓ, r structures

• contexts like C[x], D[x, y] indicating variable occurrences

• C[s] denotes replacement of variable occurrence x by structure s in C

Definition (of structured rewrite step)

step C[ϱ] : s → t, for context C and structures s, t in SC-nf and rule ϱ : ℓ → r if

s = C[ℓ]↓ SC↞ C[ℓ] →ϱ C[r] ↠SC C[r]↓ = t
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Structured rewriting: step

step

C[ℓ] C[r]

t s

replacement

substitutionmatching

Definition (of structured rewrite step)

step C[ϱ] : s → t, for context C and structures s, t in SC-nf and rule ϱ : ℓ → r if

s = C[ℓ]↓ SC↞ C[ℓ] →ϱ C[r] ↠SC C[r]↓ = t
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Structured rewriting: multistep

multistep

C[ℓ1, . . . , ℓn] C[r1, . . . , rn]

t s

replacement

substitutionmatching

Definition (of structured rewrite multistep)

multistep C[ϱ⃗] : s ◦−→ t, for context C, structures s, t in SC-nf, rules ϱi : ℓi → ri if

s = C[ℓ1, . . . , ℓn]↓ SC↞ C[ℓ1, . . . , ℓn] ◦−→ϱ⃗ C[r1, . . . , rn] ↠SC C[r1, . . . , rn]↓ = t
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Structured Orthogonality

t

C[
−→
ℓm]

D[ℓ⃗] E[m⃗]

occurrences of redex-patterns can be abstracted from in parallel
(
−→
ℓm is union of ℓ⃗ and m⃗)
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Substitution Calculi (SC)

Example

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction net: indirection-calculus −•− _ −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .
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Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 27



Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)
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Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property
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• finite developments: every development of ◦−→ is finite
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Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• finite developments: every development of ◦−→ is finite
(development of multistep is reduction only contracting residuals)

• cube: tiling 3-peak with diamonds yields a cube

• full multistep strategy is normalising
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Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

Theory of Orthogonality

• sequentialisation: → ⊆ ◦−→ ⊆ ↠

• confluence-by-parallelism: ◦−→ has the diamond property

• finite developments: every development of ◦−→ is finite

• cube: tiling 3-peak with diamonds yields a cube
(entails co-initial reductions form semi-lattice; least upperbounds)

• full multistep strategy is normalising
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Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

h →
E

→
I

h h h→
C

Example (of termgraph step modulo �)

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 28



Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

• �-calculus has implicit garbage collection

• termgraphs in �-normal form are maximally shared

Example (of termgraph step modulo �)
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Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

Example (of termgraph step modulo �)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:
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Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

Example (of termgraph step modulo �)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

cost: substitution may knock-on erasures and sharing (bounded by graph size)
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Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable

•
• steps as structures

• theory of orthogonality
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Conclusions

• normalised rewriting with respect to substitution calculus (SC)

• orthogonality guarantees redex-patterns simultaneously abstractable
(structure obtained by simultaneous substitution redex-patterns by SC)

•
• steps as structures

• theory of orthogonality
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Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching
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Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

deterministic rewrite system =⇒ dipper SC

IWC, Leipzig, Deutschland, Tuesday, September 2nd 2025 30



Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

matching trivial =⇒ cascading SC
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Exploiting substitution calculi to redistribute steps

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

substitution trivial =⇒ stepping SC
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Implementation of 44

Motivation for 44

• TRSs interesting as target when compiling functional programming

• matching is simple (lhss linear and exactly two function symbols; cascading)

• substitution can be made to avoid replication by termgraph rewriting

• cost (time and space) linear by combining the above two items
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Applicative Inductive Interaction System (4)

Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

notational conventions:
• application @ infix, implicit as in Combinatory Logic (CL)
• usually leave arguments of rule symbols implicit (derivable from lhs of rule)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1) →ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form
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Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

Example (of an 4)

