
A puzzle to ponder on α-conversion

• give an upperbound on the #α-renamings needed to β-reduce
((2 8) (4 9)) (5 7) (4 2) to normal form?

• note 1: n := λsz.sn z is Church-numeral n

• note 2: application of Church-numerals is exponentiation; k n ↠β nk

• note 3: whether α-conversion is needed in a β-reduction is undecidable

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 1



Thoughts on naïvely implementing the λβ-calculus

Vincent van Oostrom
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λ-calculus naïvely

(λsz.s (s z))λsz.s (s z)

2 := λsz.s (s z)

Church numeral 2

running example, reduces to four
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λ-calculus naïvely

2 2

2 := λsz.s (s z)
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λ-calculus naïvely

2 2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

β-reduction with naïve substitution

(not in λx; indiscriminantly in λy)
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Substitution naïvely (no α)

x[x:=N] := N

y[x:=N] := y (for x ̸= y)

(λx.M)[x:=N] := λx.M

(λy.M)[x:=N] := λy.M[x:=N] (for x ̸= y)

(M1 M2)[x:=N] := M1[x:=N]M2[x:=N]

data Lam = Lam Head [Lam] deriving (Show)

data Head = Var String | Abs String Lam deriving (Show)

subst x s (Lam h l) = let

(Lam h’ l’) = case h of

(Var y) | x == y -> s

(Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []

_ -> Lam h [] in (Lam h’ (l’++(map (subst x s) l)))
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λ-calculus naïvely

2 2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 2



combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

lifting λz.s (s z)

2 2
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combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

lifting λz.s (s z)

skeleton λz.[ ] ([ ] z) 7→ f-symbol Z

maximal free subexpressions s, s

2 2
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combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

Z[x, y] represents λz.x (y z)

2 2
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combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

2 2
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combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

lifting λs.Z[s, s]

its own skeleton 7→ f-symbol S

2 2

no maximal free subexpressions
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combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

S represents 2 := λsz.s (s z)

2 2
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combinator system

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

2 2

running example, reduces to four
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combinator system

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

2 2
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TGRS

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

Z

@

@

2 2
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TGRS

duplication by sharing in rhs

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S
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TGRS

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S
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TGRS

running example, reduces to four

@

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

@

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

Z[S,S]

@

S S S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S

γ

λz.2 (2 z)

β κ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
@

S

Z@

Z

@

@

λz.2 (2 z) Z[S,S]
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
@

S

Z@

Z

@

@

λz.2 (2 z) Z[S,S]

normal form (Z is stuck)weak head normal form (under λ) normal form (Z is stuck)

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 6



λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
@

S

Z@

Z

@

@

λz.2 (2 z) Z[S,S]

root-introduce fresh constantroot-introduce fresh constant root-introduce fresh constant

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

(z′ fresh; think of as constant)

λz.2 (2 z)

S →α λz′.S z′

Z[S,S]

Z,S-rules as expected (at root)factor α through β (at root) unstuck combinator (at root)

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

S

Z λz1

z1S

@

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz.2 (2 z)

S →α λz′.S z′

Z[S,S]

α

λz1.(λz.2 (2 z)) z1

α α

λz1.Z[S,S] z1

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.(λz.2 (2 z)) z1

S →α λz′.S z′

λz1.Z[S,S] z1

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

λz1

z1S

@

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.(λz.2 (2 z)) z1

S →α λz′.S z′

λz1.Z[S,S] z1

γ

λz1.2 (2 z1)

β κ

λz1.S (S z1)

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.2 (2 z1)

S →α λz′.S z′

λz1.S (S z1)

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

@S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.2 (2 z1)

S →α λz′.S z′

λz1.S (S z1)

unshare constructor of redex

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

λz1

z1S

@

@S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.2 (2 z1)

S →α λz′.S z′

λz1.S (S z1)

γ

λz1.λz.2 z1 (2 z1 z)

β κ

λz1.Z[S z1,S z1]

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.λz.2 z1 (2 z1 z)

S →α λz′.S z′

λz1.Z[S z1,S z1]

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

z2z1S

@

@

Z

λz1

λz2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.λz.2 z1 (2 z1 z)

S →α λz′.S z′

λz1.Z[S z1,S z1]

α

λz1z2.(λz.2 z1 (2 z1 z)) z2

α α

λz1z2.Z[S z1,S z1] z2

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

z2z1S

@

@

Z

λz1

λz2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1z2.(λz.2 z1 (2 z1 z)) z2

S →α λz′.S z′

λz1z2.Z[S z1,S z1] z2

γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

z2z1S

@

@

Z

λz1

λz2

λz⃗

@

@

z2z1S

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1z2.(λz.2 z1 (2 z1 z)) z2

S →α λz′.S z′

λz1z2.Z[S z1,S z1] z2

γ

λz⃗.2 z1 (2 z1 z2)

