
Accounting for the cost of substitution
in structured rewriting

Vincent van Oostrom

HOR, Birmingham, United Kingdom, July 14th 2025 0

Part I: Structured Rewriting

Part II: Implementation of 44

HOR, Birmingham, United Kingdom, July 14th 2025 1

Pólya’s triangle

Mathematics and Plausible Reasoning, Volume1, 1954, Fig. 2.3

HOR, Birmingham, United Kingdom, July 14th 2025 2

Pólya’s triangle in structured rewriting

rewrite step C[ℓ]↓ → C[r]↓ for rewrite rule ϱ : ℓ→ r and context C

HOR, Birmingham, United Kingdom, July 14th 2025 3

Pólya’s triangle in structured rewriting

C[ϱ]

substitutionmatching

ϱ

rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for rule ϱ : ℓ→ r and context C

HOR, Birmingham, United Kingdom, July 14th 2025 3

Pólya’s triangle in structured rewriting

matching

C[ϱ]

][x:=x

matching for rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule ϱ : ℓ→ r

HOR, Birmingham, United Kingdom, July 14th 2025 3

Pólya’s triangle in structured rewriting

]

C[ϱ]

[x:=x ϱ

rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule ϱ : ℓ→ r

HOR, Birmingham, United Kingdom, July 14th 2025 3

Pólya’s triangle in structured rewriting

substitution

[x:=]

C[ϱ]

x

substitution for rewrite step C[ϱ] : C[ℓ]↓ → C[r]↓ for structure C[x] and rule
ϱ : ℓ→ r

HOR, Birmingham, United Kingdom, July 14th 2025 3

Pólya’s triangle in string rewriting

ab a

rewrite step abb→ ab for rewrite rule ϱ : ab→ b and context b

HOR, Birmingham, United Kingdom, July 14th 2025 4

Pólya’s triangle in string rewriting

ϱb

substitutionmatching

ϱ

aab

rewrite step ϱb : abb→ ab for rewrite rule ϱ : ab→ b and context b

HOR, Birmingham, United Kingdom, July 14th 2025 4

Pólya’s triangle in string rewriting

[x:=]

ϱb

matching

x ab

ab a

matching for rewrite step ϱb : abb→ ab for structure xb and rule ϱ : ab→ b

HOR, Birmingham, United Kingdom, July 14th 2025 4

Pólya’s triangle in string rewriting

][x:=

ϱb

x ϱ

ab a

rewrite step ϱb : abb→ ab for structure xb and rule ϱ : ab→ b

HOR, Birmingham, United Kingdom, July 14th 2025 4

Pólya’s triangle in string rewriting

substitution

[x:=]

ϱb

x a

ab a

substitution for rewrite step ϱb : abb→ ab for structure xb and rule ϱ : ab→ b

HOR, Birmingham, United Kingdom, July 14th 2025 4

Matching and substitution (may) come at a cost

Definition (of string)

string is an element of the free monoid A∗ over alphabet A

poor: only interface to user à la abstract data types; no data structure

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

HOR, Birmingham, United Kingdom, July 14th 2025 5

Matching and substitution (may) come at a cost

Definition (of Haskell strings)

string built from empty list Nil by consing (:) characters, e.g., a : (b : (b : Nil))

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

HOR, Birmingham, United Kingdom, July 14th 2025 5

Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

but note a : (b : Nil) does not occur in a : (b : (b : Nil))

HOR, Birmingham, United Kingdom, July 14th 2025 5

Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

how to apply ϱ : a : (b : Nil)→ a : Nil for Haskell strings?

?

a : (b : (b : Nil))

ϱ : (b : Nil)

matching substitution

a : (b : Nil)

HOR, Birmingham, United Kingdom, July 14th 2025 5

Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

Idea

all obtained by substituting for string variable x in x ++ (b : Nil) = x ++ b

HOR, Birmingham, United Kingdom, July 14th 2025 5

Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

• matching-phase decomposes abb = a : (b : (b : Nil)) as
substituting a : (b : Nil) for x in x ++ (b : Nil)

• step ϱb = ϱ : (b : Nil) is formed by
substituting ϱ : Nil for x in x ++ (b : Nil)

• substitution-phase yields ab = a : (b : Nil) by
substituting a : Nil for x in x ++ (b : Nil)

still easy but shows matching- and substitution-phases (may) come at a cost

HOR, Birmingham, United Kingdom, July 14th 2025 5

Matching and substitution (may) come at a cost

Example (of string rewrite step from a structured perspective)

step ϱb : abb→ ab by rewrite rule ϱ : ab→ a

• matching-phase decomposes abb = a : (b : (b : Nil)) as
substituting a : (b : Nil) for x in x ++ (b : Nil)

• step ϱb = ϱ : (b : Nil) is formed by
substituting ϱ : Nil for x in x ++ (b : Nil)

