

Accounting for the cost of substitution in structured rewriting

Vincent van Oostrom

Part I: Structured Rewriting

Part II: Implementation of

Pólya's triangle

rewrite step $C[\ell] \downarrow \rightarrow C[r] \downarrow$ for rewrite rule $\varrho : \ell \rightarrow r$ and context C

rewrite step $C[\varrho] : C[\ell] \downarrow \rightarrow C[r] \downarrow$ for rule $\varrho : \ell \rightarrow r$ and context C

matching for rewrite step $C[\varrho] : C[\ell] \downarrow \to C[r] \downarrow$ for structure C[x] and rule $\varrho : \ell \to r$

rewrite step $C[\varrho] : C[\ell] \downarrow \to C[r] \downarrow$ for structure C[x] and rule $\varrho : \ell \to r$

substitution for rewrite step $C[\varrho] : C[\ell] \downarrow \to C[r] \downarrow$ for structure C[x] and rule

rewrite step $abb \rightarrow ab$ for rewrite rule $\rho : ab \rightarrow b$ and context b

rewrite step $\rho b : abb \rightarrow ab$ for rewrite rule $\rho : ab \rightarrow b$ and context b

matching for rewrite step $\rho b : abb \to ab$ for structure xb and rule $\rho : ab \to b$

rewrite step $\rho b : abb \rightarrow ab$ for structure xb and rule $\rho : ab \rightarrow b$

substitution for rewrite step $\rho b : abb \to ab$ for structure xb and rule $\rho : ab \to b$

Definition (of string)

string is an element of the free monoid A* over alphabet A

poor: only interface to user à la abstract data types; no data structure

Definition (of Haskell strings)

string built from empty list Nil by consing (:) characters, e.g., a : (b : (b : Nil))

Example (of string rewrite step from a structured perspective)

step $\rho b : abb \rightarrow ab$ by rewrite rule $\rho : ab \rightarrow a$

but note a : (b : Nil) does not occur in a : (b : (b : Nil))

Example (of string rewrite step from a structured perspective)

step $\rho b : abb \rightarrow ab$ by rewrite rule $\rho : ab \rightarrow a$

how to apply $\varrho: a: (b: Nil) \rightarrow a: Nil for Haskell strings?$

Example (of string rewrite step from a structured perspective)

step $\varrho b : abb \rightarrow ab$ by rewrite rule $\varrho : ab \rightarrow a$

Idea

all obtained by substituting for string variable x in x ++ (b : Nil) = x ++ b

Example (of string rewrite step from a structured perspective)

step $\varrho b : abb
ightarrow ab$ by rewrite rule $\varrho : ab
ightarrow a$

- matching-phase decomposes abb = a : (b : (b : Nil)) as substituting a : (b : Nil) for x in x ++ (b : Nil)
- step ρb = ρ: (b: Nil) is formed by substituting ρ: Nil for x in x ++ (b: Nil)
- substitution-phase yields ab = a : (b : Nil) by substituting a : Nil for x in x ++ (b : Nil)

Example (of string rewrite step from a structured perspective)

step $\varrho b : abb
ightarrow ab$ by rewrite rule $\varrho : ab
ightarrow a$

- matching-phase decomposes abb = a : (b : (b : Nil)) as substituting a : (b : Nil) for x in x ++ (b : Nil)
- step ρb = ρ: (b: Nil) is formed by substituting ρ: Nil for x in x ++ (b: Nil)
- substitution-phase yields ab = a : (b : Nil) by substituting a : Nil for x in x ++ (b : Nil)

still easy but shows matching- and substitution-phases (may) come at a cost

Definition (of structured rewriting modulo substitution calculus)

- structures over a signature having variables *x*, *y*, ... over structures
- substitution calculus $\rightarrow_{\mathcal{SC}}$ on structures; \downarrow denotes \mathcal{SC} -normal form (\mathcal{SC} -nf)
- rules $\rho: \ell \to r$ with ρ in signature and ℓ , r structures
- contexts like C[x], D[x, y] indicating variable occurrences
- *C*[*s*] denotes replacement of variable occurrence *x* by structure *s* in *C*

Definition (of structured rewriting modulo substitution calculus)

- structures over a signature having variables *x*, *y*, ... over structures
- substitution calculus $\rightarrow_{\mathcal{SC}}$ on structures; \downarrow denotes \mathcal{SC} -normal form (\mathcal{SC} -nf)
- rules $\varrho: \ell \to r$ with ϱ in signature and ℓ , r structures
- contexts like *C*[*x*], *D*[*x*, *y*] indicating variable occurrences
- C[s] denotes replacement of variable occurrence x by structure s in C

Definition (of structured rewrite step)

step $C[\varrho] : s \to t$, for context C and structures s, t in \mathcal{SC} -nf and rule $\varrho : \ell \to r$ if

$$\mathbf{s} = \mathbf{C}[\ell] \downarrow_{\mathcal{SC}} \twoheadleftarrow \mathbf{C}[\ell] \rightarrow_{\varrho} \mathbf{C}[r] \twoheadrightarrow_{\mathcal{SC}} \mathbf{C}[r] \downarrow = t$$

Definition (of structured rewrite step)

step $C[\varrho]: \mathbf{s} \to t$, for context C and structures \mathbf{s}, t in \mathcal{SC} -nf and rule $\varrho: \ell \to r$ if

$$\mathbf{s} = \mathbf{C}[\ell] \downarrow_{\mathcal{SC}} \twoheadleftarrow \mathbf{C}[\ell] \rightarrow_{\varrho} \mathbf{C}[r] \twoheadrightarrow_{\mathcal{SC}} \mathbf{C}[r] \downarrow = t$$

Definition (of structured rewrite multistep)

multistep $C[\vec{\varrho}]$: $s \rightarrow t$, for context C, structures s, t in \mathcal{SC} -nf, rules $\varrho_i : \ell_i \rightarrow r_i$ if

$$\mathbf{s} = \mathbf{C}[\boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_n] \downarrow_{\mathcal{SC}} \twoheadleftarrow \mathbf{C}[\boldsymbol{\ell}_1, \dots, \boldsymbol{\ell}_n] \xrightarrow{}_{\vec{\varrho}} \mathbf{C}[r_1, \dots, r_n] \xrightarrow{}_{\mathcal{SC}} \mathbf{C}[r_1, \dots, r_n] \downarrow = t$$

Definition (of cost of step)

cost of step $C[\varrho]$: $t \rightarrow s$ is sum of costs of matching, replacement, substitution

