

Disjunctive Termination for Affluent Families

Vincent van Oostrom

Part I: Affluence for Termination

Part II: Disjunctive Termination for Jumping Families

Modularity idea

condition such that family $(\rightarrow)_l$ is terminating iff its union $\bigcup (\rightarrow)_l$ is

 $(\rightarrow)_I$ denotes $(\rightarrow_i)_{i\in I}$; family is terminating if every member is

Modularity idea

condition such that family $(\rightarrow)_l$ is terminating iff its union $\bigcup (\rightarrow)_l$ is

Example (monster barring)

Modularity idea

condition such that family $(\rightarrow)_l$ is terminating iff its union $\bigcup (\rightarrow)_l$ is

Example (monster barring)

 both a ▷ b and b ➤ a terminating, but union → := ▷ ∪ ➤ is not (feature interaction between steps brought about by composition)

Modularity idea

condition such that family $(\rightarrow)_l$ is terminating iff its union $\bigcup (\rightarrow)_l$ is

Example (monster barring)

- both $a \triangleright b$ and $b \triangleright a$ terminating, but union $\rightarrow := \triangleright \cup \triangleright$ is not
- $n \to_n n+1$ terminating for all n, but union $\bigcup (\to)_{\mathbb{N}}$ is not (infinite families must be ruled out)

Modularity idea

condition such that family $(\rightarrow)_l$ is terminating iff its union $\bigcup (\rightarrow)_l$ is

Example (monster barring)

- both $a \triangleright b$ and $b \triangleright a$ terminating, but union $\rightarrow := \triangleright \cup \triangleright$ is not
- $n \to_n n+1$ terminating for all n, but union $\bigcup (\to)_{\mathbb{N}}$ is not

rest of talk: how to contain feature interaction for finite families (/ is finite)

Theorem

 $for \rightarrow := \bigcup \mathcal{F}$ for finite family $\mathcal{F} := (\rightarrow)_l$

• if \rightarrow is transitive then \mathcal{F} is terminating iff \rightarrow is, if #I = 2 (Geser 1990) (above example not transitive since not reflexive)

Theorem

for $\rightarrow := \bigcup \mathcal{F}$ for finite family $\mathcal{F} := (\rightarrow)_I$

- if \rightarrow is transitive then $\mathcal F$ is terminating iff \rightarrow is, if #I=2
- if \rightarrow is transitive then $\mathcal F$ is terminating iff \rightarrow is (Podelski & Rybalchenko 2004; unaware of Geser's result)

Theorem

for $\rightarrow := \bigcup \mathcal{F}$ for finite family $\mathcal{F} := (\rightarrow)_l$

- if \rightarrow is transitive then $\mathcal F$ is terminating iff \rightarrow is, if #I=2
- ullet if o is transitive then ${\mathcal F}$ is terminating iff o is

cannot prove latter from former by induction (Steila and Yokoyama 2016)

Theorem

 $for \rightarrow := \bigcup \mathcal{F}$ for finite family $\mathcal{F} := (\rightarrow)_l$

- if \rightarrow is transitive then $\mathcal F$ is terminating iff \rightarrow is, if #I=2
- ullet if o is transitive then ${\mathcal F}$ is terminating iff o is

cannot prove latter from former by induction

Plan for talk

- relax transitivity to affluence
- $2 \rightarrow \text{non-terminating} \Rightarrow \rightarrow_i \text{non-terminating for some } i \text{ for } \#I = 2, \text{ entails}$
- $3 \rightarrow \text{non-terminating} \Rightarrow \rightarrow_i \text{non-terminating for some } i \text{ for finite } I \text{ by induction}$

Definition (♦ & Zantema 2012)

 \triangleright , \triangleright is affluent if $\triangleright \cdot \triangleright \subseteq \triangleright \cup \triangleright$

Example (illustrating richness of affluence)

if \triangleright = \triangleright it expresses transitivity

Definition ()

 \triangleright , \triangleright is affluent if $\triangleright \cdot \triangleright \subseteq \triangleright \cup \triangleright$