• substitution-phase yields ab = a : (b : Nil) by
substituting a : Nil for x in x ++ (b : Nil)

still easy but shows matching- and substitution-phases (may) come at a cost

HOR, Birmingham, United Kingdom, July 14th 2025 5

Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

• structures over a signature having variables x, y, . . . over structures

• substitution calculus→SC on structures; ↓ denotes SC-normal form (SC-nf)

• rules ϱ : ℓ→ r with ϱ in signature and ℓ, r structures

• contexts like C[x], D[x, y] indicating variable occurrences

• C[s] denotes replacement of variable occurrence x by structure s in C

HOR, Birmingham, United Kingdom, July 14th 2025 6

Structured rewriting

Definition (of structured rewriting modulo substitution calculus)

• structures over a signature having variables x, y, . . . over structures

• substitution calculus→SC on structures; ↓ denotes SC-normal form (SC-nf)

• rules ϱ : ℓ→ r with ϱ in signature and ℓ, r structures

• contexts like C[x], D[x, y] indicating variable occurrences

• C[s] denotes replacement of variable occurrence x by structure s in C

Definition (of structured rewrite step)

step C[ϱ] : s→ t, for context C and structures s, t in SC-nf and rule ϱ : ℓ→ r if

s = C[ℓ]↓ SC↞ C[ℓ]→ϱ C[r] ↠SC C[r]↓ = t

HOR, Birmingham, United Kingdom, July 14th 2025 6

Structured rewriting

step

C[ℓ] C[r]

t s

replacement

substitutionmatching

Definition (of structured rewrite step)

step C[ϱ] : s→ t, for context C and structures s, t in SC-nf and rule ϱ : ℓ→ r if

s = C[ℓ]↓ SC↞ C[ℓ]→ϱ C[r] ↠SC C[r]↓ = t

HOR, Birmingham, United Kingdom, July 14th 2025 6

Structured rewriting

multistep

C[ℓ1, . . . , ℓn] C[r1, . . . , rn]

t s

replacement

substitutionmatching

Definition (of structured rewrite multistep)

multistep C[ϱ⃗] : s ◦−→ t, for context C, structures s, t in SC-nf, rules ϱi : ℓi → ri if

s = C[ℓ1, . . . , ℓn]↓ SC↞ C[ℓ1, . . . , ℓn] ◦−→ϱ⃗ C[r1, . . . , rn] ↠SC C[r1, . . . , rn]↓ = t

HOR, Birmingham, United Kingdom, July 14th 2025 6

Structured rewriting

step

C[ℓ] C[r]

t s

replacement

substitutionmatching

Definition (of cost of step)

cost of step C[ϱ] : t → s is sum of costs of matching, replacement, substitution

HOR, Birmingham, United Kingdom, July 14th 2025 6

Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

• notation: we write x.t for abstraction in the SC (no λ)

• 1–1 correspondence between structured rewrite steps and usual HRS-steps

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis

HOR, Birmingham, United Kingdom, July 14th 2025 7

Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

Example (of HRS step and its cost)

• rule ϱ : x.f(x)→ x.d(x, x) over obvious signature (in fact first-order)

• step f(ϱ(f(a))) : f(f(f(a)))→ f(d(f(a), f(a)))

• n-ary function symbol by (n1, . . . ,nn) 7→ 1 +
∑

i ni and ϱ by n 7→ 1 + 2n

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis

HOR, Birmingham, United Kingdom, July 14th 2025 7

Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

Example (of HRS step and its cost)

• rule ϱ : x.f(x)→ x.d(x, x) over obvious signature

• step f(ϱ(f(a))) : f(f(f(a)))→ f(d(f(a), f(a))) (substituting for X in f(X(f(a))))

• n-ary function symbol by (n1, . . . ,nn) 7→ 1 +
∑

i ni and ϱ by n 7→ 1 + 2n

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis

HOR, Birmingham, United Kingdom, July 14th 2025 7

Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

f(ϱ(f(a)))

f ((x.f (x)) f (a)) f ((x.d(x,x)) f (a))

f (f (f (a))) f (d(f (a), f (a)))

replacement

substitutionmatching

reversing rule ϱ−1 : x.d(x, x)→ x.f(x),
step f(ϱ−1(f(a))), same cost analysis

HOR, Birmingham, United Kingdom, July 14th 2025 7

Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

Example (of HRS step and its cost)

• rule ϱ : x.f(x)→ x.d(x, x) over obvious signature

• step f(ϱ(f(a))) : f(f(f(a)))→ f(d(f(a), f(a)))

• SC-cost should take replication (in rhs) into account; choose algebra:
n-ary function symbol by (n1, . . . ,nn) 7→ 1 +

∑
i ni and ϱ by n 7→ 1 + 2n

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis

HOR, Birmingham, United Kingdom, July 14th 2025 7

Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

Example (of HRS step and its cost)