- structures: simply typed λ -terms over a simply typed signature, in long η -nf
- substitution calculus: \mathcal{SC} is β modulo α
- notation: we write *x*.*t* for abstraction in the \mathcal{SC} (no λ)
- 1–1 correspondence between structured rewrite steps and usual HRS-steps

Instance

- structures: simply typed λ -terms over a simply typed signature, in long η -nf
- substitution calculus: \mathcal{SC} is β modulo α

Example (of HRS step and its cost)

• rule $\rho: x.f(x) \to x.d(x,x)$ over obvious signature (in fact first-order)

Instance

- structures: simply typed λ -terms over a simply typed signature, in long η -nf
- substitution calculus: \mathcal{SC} is β modulo α

Example (of HRS step and its cost)

- rule $\rho: x.f(x) \rightarrow x.d(x,x)$ over obvious signature
- step $f(\varrho(f(a))) : f(f(f(a))) \to f(d(f(a), f(a)))$ (substituting for X in f(X(f(a))))

- structures: simply typed λ -terms over a simply typed signature, in long η -nf
- substitution calculus: \mathcal{SC} is β modulo α

Instance

- structures: simply typed λ -terms over a simply typed signature, in long η -nf
- substitution calculus: \mathcal{SC} is β modulo α

Example (of HRS step and its cost)

- rule $\rho: x.f(x) \rightarrow x.d(x,x)$ over obvious signature
- step $f(\varrho(f(a))) : f(f(f(a))) \rightarrow f(d(f(a), f(a)))$
- *SC*-cost should take replication (in rhs) into account; choose algebra: *n*-ary function symbol by $(n_1, \ldots, n_n) \mapsto 1 + \sum_i n_i$ and ϱ by $n \mapsto 1 + 2n$

Instance

- structures: simply typed λ -terms over a simply typed signature, in long η -nf
- substitution calculus: \mathcal{SC} is β modulo α

Example (of HRS step and its cost)

- rule $\varrho: x.f(x) \rightarrow x.d(x,x)$ over obvious signature
- step $f(\varrho(f(a))) : f(f(f(a))) \rightarrow f(d(f(a), f(a)))$
- *n*-ary function symbol by $(n_1, \ldots, n_n) \mapsto 1 + \sum_i n_i$ and ϱ by $n \mapsto 1 + 2n$ cost of step $f(\varrho(f(a)))$ is 1 + (1 + 2(1 + 1)) = 6

Instance

- structures: simply typed λ -terms over a simply typed signature, in long η -nf
- substitution calculus: \mathcal{SC} is β modulo α

Example (of HRS step and its cost)

- rule $\varrho: x.f(x) \rightarrow x.d(x,x)$ over obvious signature
- step $f(\varrho(f(a))) : f(f(f(a))) \rightarrow f(d(f(a), f(a)))$
- *n*-ary function symbol by $(n_1, \ldots, n_n) \mapsto 1 + \sum_i n_i$ and ϱ by $n \mapsto 1 + 2n$ cost of step $f(\varrho(f(a)))$ is 1 + (1 + 2(1 + 1)) = 6

reversing rule ρ^{-1} : $x.d(x,x) \to x.f(x)$, step $f(\rho^{-1}(f(a)))$, same cost analysis

- structures: rooted dags over a signature extended with indirection •
- substitution calculus: the ж-calculus

- structures: rooted dags over a signature extended with indirection •
- substitution calculus: the ж-calculus
- **ж**-calculus has implicit garbage collection
- termgraphs in **x**-normal form are **maximally** shared

- structures: rooted dags over a signature extended with indirection •
- substitution calculus: the *m*-calculus

- structures: rooted dags over a signature extended with indirection •
- substitution calculus: the ж-calculus

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed $\lambda \alpha \beta \eta$ -calculus

- (higher-order) term rewriting: simply typed $\lambda \alpha \beta \eta$ -calculus
- termgraph rewiting: the ж-calculus

- (higher-order) term rewriting: simply typed $\lambda \alpha \beta \eta$ -calculus
- termgraph rewiting: the **x**-calculus
- interaction nets: indirection-calculus $\longrightarrow \longrightarrow$

- (higher-order) term rewriting: simply typed $\lambda \alpha \beta \eta$ -calculus
- termgraph rewiting: the **x**-calculus
- interaction nets: indirection-calculus $\longrightarrow \longrightarrow$
- net rewriting: proofnet-calculus (PN)

- (higher-order) term rewriting: simply typed $\lambda \alpha \beta \eta$ -calculus
- termgraph rewiting: the **x**-calculus
- interaction nets: indirection-calculus $\longrightarrow \longrightarrow$
- net rewriting: proofnet-calculus (PN)
- term rewriting: linear substitution calculus (LSC)?

- (higher-order) term rewriting: simply typed $\lambda \alpha \beta \eta$ -calculus
- termgraph rewiting: the **x**-calculus
- interaction nets: indirection-calculus $\longrightarrow \longrightarrow$
- net rewriting: proofnet-calculus (PN)
- term rewriting: linear substitution calculus (LSC)?
- sharing graph rewriting: deep inference?

- (higher-order) term rewriting: simply typed $\lambda \alpha \beta \eta$ -calculus
- termgraph rewiting: the **x**-calculus
- interaction nets: indirection-calculus $\longrightarrow \longrightarrow$
- net rewriting: proofnet-calculus (PN)
- term rewriting: linear substitution calculus (LSC)?
- sharing graph rewriting: deep inference?
- sub-calculi and strategies for $\lambda\beta$: machines?

Example (of some substitution calculi)

- (higher-order) term rewriting: simply typed $\lambda \alpha \beta \eta$ -calculus
- termgraph rewiting: the **x**-calculus
- interaction nets: indirection-calculus -- --
- net rewriting: proofnet-calculus (PN)
- term rewriting: linear substitution calculus (LSC)?
- sharing graph rewriting: deep inference?
- sub-calculi and strategies for $\lambda\beta$: machines?

• . . .