β κ

λz⃗.S z1 (S z1 z2)

γ γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

λz⃗

@

@

z2z1S

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.2 z1 (2 z1 z2)

S →α λz′.S z′

λz⃗.S z1 (S z1 z2)

γ γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

contract shared S-redex

λz⃗

@

@

z2z1S

@

λz⃗

@

@

Z

z2z1

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.2 z1 (2 z1 z2)

S →α λz′.S z′

λz⃗.S z1 (S z1 z2)

γ

λz⃗.(λz.z1 (z1 z)) ((λz.z1 (z1 z)) z2)

fβ fκ

λz⃗.Z[z1, z1] (Z[z1, z1] z2)

γ γ

parallel β (weak family) parallel κ (family)
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

λz⃗

@

@

Z

z2z1

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.(λz.z1 (z1 z)) ((λz.z1 (z1 z)) z2)

S →α λz′.S z′

λz⃗.Z[z1, z1] (Z[z1, z1] z2)

γ γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

unshare constructor of redex

λz⃗

@

Z @

Z

z2z1

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.(λz.z1 (z1 z)) ((λz.z1 (z1 z)) z2)

S →α λz′.S z′

λz⃗.Z[z1, z1] (Z[z1, z1] z2)

γ γ
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

@

λz⃗

@

Z @

Z

z2z1

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.(λz.z1 (z1 z)) ((λz.z1 (z1 z)) z2)

S →α λz′.S z′

λz⃗.Z[z1, z1] (Z[z1, z1] z2)

γ

λz⃗.z1 (z1 ((λz.z1 (z1 z)) z2))

β κ

λz⃗.z1 (z1 (Z[z1, z1] z2))

γ γ

λz⃗

@

z2

Z

z1

@
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.z1 (z1 ((λz.z1 (z1 z)) z2))

S →α λz′.S z′

λz⃗.z1 (z1 (Z[z1, z1] z2))

γ γ

λz⃗

@

z2

Z

z1

@
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.z1 (z1 ((λz.z1 (z1 z)) z2))

S →α λz′.S z′

λz⃗.z1 (z1 (Z[z1, z1] z2))

λz⃗.z1 (z1 (z1 (z1 z2)))

β κ

λz⃗.z1 (z1 (z1 (z1 z2)))

γ γ

γ

λz⃗

@

@

@

@

z1 z2

λz⃗

@

z2

Z

z1

@
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

z2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.z1 (z1 (z1 (z1 z2)))

S →α λz′.S z′

λz⃗.z1 (z1 (z1 (z1 z2)))

γ γ

λz⃗

@

@

@

@

z1
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

z2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.z1 (z1 (z1 (z1 z2)))

S →α λz′.S z′

λz⃗.z1 (z1 (z1 (z1 z2)))

γ γ

normal form normal form

normal form

λz⃗

@

@

@

@

z1
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

normal form

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

4

S →α λz′.S z′

4

γ γ

normal form normal form

†4
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Spine strategy

Definition (spine prefix)

λ-term-nodes (@,λx,x) of whnf (recursively; in tree; reachable from root)

Z

@
Z

Z

Z

@

1 leftmost Z is non-green-covered

2 top–middle Z is again non-green-covered
3 top–right @ is green-covered; its spine has Z-redex =⇒ →spκ-step

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term
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Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

@
Z

Z

x

Z @

1 leftmost Z is non-green-covered

2 top–middle Z is green-covered; unfold =⇒ →α-step

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term
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Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

@
Z

Z

x

Z @

1 leftmost Z is non-green-covered
2 top–middle Z is green-covered; unfold =⇒ →α-step

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term
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Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term
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Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term
(parallel β-step contracting family of β-redexes; at least one spine)

• →α-step maps back to q−→α-step on λ-term
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Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term
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Theorem

1 leftmost–outermost →ℓoβ is a spine-strategy (→spβ-strategy) on λ-terms
(not other way around)

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them
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Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising
(RD: all maximal reductions yield same nf (if any) and of same length)

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them
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Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M
(in turn, #→α bounded via #spγ)

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16



Theorem

1 leftmost–outermost is a spine-strategy on λ-terms
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4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α
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Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model
(natively allows for parallelism; contrast with (Accattoli, Dal Lago))

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them
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Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β (Balabonski), naïve substitution, explicit α
(no need for De Bruijn-indices; no need for machines)

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them
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Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?
(since horizontal sharing suffices; cbv for weak values; WiP)