• rule ϱ : x.f(x)→ x.d(x, x) over obvious signature

• step f(ϱ(f(a))) : f(f(f(a)))→ f(d(f(a), f(a)))

• n-ary function symbol by (n1, . . . ,nn) 7→ 1 +
∑

i ni and ϱ by n 7→ 1 + 2n
cost of step f(ϱ(f(a))) is 1 + (1 + 2(1 + 1)) = 6

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis

HOR, Birmingham, United Kingdom, July 14th 2025 7

Higher-order terms as structures

Instance

• structures: simply typed λ-terms over a simply typed signature, in long η-nf

• substitution calculus: SC is β modulo α

Example (of HRS step and its cost)

• rule ϱ : x.f(x)→ x.d(x, x) over obvious signature

• step f(ϱ(f(a))) : f(f(f(a)))→ f(d(f(a), f(a)))

• n-ary function symbol by (n1, . . . ,nn) 7→ 1 +
∑

i ni and ϱ by n 7→ 1 + 2n
cost of step f(ϱ(f(a))) is 1 + (1 + 2(1 + 1)) = 6

reversing rule ϱ−1 : x.d(x, x)→ x.f(x), step f(ϱ−1(f(a))), same cost analysis

HOR, Birmingham, United Kingdom, July 14th 2025 7

Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

h →
E

→
I

h h h→
C

Example (of termgraph step modulo �)

HOR, Birmingham, United Kingdom, July 14th 2025 8

Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

• �-calculus has implicit garbage collection

• termgraphs in �-normal form are maximally shared

Example (of termgraph step modulo �)

HOR, Birmingham, United Kingdom, July 14th 2025 8

Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

Example (of termgraph step modulo �)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

HOR, Birmingham, United Kingdom, July 14th 2025 8

Termgraphs as structures

Instance

• structures: rooted dags over a signature extended with indirection •
• substitution calculus: the �-calculus

Example (of termgraph step modulo �)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

cost: substitution may knock-on erasures and sharing (bounded by graph size)

HOR, Birmingham, United Kingdom, July 14th 2025 8

Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

HOR, Birmingham, United Kingdom, July 14th 2025 9

Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

HOR, Birmingham, United Kingdom, July 14th 2025 9

Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−

• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

HOR, Birmingham, United Kingdom, July 14th 2025 9

Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

HOR, Birmingham, United Kingdom, July 14th 2025 9

Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

HOR, Birmingham, United Kingdom, July 14th 2025 9

Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

HOR, Birmingham, United Kingdom, July 14th 2025 9

Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

HOR, Birmingham, United Kingdom, July 14th 2025 9

Substitution Calculi

Example (of some substitution calculi)

• (higher-order) term rewriting: simply typed λαβη-calculus

• termgraph rewiting: the �-calculus

• interaction nets: indirection-calculus −•− → −−
• net rewriting: proofnet-calculus (PN)

• term rewriting: linear substitution calculus (LSC)?

• sharing graph rewriting: deep inference?

• sub-calculi and strategies for λβ: machines?

• . . .

HOR, Birmingham, United Kingdom, July 14th 2025 9

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

HOR, Birmingham, United Kingdom, July 14th 2025 10

Axioms on substitution calculi (SC)

Axioms

A1 the SC is complete (confluent and terminating)

A2 the SC is only needed for gluing (rules are closed)

A3 multisteps can be sequentialised / serialised (some development)

IH

C[ℓ0, ℓ⃗] C[r0, ℓ⃗] C[r0, r⃗]
C[ϱ0, ℓ⃗] C[r0, r⃗]

D[ℓ0] D[r0] E[ℓ⃗] E[⃗r]
D[ϱ0] E[ϱ⃗]

t0 t1 tn

T T

HOR, Birmingham, United Kingdom, July 14th 2025 10

Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

HOR, Birmingham, United Kingdom, July 14th 2025 11

Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

HOR, Birmingham, United Kingdom, July 14th 2025 11

Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

HOR, Birmingham, United Kingdom, July 14th 2025 11

Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

deterministic rewrite system =⇒ dipper SC

HOR, Birmingham, United Kingdom, July 14th 2025 11

Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

matching trivial =⇒ cascading SC

HOR, Birmingham, United Kingdom, July 14th 2025 11

Exploiting substitution calculi to redistribute costs

Cost-saving observations

• should avoid substitution and subsequent matching inverse to each other

• matching more lhss simultaneously (multisteps) enables parallelism

• by not going to SC-normal forms we may sometimes eliminate matching

substitution trivial =⇒ stepping SC

HOR, Birmingham, United Kingdom, July 14th 2025 11

Dipper SC Example: leftmost string rewriting

Dipper idea

record current location in string (state) by splitting it into three strings: to the
left, matched, to the right

since costly to scan from the start after each step

Example

for rule ϱ : ab→ a and string aaba

(ε, ε,babb)← (b, ε, abb)← (b, a,bb)← (b, ab,b)← (b, ϱ,b)→

(b, a,b)→ (b, ab, ε)→ (b, ϱ, ε)→ (b, a, ε)→ (ε, ε,ba)