Example (illustrating richness of affluence)

setting $\triangleright := \leftarrow$ and $\triangleright := \rightarrow$ affluence is $\leftarrow \cdot \rightarrow \subset \leftarrow \cup \rightarrow$



affluence

affluence (flowing toward) strengthens confluence (flowing together)

Definition ()

 \triangleright , \triangleright is affluent if $\triangleright \cdot \triangleright \subseteq \triangleright \cup \triangleright$

Example (illustrating richness of affluence)

setting $\triangleright := \ge$ and $\blacktriangleright := \le$ affluence expresses totality: $n \ge m$ or $n \le m$ on $\mathbb N$ (because assumption $n \ge \cdot < m$ holds for any n, m as 0 < n, m)

Definition ()

ightharpoonup, hild > is affluent if hild > $\cdot
ightharpoonup \subseteq
hild \cup
ightharpoonup$

Example (illustrating richness of affluence)

setting $\triangleright := \square$ and $\blacktriangleright := \sqsubseteq$ for \sqsubseteq the prefix order on finite \rightarrow -reductions affluent iff \rightarrow is deterministic (in the CompCert formalisation)

Definition ()

ightharpoonup, hinspace is affluent if $hinspace \cdot
ightharpoonup \subseteq
hinspace \cup
ightharpoonup$

Lemma (restriction; key)

 $let \rightarrow := \blacktriangleright \cup \triangleright for \blacktriangleright, \triangleright affluent, and \gamma some \rightarrow reduction then their restriction (to <math>\gamma$) $\blacktriangleright [\gamma, \triangleright [\gamma \text{ is affluent}]$

Definition ()

 \triangleright , \triangleright is affluent if $\triangleright \cdot \triangleright \subseteq \triangleright \cup \triangleright$

Intuition

affluence to compress consecutive out-of-order steps gives reduction that is:

progressive (►-steps occur before ▷-steps in the reduction)

Definition ()

 \triangleright , \triangleright is affluent if $\triangleright \cdot \triangleright \subseteq \triangleright \cup \triangleright$

Intuition

affluence to compress consecutive out-of-order steps gives reduction that is:

- progressive (▶-steps occur before ▷-steps in the reduction)
- preferential (►-steps are preferred over ▷-steps in the reduction)

let $\rightarrow := \triangleright \cup \triangleright$ and $\triangleright, \triangleright$ affluent $(\triangleright \cdot \triangleright \subseteq \triangleright \cup \triangleright)$

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Proof.

• suppose γ is infinite o-reduction from ${\it a}$

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

- suppose γ is infinite \rightarrow -reduction from a
- restriction $\blacktriangleright \upharpoonright \gamma, \triangleright \upharpoonright \gamma$ is affluent (by key lemma)

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

- suppose γ is infinite \rightarrow -reduction from a
- restriction $\triangleright \upharpoonright \gamma$, $\triangleright \upharpoonright \gamma$ is affluent
- consider maximal $\triangleright \uparrow \gamma$ -reduction from *a*

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

- suppose γ is infinite \rightarrow -reduction from a
- restriction $\triangleright \upharpoonright \gamma, \triangleright \upharpoonright \gamma$ is affluent
- consider maximal $\triangleright \upharpoonright \gamma$ -reduction from *a*
- if infinite, then ► is non-terminating

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

- suppose γ is infinite \rightarrow -reduction from a
- restriction $\triangleright \upharpoonright \gamma, \triangleright \upharpoonright \gamma$ is affluent
- consider maximal $\triangleright \upharpoonright \gamma$ -reduction from *a*
- if infinite, then
 is non-terminating
- otherwise, ends in some $\triangleright \gamma$ -normal form \hat{b} and proceed as in picture:

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

$$a \stackrel{\delta}{\longrightarrow} \hat{b} \stackrel{1}{\longrightarrow}$$

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

$$\begin{array}{cccc}
a & \xrightarrow{\delta} & \hat{b} & & \\
\downarrow & & & \downarrow \\
c & & & c
\end{array}$$