Axioms on substitution calculi (SC)

Axioms

- A1 the SC is complete (confluent and terminating)
- A2 the SC is only needed for gluing (rules are closed)
- A3 multisteps can be sequentialised / serialised (some development)

Axioms on substitution calculi (SC)

Axioms

- A1 the SC is complete (confluent and terminating)
- A2 the SC is only needed for gluing (rules are closed)
- A3 multisteps can be sequentialised / serialised (some development)

- should avoid substitution and subsequent matching inverse to each other
- matching more lhss simultaneously (multisteps) enables parallelism
- by not going to \mathcal{SC} -normal forms we may sometimes eliminate matching

- should avoid substitution and subsequent matching inverse to each other
- matching more lhss simultaneously (multisteps) enables parallelism
- by not going to \mathcal{SC} -normal forms we may sometimes eliminate matching

- should avoid substitution and subsequent matching inverse to each other
- matching more lhss simultaneously (multisteps) enables parallelism
- by not going to \mathcal{SC} -normal forms we may sometimes eliminate matching

- should avoid substitution and subsequent matching inverse to each other
- matching more lhss simultaneously (multisteps) enables parallelism
- by not going to \mathcal{SC} -normal forms we may sometimes eliminate matching

- should avoid substitution and subsequent matching inverse to each other
- matching more lhss simultaneously (multisteps) enables parallelism
- by not going to \mathcal{SC} -normal forms we may sometimes eliminate matching

- should avoid substitution and subsequent matching inverse to each other
- matching more lhss simultaneously (multisteps) enables parallelism
- by not going to \mathcal{SC} -normal forms we may sometimes eliminate matching

Dipper SC Example: leftmost string rewriting

Dipper idea

record current location in string (state) by splitting it into three strings: to the left, matched, to the right

since costly to scan from the start after each step

Dipper SC Example: leftmost string rewriting

Example

for rule $\varrho: ab \rightarrow a$ and string *aaba*

$$(\varepsilon, \varepsilon, babb) \leftarrow (b, \varepsilon, abb) \leftarrow (b, a, bb) \leftarrow (b, ab, b) \leftarrow (b, \varrho, b) \rightarrow$$

$$(b,a,b) \rightarrow (b,ab,\varepsilon) \rightarrow (b,\varrho,\varepsilon) \rightarrow (b,a,\varepsilon) \rightarrow (\varepsilon,\varepsilon,ba)$$

- state (split) components combine to current string
- state represents how far we have currently dipped into the string
- substitution calculus scans string from left to right
- back up (at most) 1 after \rightarrow -step

Implementation of 👁 👁

Motivation for <a>T

- TRSs interesting as target when compiling functional programming
- matching is simple (lhss linear and exactly two function symbols; cascading)
- substitution can be made to avoid replication by termgraph rewriting
- cost (time and space) linear by combining the above two items

Definition (of an <->)

TRS with signature $\{@/2, C_1/n_1, C_2/n_2, \ldots\}$ and for each *i*, rule $\varrho_{C_i}(x_0, x_1, \ldots, x_{n_i})$:

$$C_i(x_1,\ldots,x_{n_i})x_0 \rightarrow r$$

right-hand side *r* constructed from variables, @, and constructors C_j , for j < i

notational conventions:

- application @ infix, implicit as in Combinatory Logic (CL)
- usually leave arguments of rule symbols implicit (derivable from lhs of rule)

Definition (of an ④)

TRS with signature $\{@/2, C_1/n_1, C_2/n_2, \ldots\}$ and for each *i*, rule $\varrho_{C_i}(x_0, x_1, \ldots, x_{n_i})$:

$$C_i(x_1,\ldots,x_{n_i})x_0 \rightarrow r$$

right-hand side *r* constructed from variables, @, and constructors C_i , for j < i

Example (of an ④)

$$\begin{array}{rcl} \varrho_{C}(x_{0},x_{1},x_{2}) & : & C(x_{1},x_{2})x_{0} & \to & x_{1}(x_{2}x_{0}) \\ \varrho_{D}(x_{0}) & : & Dx_{0} & \to & C(x_{0},x_{0}) \end{array}$$

Definition (of an ④)

TRS with signature $\{@/2, C_1/n_1, C_2/n_2, \ldots\}$ and for each *i*, rule $\varrho_{C_i}(x_0, x_1, \ldots, x_{n_i})$:

$$C_i(x_1,\ldots,x_{n_i})x_0 \rightarrow r$$

right-hand side *r* constructed from variables, @, and constructors C_i , for j < i

Example (confluent (via orthogonality), Turing complete (via CL))

$$\begin{array}{rclcrcl} \varrho_{S_2} : S_2(x_1, x_2) x_0 & \to & (x_1 x_0) (x_2 x_0) & & \varrho_{K_1} : K_1(x_1) x_0 & \to & x_1 \\ \varrho_{S_1} : & S_1(x_1) x_0 & \to & S_2(x_1, x_0) & & \varrho_K : & K x_0 & \to & K_1(x_0) \\ \varrho_S : & S x_0 & \to & S_1(x_0) \end{array}$$

UNIVERSITY of SUSSEX HOR, Birmingham, United Kingdom, July 14th 2025

Example (of an ④)

$$\begin{array}{rcl} \varrho_{C}(x_{0},x_{1},x_{2}) & : & C(x_{1},x_{2})x_{0} & \to & x_{1}(x_{2}x_{0}) \\ \varrho_{D}(x_{0}) & : & D x_{0} & \to & C(x_{0},x_{0}) \end{array}$$

Example (two-step reduction $(\varrho_C(D,D)z_1) \cdot (\varrho_D(Dz_1))$)

$$\boldsymbol{C}(D,D) \, \boldsymbol{z}_1 \rightarrow_{\boldsymbol{\varrho} \boldsymbol{c}(\boldsymbol{z}_1,D,D)} \boldsymbol{D}(D \, \boldsymbol{z}_1) \rightarrow_{\boldsymbol{\varrho} \boldsymbol{\rho}(D \, \boldsymbol{z}_1)} \boldsymbol{C}(D \, \boldsymbol{z}_1,D \, \boldsymbol{z}_1)$$

duplicates Dz₁ redex; ends in (constructor C-)head normal form

Question (on implementation of O)

do 👁 have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Question (on implementation of O)

do 👁 have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

- matching-phase is trivial (since lhss left-linear, comprise two symbols) substitution-phase not trivial (rhss may replicate arguments)

Spine strategy for \odot

Definition (of spine for •-terms)

- spine: *t* or *x t*₁,..., *t*_n
- head spine: x or $C(t_1, \ldots, t_n)$ or ts

Lemma (normalising strategy)

- every term not in normal form has redex-pattern on spine, so a strategy
- spine strategy is a normalising strategy having random descent
- random descent: reductions to normal form have same length / measure
- leftmost–outermost strategy is a spine-strategy

Implementing O in termgraphs by cascading $\cfrac{}{\mathbf{x}}$

Recall termgraph rewriting with m-calculus as SC, and cascading:

Implementing \odot in termgraphs by cascading $\mathbf x$

Idea (minimal unsharing; Wadsworth's admissibility)

- instead of maximal sharing, unshare only constructors in redex-patterns
- goal: amortise cost of *x*-steps by charging O-steps

Termgraph α -spine strategy

Definition (of (head / α -)spine nodes)

- spine: head spine, or such in normal form (hsnf) with spine vertebrae
- head spine: path from root through bodies of @, to variable or constructor
- α -spine: spine prefix; fringe nodes: nodes covered by α -spine

Termgraph α -spine strategy

Definition (of (head / α -)spine nodes)

- spine: head spine, or such in normal form (hsnf) with spine vertebrae
- head spine: path from root through bodies of @, to variable or constructor
- α -spine: spine prefix; fringe nodes: nodes covered by α -spine

Lemma

every termgraph not in normal form has a spine redex-pattern, and any (proper) α -spine prefix of it has a non-empty fringe

Proof.

by minimality using acyclicity of termgraphs

Termgraph α -spine strategy

Definition (of (head / α -)spine nodes)

- spine: head spine, or such in normal form (hsnf) with spine vertebrae
- head spine: path from root through bodies of @, to variable or constructor
- α -spine: spine prefix; fringe nodes: nodes covered by α -spine

Definition (of α -spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α -spine (in nf)

Example α -spine reduction (Java code \Rightarrow dot \Rightarrow graphs)

recall <a>>rules:

 $\begin{array}{l} \varrho_{C}:C(x_{1},x_{2})\,x_{0}\rightarrow x_{1}\,(x_{2}\,x_{0})\\ \varrho_{D}:D\,x_{0}\rightarrow C(x_{0},x_{0}) \end{array}$

as termgraph rules:

Theorem

 α-spine step maps to multistep having at least one spine redex ((hyper-)(head) normalising strategy)

Theorem

- α -spine step maps to multistep having at least one spine redex
- multistep comprises redex-patterns having same creation history (family-step, so optimal strategy (qua horizontal sharing))

Theorem

- α -spine step maps to multistep having at least one spine redex
- multistep comprises redex-patterns having same creation history
- cost and size linear in number of termgraph steps (graph grows linearly; strategy visits links only few times à la DFS)

Theorem

- α -spine step maps to multistep having at least one spine redex
- multistep comprises redex-patterns having same creation history
- cost and size linear in number of termgraph steps
- α-spine reduction length not longer than spine
 (③④ are orthogonal for which doing more in parallel is better)
- number of spine steps always the same (random descent property)
- reduction length not longer than that of leftmost-outermost stategy

Definition (of tree homomorphism (), into λ -terms)

$C_i(t_1,\ldots,t_n)\mapsto (\lambda x_0.(r)_\lambda)[x_1,\ldots,x_n:=t_1,\ldots,t_n]$

- capture avoiding substitution (avoid capture of free variables of the t_k)
- $(t[\vec{x}:=\vec{t}])_{\lambda} = (t)_{\lambda}[\vec{x}:=\vec{(t)_{\lambda}}]$ (substitution lemma)
- well-defined by O being inductive (in *r* only C_j for j < i may occur)

Definition (of tree homomorphism () $_{\lambda}$ into λ -terms)

 $C_i(t_1,\ldots,t_n)\mapsto (\lambda x_0.(r)_\lambda)[x_1,\ldots,x_n:=t_1,\ldots,t_n]$

Example (of tree homomorphism for example ④)ruletree homomorphism $\varrho_C: C(x_1, x_2) x_0 \rightarrow x_1(x_2 x_0) \quad C(t_1, t_2) \rightarrow \lambda x_0.t_1(t_2 x_0)$ $\varrho_D: \quad D x_0 \rightarrow C(x_0, x_0) \quad D \rightarrow \lambda x_0 x'_0.x_0(x_0 x'_0)$ as $D \rightarrow \lambda x_0.(C(x_0, x_0))_{\lambda} = \lambda x_0.(\lambda x_0.x_1(x_2 x_0))[x_1, x_2:=x_0, x_0] =_{\alpha} \lambda x_0 x'_0.x_0(x_0 x'_0)$

Definition (of tree homomorphism () $_{\lambda}$ into λ -terms)

 $C_i(t_1,\ldots,t_n)\mapsto (\lambda x_0.(r)_\lambda)[x_1,\ldots,x_n:=t_1,\ldots,t_n]$

Example (of tree homomorphism for example ${oldsymbol \odot}$)						
rule				tree homomorphism		
ϱ_C : $C(x_1,$	$(x_2) x_0$	\rightarrow	$x_1(x_2x_0)$	$C(t_1,t_2)$	\mapsto	$\lambda x_0.t_1(t_2 x_0)$
<i>QD</i> :	Dx_0	\rightarrow	$C(x_0,x_0)$	D	\mapsto	$\lambda x_0 x_0' . x_0 \left(x_0 x_0' \right)$

- *D* maps to the Church numeral <u>2</u> for $\underline{n} := \lambda sz.s^n z$
- S maps to $\lambda xyz.xz(yz)$ and K to $\lambda xy.x$ as expected / hoped for

Definition (of tree homomorphism () $_{\lambda}$ into λ -terms)

 $C_i(t_1,\ldots,t_n)\mapsto (\lambda x_0.(r)_\lambda)[x_1,\ldots,x_n:=t_1,\ldots,t_n]$

Lemma (implementation of O by $\lambda\beta$)

if $t \rightarrow_{\textcircled{o}} s$ then $(t)_{\lambda} \rightarrow_{\beta} (s)_{\lambda}$

Definition (of tree homomorphism () $_{\lambda}$ into λ -terms)

 $C_i(t_1,\ldots,t_n)\mapsto (\lambda x_0.(r)_\lambda)[x_1,\ldots,x_n:=t_1,\ldots,t_n]$

Lemma (implementation of O by $\lambda\beta$)

if $t \rightarrow_{\textcircled{o}} s$ then $(t)_{\lambda} \rightarrow_{\beta} (s)_{\lambda}$

Example (of implementing $D(Dz_1) \rightarrow_{\textcircled{O}} C(Dz_1, Dz_1)$)

 $(D(Dz_1))_{\lambda} = (\lambda xy.x(xy))(\underline{2}z_1) \rightarrow_{\beta} \lambda y.\underline{2}z_1(\underline{2}z_1y) =_{\alpha} (C(Dz_1, Dz_1))_{\lambda}$