• state (split) components combine to current string
• state represents how far we have currently dipped into the string
• substitution calculus scans string from left to right
• back up (at most) 1 after→-step

HOR, Birmingham, United Kingdom, July 14th 2025 12

Dipper SC Example: leftmost string rewriting

Example

for rule ϱ : ab→ a and string aaba

(ε, ε,babb)← (b, ε, abb)← (b, a,bb)← (b, ab,b)← (b, ϱ,b)→

(b, a,b)→ (b, ab, ε)→ (b, ϱ, ε)→ (b, a, ε)→ (ε, ε,ba)

• state (split) components combine to current string

• state represents how far we have currently dipped into the string

• substitution calculus scans string from left to right

• back up (at most) 1 after→-step

HOR, Birmingham, United Kingdom, July 14th 2025 12

Implementation of 44

Motivation for 44

• TRSs interesting as target when compiling functional programming

• matching is simple (lhss linear and exactly two function symbols; cascading)

• substitution can be made to avoid replication by termgraph rewriting

• cost (time and space) linear by combining the above two items

HOR, Birmingham, United Kingdom, July 14th 2025 13

Applicative Inductive Interaction System (4)

Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

notational conventions:
• application @ infix, implicit as in Combinatory Logic (CL)
• usually leave arguments of rule symbols implicit (derivable from lhs of rule)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1)→ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form

HOR, Birmingham, United Kingdom, July 14th 2025 14

Applicative Inductive Interaction System (4)

Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

Example (of an 4)

ϱC(x0, x1, x2) : C(x1, x2) x0 → x1 (x2 x0)

ϱD(x0) : D x0 → C(x0, x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1)→ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form

HOR, Birmingham, United Kingdom, July 14th 2025 14

Applicative Inductive Interaction System (4)

Definition (of an 4)

TRS with signature {@/2,C1/n1,C2/n2, . . .} and for each i, rule ϱCi(x0, x1, . . . , xni):

Ci(x1, . . . , xni) x0 → r

right-hand side r constructed from variables, @, and constructors Cj, for j < i

Example (4 confluent (via orthogonality), Turing complete (via CL))

ϱS2 :S2(x1, x2) x0 → (x1 x0) (x2 x0) ϱK1 :K1(x1) x0 → x1

ϱS1 : S1(x1) x0 → S2(x1, x0) ϱK : K x0 → K1(x0)

ϱS : S x0 → S1(x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1)→ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form

HOR, Birmingham, United Kingdom, July 14th 2025 14

Applicative Inductive Interaction System (4)

Example (of an 4)

ϱC(x0, x1, x2) : C(x1, x2) x0 → x1 (x2 x0)

ϱD(x0) : D x0 → C(x0, x0)

Example (two-step reduction (ϱC(D,D) z1) · (ϱD(D z1)))

C(D,D) z1 →ϱC(z1,D,D) D (D z1)→ϱD(D z1) C(D z1,D z1)

duplicates D z1 redex; ends in (constructor C-)head normal form

HOR, Birmingham, United Kingdom, July 14th 2025 14

Implementing 44

Question (on implementation of 4)

do 44 have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

• spine strategy is (hyper-(head-))normalising
since every 4 is left-normal orthogonal TRSs

• matching-phase is trivial (since lhss left-linear, comprise two symbols)
substitution-phase not trivial (rhss may replicate arguments)

HOR, Birmingham, United Kingdom, July 14th 2025 15

Implementing 44

Question (on implementation of 4)

do 44 have an efficient (hyper-(head-))normalising reduction strategy?

efficient in time / space

Observations (explored further below)

• spine strategy is (hyper-(head-))normalising
since every 4 is left-normal orthogonal TRSs

• matching-phase is trivial (since lhss left-linear, comprise two symbols)
substitution-phase not trivial (rhss may replicate arguments)

HOR, Birmingham, United Kingdom, July 14th 2025 15

HOR, Birmingham, United Kingdom, July 14th 2025 16

HOR, Birmingham, United Kingdom, July 14th 2025 16

Spine strategy for 4

Definition (of spine for 4-terms)

• spine: t or x t1 , . . . , tn

• head spine: x or C(t1, . . . ,tn) or t s

Lemma (normalising strategy)

• every term not in normal form has redex-pattern on spine, so a strategy

• spine strategy is a normalising strategy having random descent

• random descent: reductions to normal form have same length / measure

• leftmost–outermost strategy is a spine-strategy

HOR, Birmingham, United Kingdom, July 14th 2025 16

Implementing 4 in termgraphs by cascading �

Recall termgraph rewriting with �-calculus as SC, and cascading:

h →
E

→
I

h h h→
C

Idea

• instead of maximal sharing, unshare only constructors in redex-patterns

• goal: amortise cost of �-steps by charging 4-steps

@

C

@

CC

HOR, Birmingham, United Kingdom, July 14th 2025 17

Implementing 4 in termgraphs by cascading �

h →
E

→
I

h h h→
C

Idea (minimal unsharing; Wadsworth’s admissibility)