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Theorem

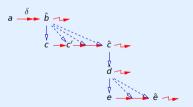
if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

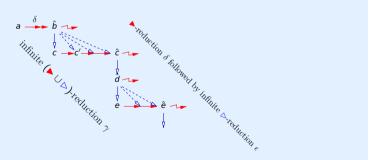
Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating



Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating



Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Observations

• γ transformed into reduction δ of shape $\blacktriangleright \cdot \triangleright^{\omega}$ or $\blacktriangleright \cdot \blacktriangleright^{\omega}$ progressive (no out-of-order if ∞) and preferential (\blacktriangleright steps preferred if ∞)

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Observations

- γ transformed into reduction δ of shape $\triangleright \cdot \triangleright^{\omega}$ or $\triangleright \cdot \triangleright^{\omega}$
- \triangleright -sub-reductions of δ through objects in $\blacktriangleright \upharpoonright \gamma$ -normal form

3 finite family union non-terminating \Rightarrow member is

Definition

family $\mathcal{F} := (\rightarrow)_l$ is affluent if $\rightarrow_{>i} \cdot \rightarrow_i \subseteq \rightarrow := \bigcup \mathcal{F}$ for all i

Definition

family $\mathcal{F}:=(\rightarrow)_l$ is affluent if $\rightarrow_{>i}\cdot\rightarrow_i\subseteq\rightarrow:=\bigcup\mathcal{F}$ for all i

Theorem

if o is non-terminating, then o_i is non-terminating for some i

Theorem

if \rightarrow is non-terminating, then \rightarrow_i is non-terminating for some i

- suppose γ is infinite \rightarrow -reduction from a
- \blacktriangleright , \triangleright is affluent for $\blacktriangleright := \rightarrow_1$ and $\triangleright := \rightarrow_{>1}$ (by assumption)

Theorem

if \rightarrow is non-terminating, then \rightarrow_i is non-terminating for some i

- suppose γ is infinite \rightarrow -reduction from a
- \blacktriangleright , \triangleright is affluent for $\blacktriangleright := \rightarrow_1$ and $\triangleright := \rightarrow_{>1}$
- some reduction δ from a of shape $\triangleright \cdot \triangleright^{\omega}$ or $\triangleright \cdot \triangleright^{\omega}$

Theorem

if \rightarrow is non-terminating, then \rightarrow_i is non-terminating for some i

- suppose γ is infinite \rightarrow -reduction from a
- \blacktriangleright , \triangleright is affluent for $\blacktriangleright := \rightarrow_1$ and $\triangleright := \rightarrow_{>1}$
- some reduction δ from a of shape $\triangleright \cdot \triangleright^{\omega}$ or $\triangleright \cdot \triangleright^{\omega}$
- in latter case, \blacktriangleright (i.e. \rightarrow_1) is non-terminating

Theorem

if \rightarrow is non-terminating, then \rightarrow_i is non-terminating for some i

- suppose γ is infinite \rightarrow -reduction from a
- \blacktriangleright , \triangleright is affluent for $\blacktriangleright := \rightarrow_1$ and $\triangleright := \rightarrow_{>1}$
- some reduction δ from a of shape $\triangleright \cdot \triangleright^{\omega}$ or $\triangleright \cdot \triangleright^{\omega}$
- in latter case, \blacktriangleright (*i.e.* \rightarrow_1) is non-terminating
- otherwise, conclude by IH for infinite \triangleright -sub-reduction (through objects in $\blacktriangleright \upharpoonright \gamma$ -normal form, so $(\rightarrow)_{>1}$ affluent on it)

Theorem

if o is non-terminating, then o_i is non-terminating for some i

Observations

finite family does follow by induction from doubleton family

Theorem

if o is non-terminating, then o_i is non-terminating for some i

Observations

- finite family does follow by induction from doubleton family
- proof the same for transitivity (Geser and P & R) instead of affluence

