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Pólya’s triangle

Mathematics and Plausible Reasoning, Volume1, 1954, Fig. 2.3
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Pólya’s triangle in structured rewriting

rewrite step C[ℓ]↓ → C[r]↓ for rewrite rule ϱ : ℓ→ r and context C
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Pólya’s triangle in structured rewriting

C[ϱ]

substitutionmatching

ϱ

rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for rule ϱ : ℓ→ r and context C
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Pólya’s triangle in structured rewriting

matching

C[ϱ]

][x:=x

matching for rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule ϱ : ℓ→ r
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Pólya’s triangle in structured rewriting

]

C[ϱ]

[x:=x ϱ

rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule ϱ : ℓ→ r
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Pólya’s triangle in structured rewriting

substitution

[x:= ]

C[ϱ]

x

substitution for rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule
ϱ : ℓ→ r
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Pólya’s triangle in string rewriting

ab a

rewrite step abb→ ab for rewrite rule ϱ : ab→ b and context b

HOR, Birmingham, United Kingdom, July 14th 2025 4



Pólya’s triangle in string rewriting

ϱb

substitutionmatching

ϱ

aab

rewrite step ϱb : abb→ ab for rewrite rule ϱ : ab→ b and context b
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Pólya’s triangle in string rewriting

[x:= ]

ϱb

matching

x ab

ab a

matching for rewrite step ϱb : abb→ ab for structure xb and rule ϱ : ab→ b
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Pólya’s triangle in string rewriting

][x:=

ϱb

x ϱ

ab a

rewrite step ϱb : abb→ ab for structure xb and rule ϱ : ab→ b
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Pólya’s triangle in string rewriting

substitution

[x:= ]

ϱb

x a

ab a

substitution for rewrite step ϱb : abb→ ab for structure xb and rule ϱ : ab→ b
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Matching and substitution (may) come at a cost

Definition (of string)

string is an element of the free monoid A∗ over alphabet A

poor: only interface to user à la abstract data types; no data structure

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a
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Matching and substitution (may) come at a cost

Definition (of Haskell strings)

string built from empty list Nil by consing (:) characters, e.g., a : (b : (b : Nil))

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a
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Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

but note a : (b : Nil) does not occur in a : (b : (b : Nil))
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Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

how to apply ϱ : a : (b : Nil)→ a : Nil for Haskell strings?

?

a : (b : (b : Nil))

ϱ : (b : Nil)

matching substitution

a : (b : Nil)
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Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

Idea

all obtained by substituting for string variable x in x ++ (b : Nil) = x ++ b
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Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

• matching-phase decomposes abb = a : (b : (b : Nil)) as
substituting a : (b : Nil) for x in x ++ (b : Nil)

• step ϱb = ϱ : (b : Nil) is formed by
substituting ϱ : Nil for x in x ++ (b : Nil)

• substitution-phase yields ab = a : (b : Nil) by
substituting a : Nil for x in x ++ (b : Nil)

still easy but shows matching- and substitution-phases (may) come at a cost
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Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

• structures over a signature having variables x, y, . . . over structures

• substitution calculus→SC on structures; ↓ denotes SC-normal form (SC-nf)

• rules ϱ : ℓ→ r with ϱ in signature and ℓ, r structures

• contexts like C[x], D[x, y] indicating variable occurrences

• C[s] denotes replacement of variable occurrence x by structure s in C
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Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

• structures over a signature having variables x, y, . . . over structures

• substitution calculus→SC on structures; ↓ denotes SC-normal form (SC-nf)

• rules ϱ : ℓ→ r with ϱ in signature and ℓ, r structures

• contexts like C[x], D[x, y] indicating variable occurrences

• C[s] denotes replacement of variable occurrence x by structure s in C

Definition (of structured rewrite step)

step C[ϱ] : s→ t, for context C and structures s, t in SC-nf and rule ϱ : ℓ→ r if

s = C[ℓ]↓ SC↞ C[ℓ]→ϱ C[r] ↠SC C[r]↓ = t
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Structured rewriting

step

C[ℓ] C[r]

t s

replacement

substitutionmatching

Definition (of structured rewrite step)

step C[ϱ] : s→ t, for context C and structures s, t in SC-nf and rule ϱ : ℓ→ r if

s = C[ℓ]↓ SC↞ C[ℓ]→ϱ C[r] ↠SC C[r]↓ = t
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Structured rewriting

multistep

C[ℓ1, . . . , ℓn] C[r1, . . . , rn]

t s

replacement

substitutionmatching

Definition (of structured rewrite multistep)

multistep C[ϱ⃗] : s ◦−→ t, for context C, structures s, t in SC-nf, rules ϱi : ℓi → ri if

s = C[ℓ1, . . . , ℓn]↓ SC↞ C[ℓ1, . . . , ℓn] ◦−→ϱ⃗ C[r1, . . . , rn] ↠SC C[r1, . . . , rn]↓ = t
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Structured rewriting

step

C[ℓ] C[r]

t s

replacement

substitutionmatching

Definition (of cost of step)

cost of step C[ϱ] : t → s is sum of costs of matching, replacement, substitution
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Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