• instead of maximal sharing, unshare only constructors in redex-patterns

• goal: amortise cost of �-steps by charging 4-steps

@

C

@

CC

HOR, Birmingham, United Kingdom, July 14th 2025 17

Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

α-spine

@
Z

Z

Z

@

Z

fringe node (only one)

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)

HOR, Birmingham, United Kingdom, July 14th 2025 18

Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Lemma

every termgraph not in normal form has a spine redex-pattern, and any (proper)
α-spine prefix of it has a non-empty fringe

Proof.

by minimality using acyclicity of termgraphs

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)

HOR, Birmingham, United Kingdom, July 14th 2025 18

Termgraph α-spine strategy

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae

by lemma always some step possible until whole termgraph is α-spine (in nf)

HOR, Birmingham, United Kingdom, July 14th 2025 18

Example α-spine reduction (Java code⇒dot⇒graphs)

recall 4-rules:

ϱC : C(x1, x2) x0 → x1 (x2 x0)
ϱD : D x0 → C(x0, x0)

as termgraph rules:

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 19

Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex
((hyper-)(head) normalising strategy)

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

HOR, Birmingham, United Kingdom, July 14th 2025 20

Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history
(family-step, so optimal strategy (qua horizontal sharing))

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

HOR, Birmingham, United Kingdom, July 14th 2025 20

Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps
(graph grows linearly; strategy visits links only few times à la DFS)

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

HOR, Birmingham, United Kingdom, July 14th 2025 20

Correspondence between termgraphs and terms

Theorem

• α-spine step maps to multistep having at least one spine redex

• multistep comprises redex-patterns having same creation history

• cost and size linear in number of termgraph steps

• α-spine reduction length not longer than spine
(44 are orthogonal for which doing more in parallel is better)

• number of spine steps always the same (random descent property)

• reduction length not longer than that of leftmost–outermost stategy

HOR, Birmingham, United Kingdom, July 14th 2025 20

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

• capture avoiding substitution (avoid capture of free variables of the tk)
• (t[⃗x:=⃗t])λ = (t)λ [⃗x:=

−−→
(t)λ] (substitution lemma)

• well-defined by 4 being inductive (in r only Cj for j < i may occur)

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1)→β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

HOR, Birmingham, United Kingdom, July 14th 2025 21

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Example (of tree homomorphism for example 4)

rule tree homomorphism

ϱC :C(x1, x2) x0 → x1 (x2 x0) C(t1, t2) 7→ λx0.t1 (t2 x0)

ϱD : D x0 → C(x0, x0) D 7→ λx0x′
0.x0 (x0 x′

0)

as D 7→ λx0.(C(x0, x0))λ = λx0.(λx0.x1 (x2 x0))[x1, x2:=x0, x0] =α λx0x′
0.x0 (x0 x′

0)

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1)→β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

HOR, Birmingham, United Kingdom, July 14th 2025 21

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Example (of tree homomorphism for example 4)

rule tree homomorphism

ϱC :C(x1, x2) x0 → x1 (x2 x0) C(t1, t2) 7→ λx0.t1 (t2 x0)

ϱD : D x0 → C(x0, x0) D 7→ λx0x′
0.x0 (x0 x′

0)

• D maps to the Church numeral 2 for n := λsz.sn z
• S maps to λxyz.x z (y z) and K to λxy.x as expected / hoped for

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1)→β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

HOR, Birmingham, United Kingdom, July 14th 2025 21

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1)→β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

HOR, Birmingham, United Kingdom, July 14th 2025 21

Decompiling 4 to the λ-calculus

Definition (of tree homomorphism ()λ into λ-terms)

Ci(t1, . . . , tn) 7→ (λx0.(r)λ)[x1, . . . , xn:=t1, . . . , tn]

Lemma (implementation of 4 by λβ)

if t →4 s then (t)λ →β (s)λ

Example (of implementing D (D z1)→4 C(D z1,D z1))

(D (D z1))λ = (λxy.x (x y)) (2 z1)→β λy.2 z1 (2 z1 y) =α (C(D z1,D z1))λ

HOR, Birmingham, United Kingdom, July 14th 2025 21

Compiling the λ-calculus to 4

Lemma (??)

if M→β N then (M)4 →I (N)4 for I an 4

Definition ()

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Compiling the λ-calculus to 4

Lemma (??)

if M→β N then (M)4 →I (N)4 for I an 4

• no implementation ()4 can achieve that, for full β
• for weak β (wβ; contract redex if has no variable bound outside) it can:
• weak β is first-order (α-conversion never needed), and
• weak β basis of Haskell (no contraction under λ, but that’s not confluent)

Definition ()