ϱC(x0, x1, x2) : C(x1, x2) x0 → x1 (x2 x0)

ϱD(x0) : D x0 → C(x0, x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))
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Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

Example (4 confluent (via orthogonality), Turing complete (via CL))

ϱS2 :S2(x1, x2) x0 → (x1 x0) (x2 x0) ϱK1 :K1(x1) x0 → x1

ϱS1 : S1(x1) x0 → S2(x1, x0) ϱK : K x0 → K1(x0)

ϱS : S x0 → S1(x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1) →ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form
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Applicative Inductive Interaction System (4)

Example (of an 4)

ϱC(x0, x1, x2) : C(x1, x2) x0 → x1 (x2 x0)

ϱD(x0) : D x0 → C(x0, x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1) →ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form
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Implementing 44

Question (on implementation of 4)

do 44 have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

• spine strategy is (hyper-(head-))normalising
since every 4 is left-normal orthogonal TRSs

• matching-phase is trivial (since lhss left-linear, comprise two symbols)
substitution-phase not trivial (rhss may replicate arguments)
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Spine strategy for 4

Definition (of spine for 4-terms)

• spine: t or x t1 , . . . , tn

• head spine: x or C(t1, . . . ,tn) or t s

Lemma (normalising strategy)

• every term not in normal form has redex-pattern on spine, so a strategy

• spine strategy is a normalising strategy having random descent

• random descent: reductions to normal form have same length / measure

• leftmost–outermost strategy is a spine-strategy
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Implementing 4 in termgraphs by cascading �

Recall termgraph rewriting with �-calculus as SC, and cascading:

h →
E

→
I

h h h→
C

Idea

• instead of maximal sharing, unshare only constructors in redex-patterns

• goal: amortise cost of �-steps by charging 4-steps

@

C

@

CC
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Implementing 4 in termgraphs by cascading �

h →
E

→
I

h h h→
C

Idea (minimal unsharing; Wadsworth’s admissibility)

• instead of maximal sharing, unshare only constructors in redex-patterns

• goal: amortise cost of �-steps by charging 4-steps

@

C

@

CC
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Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

α-spine

@
Z

Z

Z

@

Z

fringe node (only one)

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)
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Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Lemma

every termgraph not in normal form has a spine redex-pattern, and any (proper)
α-spine prefix of it has a non-empty fringe

Proof.

by minimality using acyclicity of termgraphs

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)
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Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)
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Example α-spine reduction (Java code⇒dot⇒graphs)

recall 4-rules:

ϱC : C(x1, x2) x0 → x1 (x2 x0)
ϱD : D x0 → C(x0, x0)

as termgraph rules:

ϱC

@

C

@

@

@

D

C

ϱD
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Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex
((hyper-)(head) normalising strategy)

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy
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Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history
(family-step, so optimal strategy (qua horizontal sharing))

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy
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Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps
(graph grows linearly; strategy visits links only few times à la DFS)

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy
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Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy
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Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ( )λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

• capture avoiding substitution (avoid capture of free variables of the tk)
• (t[⃗x:=⃗t])λ = (t)λ [⃗x:=

−−→
(t)λ] (substitution lemma)

• well-defined by 4 being inductive (in r only Cj for j < i may occur)

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1) →β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ
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Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ( )λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Example (of tree homomorphism for example 4)

rule tree homomorphism

ϱC :C(x1, x2) x0 → x1 (x2 x0) C(t1, t2) 7→ λx0.t1 (t2 x0)

ϱD : D x0 → C(x0, x0) D 7→ λx0x′
0.x0 (x0 x′

0)

as D 7→ λx0.(C(x0, x0))λ = λx0.(λx0.x1 (x2 x0))[x1, x2:=x0, x0] =α λx0x′
0.x0 (x0 x′

0)

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1) →β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ
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Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ( )λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Example (of tree homomorphism for example 4)

rule tree homomorphism

ϱC :C(x1, x2) x0 → x1 (x2 x0) C(t1, t2) 7→ λx0.t1 (t2 x0)