• notation: we write x.t for abstraction in the SC (no λ)

• 1–1 correspondence between structured rewrite steps and usual HRS-steps

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis
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Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

Example (of HRS step and its cost)

• rule ϱ : x.f(x)→ x.d(x, x) over obvious signature (in fact first-order)

• step f(ϱ(f(a))) : f(f(f(a)))→ f(d(f(a), f(a)))

• n-ary function symbol by (n1, . . . ,nn) 7→ 1 +
∑

i ni and ϱ by n 7→ 1 + 2n
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Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

Example (of HRS step and its cost)

• rule ϱ : x.f(x)→ x.d(x, x) over obvious signature

• step f(ϱ(f(a))) : f(f(f(a)))→ f(d(f(a), f(a))) (substituting for X in f(X(f(a))))
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∑

i ni and ϱ by n 7→ 1 + 2n

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis

HOR, Birmingham, United Kingdom, July 14th 2025 7



Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

f(ϱ(f(a)))

f ((x.f (x)) f (a)) f ((x.d(x,x)) f (a))

f (f (f (a))) f (d(f (a), f (a)))

replacement

substitutionmatching

reversing rule ϱ−1 : x.d(x, x)→ x.f(x),
step f(ϱ−1(f(a))), same cost analysis
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Instance
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• rule ϱ : x.f(x)→ x.d(x, x) over obvious signature

• step f(ϱ(f(a))) : f(f(f(a)))→ f(d(f(a), f(a)))

• SC-cost should take replication (in rhs) into account; choose algebra:
n-ary function symbol by (n1, . . . ,nn) 7→ 1 +

∑
i ni and ϱ by n 7→ 1 + 2n
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• n-ary function symbol by (n1, . . . ,nn) 7→ 1 +
∑

i ni and ϱ by n 7→ 1 + 2n
cost of step f(ϱ(f(a))) is 1 + (1 + 2(1 + 1)) = 6

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis
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Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

h →
E

→
I

h h h→
C

Example (of termgraph step modulo �)
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Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

• �-calculus has implicit garbage collection

• termgraphs in �-normal form are maximally shared

Example (of termgraph step modulo �)
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Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

Example (of termgraph step modulo �)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:
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Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

Example (of termgraph step modulo �)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

cost: substitution may knock-on erasures and sharing (bounded by graph size)

HOR, Birmingham, United Kingdom, July 14th 2025 8



Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .
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Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T
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Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching
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Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

deterministic rewrite system =⇒ dipper SC
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Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

matching trivial =⇒ cascading SC
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Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

substitution trivial =⇒ stepping SC

HOR, Birmingham, United Kingdom, July 14th 2025 11



Dipper SC Example: leftmost string rewriting

Dipper idea

record current location in string (state) by splitting it into three strings: to the
left, matched, to the right

since costly to scan from the start after each step

Example

for rule ϱ : ab→ a and string aaba

(ε, ε,babb)← (b, ε, abb)← (b, a,bb)← (b, ab,b)← (b, ϱ,b)→

(b, a,b)→ (b, ab, ε)→ (b, ϱ, ε)→ (b, a, ε)→ (ε, ε,ba)

• state (split) components combine to current string
• state represents how far we have currently dipped into the string
• substitution calculus scans string from left to right
• back up (at most) 1 after→-step
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Implementation of 44

Motivation for 44

• TRSs interesting as target when compiling functional programming

• matching is simple (lhss linear and exactly two function symbols; cascading)

• substitution can be made to avoid replication by termgraph rewriting

• cost (time and space) linear by combining the above two items
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Applicative Inductive Interaction System (4)

Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

notational conventions:
• application @ infix, implicit as in Combinatory Logic (CL)
• usually leave arguments of rule symbols implicit (derivable from lhs of rule)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1)→ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form
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Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i
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ϱS1 : S1(x1) x0 → S2(x1, x0) ϱK : K x0 → K1(x0)

ϱS : S x0 → S1(x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))
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Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1)→ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form
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Implementing 44