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Compiling the λ-calculus to 4

Lemma (??)

if M→β N then (M)4 →I (N)4 for I an 4

Definition (of ()4 mapping a λ-term to a pair of an 4 and term in it)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

do allow components to share constructors when these have the same rules
compilation known variation on the abstraction algorithm (custom combinators)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y))

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x))
• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)) using only first two items of the definition

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x))
• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x))
since x and x are maximal y-free subterm occurrences in x (x y)

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x)), so

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)
since no x-free subterm occurrence in C(x, x)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Example (of (2)4; recall 2 := λxy.x (x y))

• (x (x y))4 := (∅,x (x y)), so

• (λy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y)},C(x, x)), so

• (λxy.x (x y))4 := ({ϱC : C(z1, z2) y→ z1 (z2 y), ϱD : D x→ C(x, x)},D)

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Compiling the λ-calculus to 4

Definition (of 4-lifting)

• (x)4 := (∅,x)
• (M1 M2)4 := (I1 ∪ I2,t1 t2), where (Ii,ti) := (Mi)4 for i ∈ {1,2}
• (λx.M)4 := ({ϱC : C(z1, . . . , zn) x→ r[z1, . . . , zn]} ∪ I,C(t1, . . . , tn)), where
(I,r[t1, . . . , tn]) := (M)4, r skeleton, ti maximal x-free subterm occurrences

Lemma (4-lifting)

if M→wβ N then (M)4 →I (N)4 for some 4-lifting I.

Proof.

if M→wβ N and (I,t) := (M)4 then t →I s for some (I ′,s) := (N)4 with I ⊇ I ′

HOR, Birmingham, United Kingdom, July 14th 2025 22

Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order
(that’s why it was chosen for Haskell)

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation (finding mfss) can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus

HOR, Birmingham, United Kingdom, July 14th 2025 23

Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus

HOR, Birmingham, United Kingdom, July 14th 2025 23

Implementing wβ-reduction via 4

Observations

• wβ never needs α-conversion, so essentially first-order

• indeed, any λ-term M compiles to an 4 and term t in it,
such that rewriting from M respectively t is isomorphic

• compilation can be done efficiently in time and space

Corollary

results for 44 carry over to wβ

Perspective

Haskell is based on orthogonal 1st-order term rewriting (44), not λ-calculus

HOR, Birmingham, United Kingdom, July 14th 2025 23

What about Spine strategies for full β?

HOR, Birmingham, United Kingdom, July 14th 2025 24

HOR, Birmingham, United Kingdom, July 14th 2025 24

HOR, Birmingham, United Kingdom, July 14th 2025 24

Termgraph α-spine strategy adapted to spine-β

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

α-spine

@
Z

Z

Z

@

Z

fringe node (only one)

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t1, . . . , tn) to λx.C(t1, . . . , tn) x for x fresh

idea: a combinator on fringe / α-spine is a λ-abstraction (in the β-nf), so may
iterate on its body, effectuated in 4 by suppling a fresh variable

HOR, Birmingham, United Kingdom, July 14th 2025 25

Termgraph α-spine strategy adapted to spine-β

Definition (of (head / α-)spine nodes)

• spine: head spine, or such in normal form (hsnf) with spine vertebrae

• head spine: path from root through bodies of @,• to variable or constructor

• α-spine: spine prefix; fringe nodes: nodes covered by α-spine

Definition (of α-spine strategy)

reduce head spines from fringe nodes to hsnf and recurse on spine vertebrae
rewrite fringe constructor C(t1, . . . , tn) to λx.C(t1, . . . , tn) x for x fresh

idea: a combinator on fringe / α-spine is a λ-abstraction (in the β-nf), so may
iterate on its body, effectuated in 4 by suppling a fresh variable

HOR, Birmingham, United Kingdom, July 14th 2025 25

Example α-spine reduction (Java code⇒dot⇒graphs)

recall 4-rules:

ϱC : C(x1, x2) x0 → x1 (x2 x0)
ϱD : D x0 → C(x0, x0)

and termgraph rules:

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

ϱC

@

C

@

@

@

D

C

ϱD

HOR, Birmingham, United Kingdom, July 14th 2025 26

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

HOR, Birmingham, United Kingdom, July 14th 2025 27

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

HOR, Birmingham, United Kingdom, July 14th 2025 27

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

HOR, Birmingham, United Kingdom, July 14th 2025 27

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

HOR, Birmingham, United Kingdom, July 14th 2025 27

Implementing some spine-β-strategy via 4

Observations

• β can be implemented via iterating wβ (for same 4)

• constructor-steps correspond to needed α-conversions

• how many α-conversions needed to β-reduce ((2 8) (4 9)) (5 7) (4 2) to nf?