Theorem

if o is non-terminating, then o_i is non-terminating for some i

Observations

- finite family does follow by induction from doubleton family
- proof the same for transitivity instead of affluence
- may strengthen to yield reduction δ of shape $\twoheadrightarrow_1 \cdot \ldots \cdot \twoheadrightarrow_n \cdot \xrightarrow{\omega}_k$ (see paper) progressive (no out-of-order) and preferential (lower index steps preferred)

Example (program *P*)

```
while x > 0 and y > 0
if x > y then x,y := y,x else y := y-1
```

Example (program *P*)

while
$$x > 0$$
 and $y > 0$
if $x > y$ then $x,y := y,x$ else $y := y-1$

$$1\ T_1:=\{(\langle x,y\rangle,\langle x',y'\rangle)\mid x>0\land x>x'\},\ T_2:=\{(\langle x,y\rangle,\langle x',y'\rangle)\mid y>0\land y=y'+1\}$$

Example (program *P*)

```
while x > 0 and y > 0
if x > y then x,y := y,x else y := y-1
```

$$\begin{array}{l} 1 \ T_1 := \{(\langle x,y\rangle,\langle x',y'\rangle) \ | \ x>0 \land x>x'\}, \ T_2 := \{(\langle x,y\rangle,\langle x',y'\rangle) \ | \ y>0 \land y=y'+1\} \\ 2 \ (T)_{\{1,2\}} \ \text{terminating, their union } T \ \text{contains } R, \ \text{but} \ \langle 1,2\rangle \ T_2 \ \langle 2,1\rangle \ T_1 \ \langle 1,2\rangle \\ \end{array}$$

Example (program *P*)

```
while x > 0 and y > 0
if x > y then x,y := y,x else y := y-1
```

```
\begin{array}{l} 1 \; T_1 := \{ (\langle x,y \rangle, \langle x',y' \rangle) \; | \; x > 0 \land x > x' \}, \; T_2 := \{ (\langle x,y \rangle, \langle x',y' \rangle) \; | \; y > 0 \land y = y' + 1 \} \\ 2 \; (T)_{\{1,2\}} \; \text{terminating, their union} \; T \; \text{contains} \; R, \; \text{but} \; \langle 1,2 \rangle \; T_2 \; \langle 2,1 \rangle \; T_1 \; \langle 1,2 \rangle \\ 3 \; \text{refine} \; T_2 \; \text{into} \; T_2' := \{ (\langle x,y \rangle, \langle x',y' \rangle) \; | \; y > 0 \land y = y' + 1 \land x = x' \} \; (x \; \text{untouched}) \\ 4 \; T' \; \text{is affluent} \; \text{(even} \; T_2 \cdot T_1 \subseteq T_1), \; \text{disjunctively terminating by theorem} \end{array}
```

Example (program *P*)

```
while x > 0 and y > 0
if x > y then x,y := y,x else y := y-1
```

```
\begin{array}{l} 1 \ T_1 := \{ \left( \langle x,y \rangle, \langle x',y' \rangle \right) \mid x > 0 \land x > x' \}, \ T_2 := \{ \left( \langle x,y \rangle, \langle x',y' \rangle \right) \mid y > 0 \land y = y' + 1 \} \\ 2 \ \left( T \right)_{\{1,2\}} \ \text{terminating, their union } T \ \text{contains } R, \ \text{but } \langle 1,2 \rangle \ T_2 \ \langle 2,1 \rangle \ T_1 \ \langle 1,2 \rangle \\ 3 \ \text{refine } T_2 \ \text{into } T_2' := \{ \left( \langle x,y \rangle, \langle x',y' \rangle \right) \mid y > 0 \land y = y' + 1 \land x = x' \} \ (x \ \text{untouched}) \\ 4 \ T' \ \text{is affluent (even } T_2 \cdot T_1 \subseteq T_1), \ \text{disjunctively terminating by theorem} \\ 5 \ R \subseteq T' \ \text{so } R \ \text{is terminating} \end{array}
```