ϱD : D x0 → C(x0, x0) D 7→ λx0x′
0.x0 (x0 x′

0)

• D maps to the Church numeral 2 for n := λsz.sn z
• S maps to λxyz.x z (y z) and K to λxy.x as expected / hoped for

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1) →β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ
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Definition (of tree homomorphism ( )λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1) →4 C(D z1,D z1))
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Compiling the λ-calculus to 4

Lemma (??)

if M →β N then (M)4 →I (N)4 for I an 4

Definition ()

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Lemma (??)

if M →β N then (M)4 →I (N)4 for I an 4

• no implementation ( )4 can achieve that, for full β
• for weak β (wβ; contract redex if has no variable bound outside) it can:
• weak β is first-order (α-conversion never needed), and
• weak β basis of Haskell (no contraction under λ, but that’s not confluent)

Definition ()

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Lemma (??)

if M →β N then (M)4 →I (N)4 for I an 4

Definition (of ( )4 mapping a λ-term to a pair of an 4 and term in it)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

do allow components to share constructors when these have the same rules
compilation known variation on the abstraction algorithm (custom combinators)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y))

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x))
• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)) using only first two items of the definition

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x))
• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x))
since x and x are maximal y-free subterm occurrences in x (x y)

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x)), so

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)
since no x-free subterm occurrence in C(x, x)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y)},C(x, x)), so

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y → z1 (z2 y), ϱD : D x → C(x, x)},D)

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x → r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M →wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M →wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order
(that’s why it was chosen for Haskell)

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation (finding mfss) can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus
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Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus
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What about Spine strategies for full β?
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Termgraph α-spine strategy adapted to spine-β

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

α-spine

@
Z

Z

Z

@

Z

fringe node (only one)

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t1, . . . , tn) to λx.C(t1, . . . , tn) x for x fresh

idea: a combinator on fringe / α-spine is a λ-abstraction (in the β-nf), so may
iterate on its body, effectuated in 4 by suppling a fresh variable
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Termgraph α-spine strategy adapted to spine-β

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t1, . . . , tn) to λx.C(t1, . . . , tn) x for x fresh

idea: a combinator on fringe / α-spine is a λ-abstraction (in the β-nf), so may
iterate on its body, effectuated in 4 by suppling a fresh variable
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Example α-spine reduction (Java code⇒dot⇒graphs)

recall 4-rules:

ϱC : C(x1, x2) x0 → x1 (x2 x0)
ϱD : D x0 → C(x0, x0)

and termgraph rules:

ϱC

@

C

@

@

@

D

C

ϱD
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Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses
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Implementing β-reduction

Complexity unavoidable

convertibility of simply typed λ-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into β and substitutions) that can’t be overcome.

Non-consequence

Optimal reduction for full β is non-interesting. By the same token all
implementations shown here would be non-interesting as they are optimal but
for wβ.
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More conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44
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Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction
only leftmost-outermost, no call-by-need; unsharing skeletons

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)
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Contributions

1 concept of substitution calculus (1994)

2 optimal implementation of lmo-β-family by scope nodes (2004)

3 wβ being isomorphic to orthogonal TRS, given a λ-term (2005)

4 optimality of wβ being an instance of optimality of orthogonal TRSs (2005)

5 the α-spine strategy for 44 (2024)

6 Haskell code implementing wβ into an 4 and vice versa (2024);

7 linear TGRS implementation of 4/ wβ / spine-β (2024)

8 Java code for that implementation (2025)

9 naming applicative inductive interaction systems 44 (2025)
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Amortised complexity

Idea

measure complexity by averaging over reductions (Tarjan)
(instead of measuring per step)

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .
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Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .
(→inc-steps not unit-time; #bit-flips unbounded)
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂
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∑
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∑
r for each (linear) rule ℓ →ĉ,c r )
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