Question (on implementation of 4)

do 44 have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

• spine strategy is (hyper-(head-))normalising
since every 4 is left-normal orthogonal TRSs

• matching-phase is trivial (since lhss left-linear, comprise two symbols)
substitution-phase not trivial (rhss may replicate arguments)
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Spine strategy for 4

Definition (of spine for 4-terms)

• spine: t or x t1 , . . . , tn

• head spine: x or C(t1, . . . ,tn) or t s

Lemma (normalising strategy)

• every term not in normal form has redex-pattern on spine, so a strategy

• spine strategy is a normalising strategy having random descent

• random descent: reductions to normal form have same length / measure

• leftmost–outermost strategy is a spine-strategy
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Implementing 4 in termgraphs by cascading �

Recall termgraph rewriting with �-calculus as SC, and cascading:

h →
E

→
I

h h h→
C

Idea

• instead of maximal sharing, unshare only constructors in redex-patterns

• goal: amortise cost of �-steps by charging 4-steps

@

C

@

CC
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Implementing 4 in termgraphs by cascading �

h →
E

→
I

h h h→
C

Idea (minimal unsharing; Wadsworth’s admissibility)

• instead of maximal sharing, unshare only constructors in redex-patterns

• goal: amortise cost of �-steps by charging 4-steps

@

C

@

CC
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Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

α-spine

@
Z

Z

Z

@

Z

fringe node (only one)

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)
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Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Lemma

every termgraph not in normal form has a spine redex-pattern, and any (proper)
α-spine prefix of it has a non-empty fringe

Proof.

by minimality using acyclicity of termgraphs

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)
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Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)
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Example α-spine reduction (Java code⇒dot⇒graphs)

recall 4-rules:

ϱC : C(x1, x2) x0 → x1 (x2 x0)
ϱD : D x0 → C(x0, x0)

as termgraph rules:

ϱC

@

C

@

@

@

D

C

ϱD
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Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex
((hyper-)(head) normalising strategy)

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy
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Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history
(family-step, so optimal strategy (qua horizontal sharing))

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy
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Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps
(graph grows linearly; strategy visits links only few times à la DFS)

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy
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• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

HOR, Birmingham, United Kingdom, July 14th 2025 20



Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ( )λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

• capture avoiding substitution (avoid capture of free variables of the tk)
• (t[⃗x:=⃗t])λ = (t)λ [⃗x:=

−−→
(t)λ] (substitution lemma)

• well-defined by 4 being inductive (in r only Cj for j < i may occur)

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1)→β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ
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Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ( )λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Example (of tree homomorphism for example 4)

rule tree homomorphism

ϱC :C(x1, x2) x0 → x1 (x2 x0) C(t1, t2) 7→ λx0.t1 (t2 x0)

ϱD : D x0 → C(x0, x0) D 7→ λx0x′
0.x0 (x0 x′

0)

as D 7→ λx0.(C(x0, x0))λ = λx0.(λx0.x1 (x2 x0))[x1, x2:=x0, x0] =α λx0x′
0.x0 (x0 x′

0)

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))
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Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ( )λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Example (of tree homomorphism for example 4)

rule tree homomorphism

ϱC :C(x1, x2) x0 → x1 (x2 x0) C(t1, t2) 7→ λx0.t1 (t2 x0)

ϱD : D x0 → C(x0, x0) D 7→ λx0x′
0.x0 (x0 x′

0)

• D maps to the Church numeral 2 for n := λsz.sn z
• S maps to λxyz.x z (y z) and K to λxy.x as expected / hoped for

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1)→β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ
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Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ( )λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1)→β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ
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Compiling the λ-calculus to 4

Lemma (??)

if M→β N then (M)4 →I (N)4 for I an 4

Definition ()

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Lemma (??)

if M→β N then (M)4 →I (N)4 for I an 4

• no implementation ( )4 can achieve that, for full β
• for weak β (wβ; contract redex if has no variable bound outside) it can:
• weak β is first-order (α-conversion never needed), and
• weak β basis of Haskell (no contraction under λ, but that’s not confluent)

Definition ()

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Lemma (??)

if M→β N then (M)4 →I (N)4 for I an 4

Definition (of ( )4 mapping a λ-term to a pair of an 4 and term in it)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

do allow components to share constructors when these have the same rules
compilation known variation on the abstraction algorithm (custom combinators)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y))

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x))
• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)) using only first two items of the definition

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x))
• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x))
since x and x are maximal y-free subterm occurrences in x (x y)

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x)), so

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)
since no x-free subterm occurrence in C(x, x)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x)), so

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′
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Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order
(that’s why it was chosen for Haskell)