• answer: ≤ 2 because output is a Church numeral, which has 2 λs

• cost of constructor-steps amortised by other steps, for the same reason

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

HOR, Birmingham, United Kingdom, July 14th 2025 27

Implementing some spine-β-strategy via 4

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

HOR, Birmingham, United Kingdom, July 14th 2025 27

Implementing some spine-β-strategy via 4

Corollary

results for wβ carry over to spine-β, in particular that the cost of reduction to
β-normal form is linear in the number of leftmost–outermost β-steps to β-nf

Perspective

classical 1st-order term(graph) rewrite theory trivialises (extant) cost-analyses

HOR, Birmingham, United Kingdom, July 14th 2025 27

Implementing β-reduction

Complexity unavoidable

convertibility of simply typed λ-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into β and substitutions) that can’t be overcome.

Non-consequence

Optimal reduction for full β is non-interesting. By the same token all
implementations shown here would be non-interesting as they are optimal but
for wβ.

HOR, Birmingham, United Kingdom, July 14th 2025 28

Implementing β-reduction

Complexity unavoidable

convertibility of simply typed λ-calculus is non-elementary. Upshot: whatever
way you slice the pie (split into β and substitutions) that can’t be overcome.

Non-consequence

Optimal reduction for full β is non-interesting. By the same token all
implementations shown here would be non-interesting as they are optimal but
for wβ.

HOR, Birmingham, United Kingdom, July 14th 2025 28

HOR, Birmingham, United Kingdom, July 14th 2025 29

https://deltanets.org

Some conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

HOR, Birmingham, United Kingdom, July 14th 2025 30

Some conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation
(do away with abstract machines)

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

HOR, Birmingham, United Kingdom, July 14th 2025 30

Some conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution
(how to slice the pie, between replacement and substitution)

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

HOR, Birmingham, United Kingdom, July 14th 2025 30

Some conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β
(only need skeletons present in initial λ-term; no creation of such)

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

HOR, Birmingham, United Kingdom, July 14th 2025 30

Some conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

HOR, Birmingham, United Kingdom, July 14th 2025 30

Some conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps
(former based on path-compression of in-edges of •-nodes)

• higher-order term rewriting useful to bridge λ-calculus and 44

HOR, Birmingham, United Kingdom, July 14th 2025 30

Some conclusions

• unit-time steps a priori unreasonable for structured rewriting

• rewriting useful both for simple description and efficient implementation

• substitution calculi give a way to account for the cost of substitution

• α-spine is 1st-order optimal for 4, wβ and β

• α-spine time and space linear in #steps (via TGRS, in Java)

• amortised analysis: discounting •-steps via #nodes, α-steps via β-steps

• higher-order term rewriting useful to bridge λ-calculus and 44

HOR, Birmingham, United Kingdom, July 14th 2025 30

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction
only leftmost-outermost, no call-by-need; unsharing skeletons

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Standing on the shoulders of giants

1 Newman (1942): for rewrite systems and random descent

2 Wadsworth (1971): graph rewriting implementation of β-reduction

3 Barendregt, Bergstra, Klop, Volken (1976): no computable optimal β-strat

4 Lévy (1978): concept of β-family and optimality of lmo-β-family strategy

5 Huet, Lévy (1979): concept of needed reduction and it being normalising

6 Barendregt, Kennaway, Klop, Sleep (1987): concept of (head) spine strategy

7 Lamping (1990): sharing graph implementation of β-families

8 Asperti, Mairson (1998): complexity of β-family reduction is non-elementary

9 Grégoire, Leroy (2002): β via iterated wβ

10 Blanc, Lévy, Maranget (2005): wβ-family, implemented here (Wadsworth)

HOR, Birmingham, United Kingdom, July 14th 2025 31

Contributions

1 concept of substitution calculus (1994)

2 optimal implementation of lmo-β-family by scope nodes (2004)

3 wβ being isomorphic to orthogonal TRS, given a λ-term (2005)

4 optimality of wβ being an instance of optimality of orthogonal TRSs (2005)

5 the α-spine strategy for 44 (2024)

6 Haskell code implementing wβ into an 4 and vice versa (2024);

7 linear TGRS implementation of 4/ wβ / spine-β (2024)

8 Java code for that implementation (2025)

9 naming applicative inductive interaction systems 44 (2025)

HOR, Birmingham, United Kingdom, July 14th 2025 32

Amortised complexity

Idea

measure complexity by averaging over reductions (Tarjan)
(instead of measuring per step)

Example

incrementing a counter in binary 011→inc 111→inc 0001→inc 1001→inc . . .

Example (inc as term rewrite system; →inc:=→i · →!
b)

s→i i(s) i(0(x))→b 1(x) i(1(x))→b 0(i(x)) i(•)→b 1(•)

0(1(1(•)))→i i(0(1(1(•))))→b 1(1(1(•)))→i i(1(1(1(•))))→b 0(i(1(1(•))))→b

0(0(i(1(•))))→b 0(0(0(i(•))))→b 0(0(0(1(•))))→i . . .