LICS 2024 Test of Time Award

Transition Invariants, by Andreas Podelski and Andrey Rybalchenko

The paper presents in a very clean and elegant way a general characterization of the validity of liveness properties of programs, like termination and other such properties expressed in temporal logic. This is achieved by employing relations over program states, called *transition invariants*, which contain the transitive closure of the state transition relation defined by the program. The key result is that the absence of infinite executions can be reduced to proving that the transition invariant is a finite union of well-founded relations. The authors show how to use such *disjunctively well-founded* transition invariants to validate temporal properties of concurrent systems. The paper has greatly influenced the development of techniques and tools for proving termination of programs automatically since it nicely combines the use of disjunctive well-foundedness with the construction of an abstraction of the program transition relation, which is the transition invariant. The suitability for automation of the approach has been crucial in its success. In addition, the paper also had a large impact on the design of powerful techniques based on termination analysis to (dis)prove a great variety of temporal properties of programs.

Preprint: [pdf]. DOI: [10.1109/LICS.2004.1319598].

LICS 2024 Test of Time Award

Transition Invariants, by Andreas Podelski and Andrey Rybalchenko

The paper presents in a very clean and elegant way a general characterization of the validity of liveness properties of programs, like termination and other such properties expressed in temporal logic. This is achieved by employing relations over program states, called transition invariants, which contain the transitive closure of the state transition relation defined by the program. The key result is that the absence of infinite executions can be reduced to proving that the transition invariant is a finite union of well-founded relations. The authors show how to use such disjunctively well-founded transition invariants to validate temporal properties of concurrent systems. The paper has greatly influenced the development of techniques and tools for proving termination of programs automatically since it nicely combines the use of disjunctive well-foundedness with the construction of an abstraction of the program transition relation, which is the transition invariant. The suitability for automation of the approach has been crucial in its success. In addition, the paper also had a large impact on the design of powerful techniques based on termination analysis to (dis)prove a great variety of temporal properties of programs.

Preprint: [pdf]. DOI: [10.1109/LICS.2004.1319598].

conscientious eulogy?

could maybe imagine missing Geser's result in 2004, but 20 years later?

Definition (Doornbos & von Karger 1998)

 \blacktriangleright , \triangleright is jumping if $\triangleright \cdot \blacktriangleright \subseteq \triangleright \cup (\blacktriangleright \cdot \twoheadrightarrow)$, for $\rightarrow := \blacktriangleright \cup \triangleright$

Definition ()

ightharpoonup, hildrightharpoonup is jumping if hildrightharpoonup \hookrightarrow hildrightharpoonup \hookrightarrow hildrightharpoonup , for ightharpoonup \hookrightarrow hildrightharpoonup , for hildrightharpoonup \hookrightarrow hildrightharpoonup , for hildrightharpoonup \hookrightarrow \sim hildrightharpoonup \hookrightarrow hildrightharpoonup \hookrightarrow \sim hild

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Definition ()

 \blacktriangleright , \triangleright is jumping if $\triangleright \cdot \blacktriangleright \subseteq \triangleright \cup (\blacktriangleright \cdot \twoheadrightarrow)$, for $\rightarrow := \blacktriangleright \cup \triangleright$

Theorem

if ightarrow is non-terminating, then ightharpoonup or ightharpoonup is non-terminating

Proof.

same proof, but for different notion of restriction since can no longer guarantee that intermediate objects in compositions ▶ · → are on infinite reduction (only that they are along it; see paper)

Definition ()

 \blacktriangleright , \triangleright is jumping if $\triangleright \cdot \blacktriangleright \subseteq \triangleright \cup (\blacktriangleright \cdot \twoheadrightarrow)$, for $\rightarrow := \blacktriangleright \cup \triangleright$

Theorem

if \rightarrow is non-terminating, then \blacktriangleright or \triangleright is non-terminating

Corollary (Doornbos & von Karger 1998; PbP in ♥ & Zantema 2012)