Compiling the $\lambda\text{-calculus}$ to O

Lemma (??)

if $M \rightarrow_{\beta} N$ then $(M)_{\textcircled{O}} \rightarrow_{\mathcal{I}} (N)_{\textcircled{O}}$ for \mathcal{I} an O

Lemma (??)

if $M \rightarrow_{\beta} N$ then $(M)_{\textcircled{O}} \rightarrow_{\mathcal{I}} (N)_{\textcircled{O}}$ for \mathcal{I} an O

- no implementation ($\;)_{\bigodot}$ can achieve that, for full β
- for weak β (w β ; contract redex if has no variable bound outside) it can:
- weak β is first-order ($\alpha\text{-conversion}$ never needed), and
- weak β basis of Haskell (no contraction under λ , but that's not confluent)

Lemma (??)

if
$$M \rightarrow_{\beta} N$$
 then $(M)_{\textcircled{O}} \rightarrow_{\mathcal{I}} (N)_{\textcircled{O}}$ for \mathcal{I} an \textcircled{O}

Definition (of () $_{\odot}$ mapping a λ -term to a pair of an \odot and term in it)

•
$$(x)_{\odot} := (\emptyset, x)$$

- $(M_1 M_2)_{\textcircled{O}} := (\mathcal{I}_1 \cup \mathcal{I}_2, t_1 t_2)$, where $(\mathcal{I}_i, t_i) := (M_i)_{\textcircled{O}}$ for $i \in \{1, 2\}$
- $(\lambda x.M)_{\textcircled{O}} := (\{ \varrho_C : C(z_1, \ldots, z_n) x \to r[z_1, \ldots, z_n] \} \cup \mathcal{I}, C(t_1, \ldots, t_n))$, where $(\mathcal{I}, r[t_1, \ldots, t_n]) := (M)_{\textcircled{O}}, r$ skeleton, t_i maximal x-free subterm occurrences

do allow components to share constructors when these have the same rules compilation known variation on the abstraction algorithm (custom combinators)

Definition (of <a>lifting)

- $(x)_{\odot} := (\emptyset, x)$
- $(M_1 M_2)_{\textcircled{O}} := (\mathcal{I}_1 \cup \mathcal{I}_2, t_1 t_2)$, where $(\mathcal{I}_i, t_i) := (M_i)_{\textcircled{O}}$ for $i \in \{1, 2\}$
- $(\lambda x.M)_{\textcircled{O}} := (\{ \varrho_C : C(z_1, \ldots, z_n) x \to r[z_1, \ldots, z_n] \} \cup \mathcal{I}, C(t_1, \ldots, t_n))$, where $(\mathcal{I}, r[t_1, \ldots, t_n]) := (M)_{\textcircled{O}}, r$ skeleton, t_i maximal x-free subterm occurrences

Example (of $(\underline{2})_{\odot}$; recall $\underline{2} := \lambda xy.x(xy)$)

Definition (of <a>lifting)

- $(x)_{\odot} := (\emptyset, x)$
- $(M_1 M_2)_{\textcircled{O}} := (\mathcal{I}_1 \cup \mathcal{I}_2, t_1 t_2)$, where $(\mathcal{I}_i, t_i) := (M_i)_{\textcircled{O}}$ for $i \in \{1, 2\}$
- $(\lambda x.M)_{\textcircled{O}} := (\{ \varrho_C : C(z_1, \ldots, z_n) x \to r[z_1, \ldots, z_n] \} \cup \mathcal{I}, C(t_1, \ldots, t_n))$, where $(\mathcal{I}, r[t_1, \ldots, t_n]) := (M)_{\textcircled{O}}, r$ skeleton, t_i maximal *x*-free subterm occurrences

Example (of $(\underline{2})_{\odot}$; recall $\underline{2} := \lambda xy.x(xy)$)

• $(x(xy))_{\odot} := (\emptyset, x(xy))$ using only first two items of the definition

Definition (of **O**-lifting)

- $(x)_{\odot} := (\emptyset, x)$
- $(M_1 M_2)_{\textcircled{O}} := (\mathcal{I}_1 \cup \mathcal{I}_2, t_1 t_2)$, where $(\mathcal{I}_i, t_i) := (M_i)_{\textcircled{O}}$ for $i \in \{1, 2\}$
- $(\lambda x.M)_{\textcircled{O}} := (\{ \varrho_C : C(z_1, \ldots, z_n) x \to r[z_1, \ldots, z_n] \} \cup \mathcal{I}, C(t_1, \ldots, t_n))$, where $(\mathcal{I}, r[t_1, \ldots, t_n]) := (M)_{\textcircled{O}}, r$ skeleton, t_i maximal *x*-free subterm occurrences

Example (of $(\underline{2})_{\odot}$; recall $\underline{2} := \lambda x y . x (x y)$)

- $(x(xy))_{\textcircled{3}} := (\emptyset, x(xy))$, so
- $(\lambda y.x(xy))_{\odot} := (\{\varrho_C : C(z_1, z_2) y \to z_1(z_2y)\}, C(x, x))$ since x and x are maximal y-free subterm occurrences in x(xy)

Definition (of **O**-lifting)

- $(x)_{\odot} := (\emptyset, x)$
- $(M_1 M_2)_{\textcircled{O}} := (\mathcal{I}_1 \cup \mathcal{I}_2, t_1 t_2)$, where $(\mathcal{I}_i, t_i) := (M_i)_{\textcircled{O}}$ for $i \in \{1, 2\}$
- $(\lambda x.M)_{\textcircled{O}} := (\{ \varrho_C : C(z_1, \ldots, z_n) x \to r[z_1, \ldots, z_n] \} \cup \mathcal{I}, C(t_1, \ldots, t_n))$, where $(\mathcal{I}, r[t_1, \ldots, t_n]) := (M)_{\textcircled{O}}, r$ skeleton, t_i maximal *x*-free subterm occurrences

Example (of $(\underline{2})_{\odot}$; recall $\underline{2} := \lambda x y . x (x y)$)

- $(x(xy))_{\textcircled{3}} := (\emptyset, x(xy))$, so
- $(\lambda y.x(xy))_{\odot} := (\{\varrho_C : C(z_1, z_2) y \to z_1(z_2y)\}, C(x, x))$, so
- $(\lambda xy.x(xy))_{\odot} := (\{\varrho_C : C(z_1, z_2) y \to z_1(z_2y), \varrho_D : Dx \to C(x, x)\}, D)$ since no x-free subterm occurrence in C(x, x)