HOR, Birmingham, United Kingdom, July 14th 2025 33

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011→inc 111→inc 0001→inc 1001→inc . . .
(→inc-steps not unit-time; #bit-flips unbounded)

Example (inc as term rewrite system; →inc:=→i · →!
b)

s→i i(s) i(0(x))→b 1(x) i(1(x))→b 0(i(x)) i(•)→b 1(•)

0(1(1(•)))→i i(0(1(1(•))))→b 1(1(1(•)))→i i(1(1(1(•))))→b 0(i(1(1(•))))→b

0(0(i(1(•))))→b 0(0(0(i(•))))→b 0(0(0(1(•))))→i . . .

HOR, Birmingham, United Kingdom, July 14th 2025 33

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011→inc 111→inc 0001→inc 1001→inc . . .

Example (inc as term rewrite system; →inc:=→i · →!
b)

s→i i(s) i(0(x))→b 1(x) i(1(x))→b 0(i(x)) i(•)→b 1(•)

0(1(1(•)))→i i(0(1(1(•))))→b 1(1(1(•)))→i i(1(1(1(•))))→b 0(i(1(1(•))))→b

0(0(i(1(•))))→b 0(0(0(i(•))))→b 0(0(0(1(•))))→i . . .

HOR, Birmingham, United Kingdom, July 14th 2025 33

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011→inc 111→inc 0001→inc 1001→inc . . .

Example (inc as term rewrite system; →inc:=→i · →!
b)

s→i i(s) i(0(x))→b 1(x) i(1(x))→b 0(i(x)) i(•)→b 1(•)

0(1(1(•)))→i i(0(1(1(•))))→b 1(1(1(•)))→i i(1(1(1(•))))→b 0(i(1(1(•))))→b

0(0(i(1(•))))→b 0(0(0(i(•))))→b 0(0(0(1(•))))→i . . .

HOR, Birmingham, United Kingdom, July 14th 2025 33

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s→3̂,1 i2̂(s) i2̂(0(x))→0̂,1 11̂(x) i2̂(11̂(x))→0̂,1 0(i2̂(x)) i2̂(•)→0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

HOR, Birmingham, United Kingdom, July 14th 2025 34

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s→3̂,1 i2̂(s) i2̂(0(x))→0̂,1 11̂(x) i2̂(11̂(x))→0̂,1 0(i2̂(x)) i2̂(•)→0̂,1 11̂(•)
(no need to label 0’s or •’s)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

HOR, Birmingham, United Kingdom, July 14th 2025 34

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s→3̂,1 i2̂(s) i2̂(0(x))→0̂,1 11̂(x) i2̂(11̂(x))→0̂,1 0(i2̂(x)) i2̂(•)→0̂,1 11̂(•)

• ι̂ initially labels (closed): charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

HOR, Birmingham, United Kingdom, July 14th 2025 34

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s→3̂,1 i2̂(s) i2̂(0(x))→0̂,1 11̂(x) i2̂(11̂(x))→0̂,1 0(i2̂(x)) i2̂(•)→0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

HOR, Birmingham, United Kingdom, July 14th 2025 34

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s→3̂,1 i2̂(s) i2̂(0(x))→0̂,1 11̂(x) i2̂(11̂(x))→0̂,1 0(i2̂(x)) i2̂(•)→0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

(in general: cost subtracted; charges must remain non-negative, cover
costs of steps; ĉ +

∑
ℓ ≥ c +

∑
r for each (linear) rule ℓ→ĉ,c r)

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

HOR, Birmingham, United Kingdom, July 14th 2025 34

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s→3̂,1 i2̂(s) i2̂(0(x))→0̂,1 11̂(x) i2̂(11̂(x))→0̂,1 0(i2̂(x)) i2̂(•)→0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

HOR, Birmingham, United Kingdom, July 14th 2025 34

Reduction to (wh)nf in λβ, naïvely, in Haskell
data Lam = Lam Head [Lam] deriving (Show)

data Head = Var String | Abs String Lam deriving (Show)

subst x s (Lam h l) = let

(Lam h' l') = case h of

(Var y) | x == y -> s

(Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []

_ -> Lam h [] in (Lam h' (l'++(map (subst x s) l)))

whnf (Lam (Abs x t) (u:l)) = let Lam h s = subst x u t in whnf (Lam h (s++l))

whnf t = t

nf = rnf (\x -> 1)

rnf f t = let

(Lam h l) = whnf t

f' x = \y -> f y + (if (x==y) then 1 else 0)

v x = x++"_"++show (f x) in case h of

(Abs x _) -> Lam (Abs (v x) (rnf (f' x) (Lam h [Lam (Var (v x)) []]))) []

_ -> Lam h (map (rnf f) l)

HOR, Birmingham, United Kingdom, July 14th 2025 35

	Part 1I: Structured Rewriting
	Part 2II: Implementation of [regular][regular]