 \rightarrow is terminating iff \triangleright , \triangleright are

Definition (Dawson & Dershowitz & Goré 2018)

family \mathcal{F} is jumping if $\rightarrow_{>i} \cdot \rightarrow_i \subseteq \rightarrow_{>i} \cup (\rightarrow_i \cdot \twoheadrightarrow_{\geq i})$ for $i \in I$

allowing --> in composition breaks induction, result

Theorem

if $\mathcal F$ is non-terminating, then some family member is

Definition ()

family \mathcal{F} is jumping if $\rightarrow_{>i} \cdot \rightarrow_i \subseteq \rightarrow_{>i} \cup (\rightarrow_i \cdot \twoheadrightarrow_{\geq i})$ for $i \in I$

Theorem

if $\mathcal F$ is non-terminating, then some family member is

Corollary (Dawson & Dershowitz & Goré 2018)

 ${\cal F}$ is terminating iff family is

Definition ()

family \mathcal{F} is jumping if $\rightarrow_{>i} \cdot \rightarrow_i \subseteq \rightarrow_{>i} \cup (\rightarrow_i \cdot \twoheadrightarrow_{\geq i})$ for $i \in I$

Theorem

if $\mathcal F$ is non-terminating, then some family member is

Corollary (Dawson & Dershowitz & Goré 2018)

 ${\cal F}$ is terminating iff family is

Observations

affluence and jumping can be combined (blended families; see paper)

Definition ()

family \mathcal{F} is jumping if $\rightarrow_{>i} \cdot \rightarrow_i \subseteq \rightarrow_{>i} \cup (\rightarrow_i \cdot \twoheadrightarrow_{\geq i})$ for $i \in I$

Theorem

if \mathcal{F} is non-terminating, then some family member is

Corollary (Dawson & Dershowitz & Goré 2018)

 ${\cal F}$ is terminating iff family is

Observations

- affluence and jumping can be combined (blended families; see paper)
- D & D & G do not cite P & R

Checking blends is interesting / non-trivial

Example

does $\rightarrow_{>i} \cdot \rightarrow_i \subseteq \rightarrow \cup (\rightarrow_i \cdot \twoheadrightarrow_{>i})$ for all i, suffice for disjunctive termination?

difference with jumping in left disjunct (\rightarrow instead of $\rightarrow_{>i}$)

Conclusions

Disjunctive termination is a concept in computer science, particularly in the field of program termination proving. It involves determining whether a program will finish running or could run indefinitely. This is crucial for ensuring that software behaves predictably. . . .

While the term "affluent families" may not directly relate to disjunctive termination, the underlying principles of ensuring reliable software can be crucial for applications used in various sectors, including finance, healthcare, and education. Reliable software can enhance the quality of life and provide better services to families, regardless of their economic status.

In summary, disjunctive termination is a vital area of study in computer science that helps ensure programs run as intended, which can have broad implications for various sectors, including those serving affluent families.

Conclusions

Disjunctive termination is a concept in computer science, particularly in the field of program termination proving. It involves determining whether a program will finish running or could run indefinitely. This is crucial for ensuring that software behaves predictably. . . .

While the term "affluent families" may not directly relate to disjunctive termination, the underlying principles of ensuring reliable software can be crucial for applications used in various sectors, including finance, healthcare, and education. Reliable software can enhance the quality of life and provide better services to families, regardless of their economic status.

In summary, disjunctive termination is a vital area of study in computer science that helps ensure programs run as intended, which can have broad implications for various sectors, including those serving affluent families.

duckduckgo, Search Assist, August 2025

Future research

• complexity of family in terms of members (Steila & Yokoyama 2016) (exploit $\rightarrow_1 \cdot \ldots \cdot \rightarrow_n \cdot \rightarrow_{\nu}^{\omega}$)?

Future research

- complexity?
- blending families?
 (used Hans Zantema's tool Carpa for rapid prototyping of new blends)

Future research

- complexity?
- blending families?
- incorporate in tools?
 (LICS ToT award; exploit affluence weaker than transitivity, e.g. CPO)