Definition (of **O**-lifting)

- $(x)_{\odot} := (\emptyset, x)$
- $(M_1 M_2)_{\textcircled{O}} := (\mathcal{I}_1 \cup \mathcal{I}_2, t_1 t_2)$, where $(\mathcal{I}_i, t_i) := (M_i)_{\textcircled{O}}$ for $i \in \{1, 2\}$
- $(\lambda x.M)_{\textcircled{O}} := (\{ \varrho_C : C(z_1, \ldots, z_n) x \to r[z_1, \ldots, z_n] \} \cup \mathcal{I}, C(t_1, \ldots, t_n))$, where $(\mathcal{I}, r[t_1, \ldots, t_n]) := (M)_{\textcircled{O}}, r$ skeleton, t_i maximal *x*-free subterm occurrences

Example (of $(\underline{2})_{\textcircled{3}}$; recall $\underline{2} := \lambda xy.x(xy)$)

- $(x(xy))_{\textcircled{3}} := (\emptyset, x(xy))$, so
- $(\lambda y.x(xy))_{\odot} := (\{\varrho_C : C(z_1, z_2) y \to z_1(z_2y)\}, C(x, x)),$ so
- $(\lambda xy.x(xy))_{\odot} := (\{\varrho_C : C(z_1, z_2) \ y \to z_1(z_2y), \varrho_D : Dx \to C(x, x)\}, D)$

Definition (of **O**-lifting)

•
$$(x)_{\odot} := (\emptyset, x)$$

- $(M_1 M_2)_{\textcircled{O}} := (\mathcal{I}_1 \cup \mathcal{I}_2, t_1 t_2)$, where $(\mathcal{I}_i, t_i) := (M_i)_{\textcircled{O}}$ for $i \in \{1, 2\}$
- $(\lambda x.M)_{\textcircled{O}} := (\{\varrho_C : C(z_1, \ldots, z_n) x \to r[z_1, \ldots, z_n]\} \cup \mathcal{I}, C(t_1, \ldots, t_n))$, where $(\mathcal{I}, r[t_1, \ldots, t_n]) := (M)_{\textcircled{O}}, r$ skeleton, t_i maximal *x*-free subterm occurrences

Lemma (@-lifting)

if $M \to_{\mathsf{w}\beta} N$ then $(M)_{\textcircled{O}} \to_{\mathcal{I}} (N)_{\textcircled{O}}$ for some O-lifting \mathcal{I} .

Proof.

 $\text{if } M \to_{\mathsf{w}\beta} N \text{ and } (\mathcal{I},t) := (M)_{\textcircled{\bullet}} \text{ then } t \to_{\mathcal{I}} s \text{ for some } (\mathcal{I}',s) := (N)_{\textcircled{\bullet}} \text{ with } \mathcal{I} \supseteq \mathcal{I}' \quad \Box$

Implementing w β -reduction via O

Observations

- w β never needs α -conversion, so essentially first-order (that's why it was chosen for Haskell)
- indeed, any λ -term *M* compiles to an O and term *t* in it, such that rewriting from *M* respectively *t* is **isomorphic**
- compilation (finding mfss) can be done efficiently in time and space

Implementing w β -reduction via ${oldsymbol O}$

Observations

- w β never needs α -conversion, so essentially first-order
- indeed, any λ -term *M* compiles to an O and term *t* in it, such that rewriting from *M* respectively *t* is **isomorphic**
- compilation can be done efficiently in time and space

Corollary

results for OO carry over to $w\beta$

Implementing w β -reduction via ${oldsymbol O}$

Observations

- w β never needs α -conversion, so essentially first-order
- indeed, any λ -term *M* compiles to an O and term *t* in it, such that rewriting from *M* respectively *t* is **isomorphic**
- compilation can be done efficiently in time and space

Corollary

results for OO carry over to $w\beta$

Perspective

Haskell is based on orthogonal 1st-order term rewriting (O), not λ -calculus

What about Spine strategies for full β ?

Termgraph α -spine strategy **adapted** to spine- β

Definition (of (head / α -)spine nodes)

- spine: head spine, or such in normal form (hsnf) with spine vertebrae
- head spine: path from root through bodies of @, to variable or constructor
- α -spine: spine prefix; fringe nodes: nodes covered by α -spine

Termgraph α -spine strategy **adapted** to spine- β

Definition (of (head / α -)spine nodes)

- spine: head spine, or such in normal form (hsnf) with spine vertebrae
- head spine: path from root through bodies of @, to variable or constructor
- α -spine: spine prefix; fringe nodes: nodes covered by α -spine

Definition (of α -spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae rewrite fringe constructor $C(t_1, ..., t_n)$ to $\lambda x.C(t_1, ..., t_n) x$ for x fresh

idea: a combinator on fringe / α -spine is a λ -abstraction (in the β -nf), so may iterate on its body, effectuated in O by suppling a fresh variable

Example α -spine reduction (Java code \Rightarrow dot \Rightarrow graphs)

recall **•**-rules:

 $\begin{array}{l} \varrho_{C}:C(x_{1},x_{2})\,x_{0}\rightarrow x_{1}\,(x_{2}\,x_{0})\\ \varrho_{D}:D\,x_{0}\rightarrow C(x_{0},x_{0}) \end{array}$

and termgraph rules:

Observations

• β can be implemented via iterating w β (for same O)

- β can be implemented via iterating w β (for same O)
- constructor-steps correspond to needed α -conversions

- β can be implemented via iterating w β (for same O)
- constructor-steps correspond to needed α -conversions
- how many α -conversions needed to β -reduce $((\underline{28})(\underline{49}))(\underline{57})(\underline{42})$ to nf?

- β can be implemented via iterating w β (for same O)
- constructor-steps correspond to needed α -conversions
- how many α -conversions needed to β -reduce $((\underline{28})(\underline{49}))(\underline{57})(\underline{42})$ to nf?
- answer: \leq 2 because output is a Church numeral, which has 2 λ s

- β can be implemented via iterating w β (for same O)
- constructor-steps correspond to needed α -conversions
- how many α -conversions needed to β -reduce $((\underline{28})(\underline{49}))(\underline{57})(\underline{42})$ to nf?
- answer: \leq 2 because output is a Church numeral, which has 2 λ s
- cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for $w\beta$ carry over to spine- β , in particular that the cost of reduction to β -normal form is linear in the number of leftmost–outermost β -steps to β -nf

Corollary

results for $w\beta$ carry over to spine- β , in particular that the cost of reduction to β -normal form is linear in the number of leftmost–outermost β -steps to β -nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

Implementing β -reduction

Complexity unavoidable

convertibility of simply typed λ -calculus is non-elementary. Upshot: whatever way you slice the pie (split into β and substitutions) that can't be overcome.