4 amortised analysis: discounting α-steps via β-steps initiating them
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Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS, weak

a sharing graph implementation of β (Wadsworth 71)
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS, weak

optimal (Blanc, Lévy, Maranget 05) for weak-β (Çağman, Hindley 98); weak-β-families
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS, weak

optimal for weak-β; weak-β-families

(Schönfinkel 24) OTRS families

(Maranget 91)supercombinator

combinator

(Hughes 82)

optimal for

weak-β-families factor through κ-families in combinator systems into γ-steps ( 05, Balabonski 12)
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λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS, spβ

optimal for weak β; weak families

(Schönfinkel 24) OTRS families

(Maranget 91)supercombinator

combinator

(Hughes 82)

optimal for

spβ-families factor through spκ-families in combinator systems into spγ-steps, with explicit-α (this talk)
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Amortised complexity

Idea

measure complexity by averaging over reductions (Tarjan)
(instead of measuring per step)

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .
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Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .
(→inc-steps not unit-time; #bit-flips unbounded)

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .
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Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b
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Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)
(no need to label 0’s or •’s)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels (closed): charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
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Example
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

(in general: cost subtracted; charges must remain non-negative, cover
costs of steps; ĉ +

∑
ℓ ≥ c +

∑
r for each (linear) rule ℓ →ĉ,c r )

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂
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Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂
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Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps
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measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩
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Definition
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• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in 2nd.

Idea 2 (Terese, 03)
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Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in 2nd.

main example: ordinals with zero, addition, less–than–or–equal

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps
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Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid

• measure on → maps steps to M − {⊥};

• measure of finite reduction is sum of steps;

• measure of infinite reduction is ⊤;

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally
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Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid

• measure on → maps steps to M − {⊥};

• measure of finite reduction is sum (+; tail to head) of steps (starting with ⊥);

• measure of infinite reduction is ⊤;

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps
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• ARS: initial labelling of objects such that every step lifts uniquely
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Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift
(local update; cf. Lévy, Hyland–Wadsworth etc.)

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps
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(locality of TRS rules accounts for distributed nature of accounts)
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Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t (three structures) for (closed) rule ϱ : ℓ → r if

s ↔∗
SC C[ℓ] →ϱ C[r] ↔∗

SC t

with s, t unique SC-normal forms of C[ℓ],C[r] ( 94, van Raamsdonk 96)

(string) rule ϱ : bc → e, step
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting
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(string) rule ϱ : bc → e, step aϱd : abcd → aed
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−−−−→
(x.si)t ]
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Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step aϱd : abcd → aed
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step f [ϱ[h[a]]] : f [g[h[a],h[a]]] → f [i]
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

where SC is λ→
αβη (writing x.M for abstraction)

(term-graph)

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting
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Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step aϱd : abcd → aed
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step f [ϱ[h[a]]] : f [g[h[a],h[a]]] → f [i]
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting
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Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step aϱd : abcd → aed
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step f [ϱ[h[a]]] : f [g[h[a],h[a]]] → f [i]
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

h →
E

→
I

h h h→
C

SC is �-calculus for indirection nodes (•) with gc and maximal sharing

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting
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Conclusions

• rewriting useful both for simple description and efficient implementation
(no intermediate abstract machines (Krivine))

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus ( , van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . . ) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama, )
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps

full paper in preparation (with Clemens Grabmayer) thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . . )
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Conclusions

• rewriting useful both for simple description and efficient implementation

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus ( , van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . . ) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama, )
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps
(abstract from replication; cf. Java abstracting from garbage collection)
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Reduction to (wh)nf in λβ, naïvely, in Haskell
data Lam = Lam Head [Lam] deriving (Show)

data Head = Var String | Abs String Lam deriving (Show)

subst x s (Lam h l) = let

(Lam h' l') = case h of

(Var y) | x == y -> s

(Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []

_ -> Lam h [] in (Lam h' (l'++(map (subst x s) l)))

whnf (Lam (Abs x t) (u:l)) = let Lam h s = subst x u t in whnf (Lam h (s++l))

whnf t = t

nf = rnf (\x -> 1)

rnf f t = let

(Lam h l) = whnf t

f' x = \y -> f y + (if (x==y) then 1 else 0)

v x = x++"_"++show (f x) in case h of

(Abs x _) -> Lam (Abs (v x) (rnf (f' x) (Lam h [Lam (Var (v x)) []]))) []

_ -> Lam h (map (rnf f) l)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 23



λ-calculus ⇐⇒ interaction nets (Lafont 90), strong

characterisation of optimal β (Lévy 78); families
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λ-calculus ⇐⇒ interaction nets (Lafont 90), strong

not factor through TRS; horizontal sharing not enough

sharing graph implementation of β families (Lamping 90)
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A puzzle to ponder on α-conversion

• give an upperbound on the #α-renamings needed to β-reduce
((2 8) (4 9)) (5 7) (4 2) to normal form?

• note 1: application of Church-numerals is exponentiation; k n ↠β nk

• note 2: whether α-conversion is needed in a β-reduction is undecidable
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