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation (finding mfss) can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus
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Observations

• wβ never needs α-conversion, so essentially first-order

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus
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What about Spine strategies for full β?
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Termgraph α-spine strategy adapted to spine-β

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

α-spine

@
Z

Z

Z

@

Z

fringe node (only one)

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t1, . . . , tn) to λx.C(t1, . . . , tn) x for x fresh

idea: a combinator on fringe / α-spine is a λ-abstraction (in the β-nf), so may
iterate on its body, effectuated in 4 by suppling a fresh variable
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Termgraph α-spine strategy adapted to spine-β

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t1, . . . , tn) to λx.C(t1, . . . , tn) x for x fresh

idea: a combinator on fringe / α-spine is a λ-abstraction (in the β-nf), so may
iterate on its body, effectuated in 4 by suppling a fresh variable
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Example α-spine reduction (Java code⇒dot⇒graphs)

recall 4-rules:

ϱC : C(x1, x2) x0 → x1 (x2 x0)
ϱD : D x0 → C(x0, x0)

and termgraph rules:

ϱC

@

C

@

@

@

D

C

ϱD
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Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses
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Implementing β-reduction

Complexity unavoidable

convertibility of simply typed λ-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into β and substitutions) that can’t be overcome.

Non-consequence

Optimal reduction for full β is non-interesting. By the same token all
implementations shown here would be non-interesting as they are optimal but
for wβ.
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Some conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44
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• α-spine is 1st-order optimal for 4, wβ and β
(only need skeletons present in initial λ-term; no creation of such)
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• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps
(former based on path-compression of in-edges of •-nodes)

• higher-order term rewriting useful to bridge λ-calculus and 44
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Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction
only leftmost-outermost, no call-by-need; unsharing skeletons

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)
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Contributions

1 concept of substitution calculus (1994)

2 optimal implementation of lmo-β-family by scope nodes (2004)

3 wβ being isomorphic to orthogonal TRS, given a λ-term (2005)

4 optimality of wβ being an instance of optimality of orthogonal TRSs (2005)

5 the α-spine strategy for 44 (2024)

6 Haskell code implementing wβ into an 4 and vice versa (2024);

7 linear TGRS implementation of 4/ wβ / spine-β (2024)

8 Java code for that implementation (2025)

9 naming applicative inductive interaction systems 44 (2025)
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Amortised complexity

Idea

measure complexity by averaging over reductions (Tarjan)
(instead of measuring per step)

Example

incrementing a counter in binary 011→inc 111→inc 0001→inc 1001→inc . . .

Example (inc as term rewrite system; →inc:=→i · →!
b)

s→i i(s) i(0(x))→b 1(x) i(1(x))→b 0(i(x)) i(•)→b 1(•)

0(1(1(•)))→i i(0(1(1(•))))→b 1(1(1(•)))→i i(1(1(1(•))))→b 0(i(1(1(•))))→b

0(0(i(1(•))))→b 0(0(0(i(•))))→b 0(0(0(1(•))))→i . . .

HOR, Birmingham, United Kingdom, July 14th 2025 33



Amortised complexity

Idea
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s→3̂,1 i2̂(s) i2̂(0(x))→0̂,1 11̂(x) i2̂(11̂(x))→0̂,1 0(i2̂(x)) i2̂(•)→0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s→3̂,1 i2̂(s) i2̂(0(x))→0̂,1 11̂(x) i2̂(11̂(x))→0̂,1 0(i2̂(x)) i2̂(•)→0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

(in general: cost subtracted; charges must remain non-negative, cover
costs of steps; ĉ +

∑
ℓ ≥ c +

∑
r for each (linear) rule ℓ→ĉ,c r )

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂
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Reduction to (wh)nf in λβ, naïvely, in Haskell
data Lam = Lam Head [Lam] deriving (Show)

data Head = Var String | Abs String Lam deriving (Show)

subst x s (Lam h l) = let

(Lam h' l') = case h of

(Var y) | x == y -> s

(Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []

_ -> Lam h [] in (Lam h' (l'++(map (subst x s) l)))

whnf (Lam (Abs x t) (u:l)) = let Lam h s = subst x u t in whnf (Lam h (s++l))

whnf t = t

nf = rnf (\x -> 1)

rnf f t = let

(Lam h l) = whnf t

f' x = \y -> f y + (if (x==y) then 1 else 0)

v x = x++"_"++show (f x) in case h of

(Abs x _) -> Lam (Abs (v x) (rnf (f' x) (Lam h [Lam (Var (v x)) []]))) []

_ -> Lam h (map (rnf f) l)
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