Implementing β -reduction

Complexity unavoidable

convertibility of simply typed λ -calculus is non-elementary. Upshot: whatever way you slice the pie (split into β and substitutions) that can't be overcome.

Non-consequence

Optimal reduction for full β is non-interesting. By the same token all implementations shown here would be non-interesting as they are optimal but for w β .

• unit-time steps a priori unreasonable for structured rewriting

- unit-time steps a priori unreasonable for structured rewriting
- rewriting useful both for simple description and efficient implementation (do away with abstract machines)

- unit-time steps a priori unreasonable for structured rewriting
- rewriting useful both for simple description and efficient implementation
- substitution calculi give a way to account for the cost of substitution (how to slice the pie, between replacement and substitution)

- unit-time steps a priori unreasonable for structured rewriting
- rewriting useful both for simple description and efficient implementation
- substitution calculi give a way to account for the cost of substitution
- α-spine is 1st-order optimal for ⁽⁽⁾, wβ and β
 (only need skeletons present in initial λ-term; no creation of such)

- unit-time steps a priori unreasonable for structured rewriting
- rewriting useful both for simple description and efficient implementation
- substitution calculi give a way to account for the cost of substitution
- α -spine is 1st-order optimal for O, w β and β
- α -spine time and space linear in #steps (via TGRS, in Java)

- unit-time steps a priori unreasonable for structured rewriting
- rewriting useful both for simple description and efficient implementation
- substitution calculi give a way to account for the cost of substitution
- α -spine is 1st-order optimal for O, w β and β
- α -spine time and space linear in #steps (via TGRS, in Java)
- amortised analysis: discounting •-steps via #nodes, α -steps via β -steps (former based on path-compression of in-edges of •-nodes)

- unit-time steps a priori unreasonable for structured rewriting
- rewriting useful both for simple description and efficient implementation
- substitution calculi give a way to account for the cost of substitution
- α -spine is 1st-order optimal for O, w β and β
- α -spine time and space linear in #steps (via TGRS, in Java)
- amortised analysis: discounting •-steps via #nodes, α -steps via β -steps
- higher-order term rewriting useful to bridge λ -calculus and OO

1 Newman (1942): for rewrite systems and random descent

- 1 Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction

- Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction
- **③** Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β -strat

- Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction
- **③** Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β -strat
- **4 O** Lévy (1978): concept of β -family and optimality of Imo- β -family strategy

- Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction
- **③** Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β -strat
- **4** Lévy (1978): concept of β -family and optimality of Imo- β -family strategy
- B Huet, Lévy (1979): concept of needed reduction and it being normalising

- Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction
- **(3)** Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β -strat
- **4** Lévy (1978): concept of β -family and optimality of Imo- β -family strategy
- B Huet, Lévy (1979): concept of needed reduction and it being normalising
- Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

- Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction
- **(3)** Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β -strat
- **4** Lévy (1978): concept of β -family and optimality of Imo- β -family strategy
- B Huet, Lévy (1979): concept of needed reduction and it being normalising
- Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
- **②** Lamping (1990): sharing graph implementation of β -families

- Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction
- **(3)** Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β -strat
- **4** Lévy (1978): concept of β -family and optimality of Imo- β -family strategy
- B Huet, Lévy (1979): concept of needed reduction and it being normalising
- Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
- **②** Lamping (1990): sharing graph implementation of β -families
- (3) Asperti, Mairson (1998): complexity of β -family reduction is non-elementary

- Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction
- **(3)** Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β -strat
- **4** Lévy (1978): concept of β -family and optimality of Imo- β -family strategy
- B Huet, Lévy (1979): concept of needed reduction and it being normalising
- Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
- **②** Lamping (1990): sharing graph implementation of β -families
- (3) Asperti, Mairson (1998): complexity of β -family reduction is non-elementary
- **(9)** Grégoire, Leroy (2002): β via iterated w β
Standing on the shoulders of giants

- Newman (1942): for rewrite systems and random descent
- **2** Wadsworth (1971): graph rewriting implementation of β -reduction
- **(3)** Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β -strat
- **4** Lévy (1978): concept of β -family and optimality of Imo- β -family strategy
- B Huet, Lévy (1979): concept of needed reduction and it being normalising
- **6** Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy
- **②** Lamping (1990): sharing graph implementation of β -families
- (3) Asperti, Mairson (1998): complexity of β -family reduction is non-elementary
- **(9)** Grégoire, Leroy (2002): β via iterated w β
- 1 Blanc, Lévy, Maranget (2005): $w\beta$ -family, implemented here (Wadsworth)

Contributions

- Concept of substitution calculus (1994)
- **2** optimal implementation of Imo- β -family by scope nodes (2004)
- **(3)** w β being isomorphic to orthogonal TRS, given a λ -term (2005)
- **4** optimality of $w\beta$ being an instance of optimality of orthogonal TRSs (2005)
- **(3)** the α -spine strategy for **(2024)**
- **6** Haskell code implementing $w\beta$ into an **(a)** and vice versa (2024);
- **②** linear TGRS implementation of **④**/ w β / spine- β (2024)
- B Java code for that implementation (2025)
- naming applicative inductive interaction systems (2025)

Idea

measure complexity by averaging over reductions (Tarjan) (instead of measuring per step)

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 \rightarrow_{inc} 111 \rightarrow_{inc} 0001 \rightarrow_{inc} 1001 \rightarrow_{inc} ... (\rightarrow_{inc} -steps not unit-time; #bit-flips unbounded)

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 \rightarrow_{inc} 111 \rightarrow_{inc} 0001 \rightarrow_{inc} 1001 \rightarrow_{inc} \ldots

Example (inc as term rewrite system; $\rightarrow_{inc} := \rightarrow_i \cdot \rightarrow_h^!$)

$$s o_i i(s)$$
 $i(0(x)) o_b 1(x)$ $i(1(x)) o_b 0(i(x))$ $i(ullet) o_b 1(ullet)$

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 \rightarrow_{inc} 111 \rightarrow_{inc} 0001 \rightarrow_{inc} 1001 \rightarrow_{inc} \ldots

Example (inc as term rewrite system; $\rightarrow_{inc} := \rightarrow_i \cdot \rightarrow_b^!$)

$$s \rightarrow_i i(s) \qquad i(0(x)) \rightarrow_b 1(x) \qquad i(1(x)) \rightarrow_b 0(i(x)) \qquad i(\bullet) \rightarrow_b 1(\bullet)$$

 $\begin{array}{l} 0(1(1(\bullet))) \rightarrow_i i(0(1(1(\bullet)))) \rightarrow_b 1(1(1(\bullet))) \rightarrow_i i(1(1(1(\bullet)))) \rightarrow_b 0(i(1(1(\bullet)))) \rightarrow_b 0(0(i(1(\bullet)))) \rightarrow_b 0(0(0(1(\bullet)))) \rightarrow_i \dots \end{array}$

Idea

distinguish between charge \hat{c} and cost c of steps. *i*-steps add charge to pay for cost of subsequent *b*-steps; labelled (\mathbb{N}) symbols as saving-account for charges

Idea

distinguish between charge \hat{c} and cost c of steps. *i*-steps add charge to pay for cost of subsequent *b*-steps; labelled (\mathbb{N}) symbols as saving-account for charges

$$s \to_{\hat{3},1} i^{\hat{2}}(s) \qquad i^{\hat{2}}(0(x)) \to_{\hat{0},1} 1^{\hat{1}}(x) \qquad i^{\hat{2}}(1^{\hat{1}}(x)) \to_{\hat{0},1} 0(i^{\hat{2}}(x)) \qquad i^{\hat{2}}(\bullet) \to_{\hat{0},1} 1^{\hat{1}}(\bullet)$$
(no need to label 0's or \bullet 's)

Idea

distinguish between charge \hat{c} and cost c of steps. *i*-steps add charge to pay for cost of subsequent *b*-steps; labelled (\mathbb{N}) symbols as saving-account for charges

Example

$$s \to_{\hat{3},1} i^{\hat{2}}(s) \qquad i^{\hat{2}}(0(x)) \to_{\hat{0},1} 1^{\hat{1}}(x) \qquad i^{\hat{2}}(1^{\hat{1}}(x)) \to_{\hat{0},1} 0(i^{\hat{2}}(x)) \qquad i^{\hat{2}}(\bullet) \to_{\hat{0},1} 1^{\hat{1}}(\bullet)$$

• \hat{i} initially labels (closed): charge *i* with $\hat{2}$ and 1 with $\hat{1}$; preserved by steps

Idea

distinguish between charge \hat{c} and cost c of steps. *i*-steps add charge to pay for cost of subsequent *b*-steps; labelled (\mathbb{N}) symbols as saving-account for charges

$$s \to_{\hat{3},1} i^{\hat{2}}(s) \qquad i^{\hat{2}}(0(x)) \to_{\hat{0},1} 1^{\hat{1}}(x) \qquad i^{\hat{2}}(1^{\hat{1}}(x)) \to_{\hat{0},1} 0(i^{\hat{2}}(x)) \qquad i^{\hat{2}}(\bullet) \to_{\hat{0},1} 1^{\hat{1}}(\bullet)$$

- \hat{i} initially labels: charge *i* with $\hat{2}$ and 1 with $\hat{1}$; preserved by steps
- is a labelling: if $t \rightarrow s$, then $t^{\hat{\iota}} \rightarrow s^{\hat{\iota}}$

Idea

distinguish between charge \hat{c} and cost c of steps. *i*-steps add charge to pay for cost of subsequent *b*-steps; labelled (\mathbb{N}) symbols as saving-account for charges

$$s \to_{\hat{3},1} i^{\hat{2}}(s) \qquad i^{\hat{2}}(0(x)) \to_{\hat{0},1} 1^{\hat{1}}(x) \qquad i^{\hat{2}}(1^{\hat{1}}(x)) \to_{\hat{0},1} 0(i^{\hat{2}}(x)) \qquad i^{\hat{2}}(\bullet) \to_{\hat{0},1} 1^{\hat{1}}(\bullet)$$

- $\hat{\iota}$ initially labels: charge *i* with $\hat{2}$ and 1 with $\hat{1}$; preserved by steps
- is a labelling: if $t \rightarrow s$, then $t^{\hat{\iota}} \rightarrow s^{\hat{\iota}}$ (in general: cost subtracted; charges must remain non-negative, cover costs of steps; $\hat{c} + \sum \ell \ge c + \sum r$ for each (linear) rule $\ell \rightarrow_{\hat{c},c} r$)

Idea

distinguish between charge \hat{c} and cost c of steps. *i*-steps add charge to pay for cost of subsequent *b*-steps; labelled (\mathbb{N}) symbols as saving-account for charges

$$s \to_{\hat{3},1} i^{\hat{2}}(s) \qquad i^{\hat{2}}(0(x)) \to_{\hat{0},1} 1^{\hat{1}}(x) \qquad i^{\hat{2}}(1^{\hat{1}}(x)) \to_{\hat{0},1} 0(i^{\hat{2}}(x)) \qquad i^{\hat{2}}(\bullet) \to_{\hat{0},1} 1^{\hat{1}}(\bullet)$$

- \hat{i} initially labels: charge *i* with $\hat{2}$ and 1 with $\hat{1}$; preserved by steps
- is a labelling: if $t \rightarrow s$, then $t^{\hat{\iota}} \rightarrow s^{\hat{\iota}}$
- cost of reduction from t bounded by amortized cost, $\leq 3 \cdot \#i + \sum t^{\hat{\iota}}$

Reduction to (wh)nf in $\lambda\beta$, naïvely, in Haskell

```
data Lam = Lam Head [Lam] deriving (Show)
data Head = Var String | Abs String Lam deriving (Show)
subst x s (Lam h l) = let
  (Lam h' l') = case h of
     (Var v) | x == v \rightarrow s
     (Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []
                         -> Lam h [] in (Lam h' (l'++(map (subst x s) l)))
whnf (Lam (Abs x t) (u:1)) = let Lam h s = subst x u t in whnf (Lam h (s++1))
whnf t = t
nf = rnf (\langle x - \rangle 1)
rnf f t = let
  (Lam h l) = whnf t
  f' x = \langle y \rangle f y + (if (x==y) then 1 else 0)
  v x = x++"_++show (f x) in case h of
    (Abs x _) -> Lam (Abs (v x) (rnf (f' x) (Lam h [Lam (Var (v x)) []]))) []
               \rightarrow Lam h (map (rnf f) l)
    _
```