
A puzzle to ponder on α-conversion

• give an upperbound on the #α-renamings needed to β-reduce
((2 8) (4 9)) (5 7) (4 2) to normal form?

• note 1: n := λsz.sn z is Church-numeral n

• note 2: application of Church-numerals is exponentiation; k n ↠β nk

• note 3: whether α-conversion is needed in a β-reduction is undecidable

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 1

Thoughts on naïvely implementing the λβ-calculus

Vincent van Oostrom

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 1

λ-calculus naïvely

(λsz.s (s z))λsz.s (s z)

2 := λsz.s (s z)

Church numeral 2

running example, reduces to four

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 2

λ-calculus naïvely

2 2

2 := λsz.s (s z)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 2

λ-calculus naïvely

2 2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

β-reduction with naïve substitution

(not in λx; indiscriminantly in λy)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 2

Substitution naïvely (no α)

x[x:=N] := N

y[x:=N] := y (for x ̸= y)

(λx.M)[x:=N] := λx.M

(λy.M)[x:=N] := λy.M[x:=N] (for x ̸= y)

(M1 M2)[x:=N] := M1[x:=N]M2[x:=N]

data Lam = Lam Head [Lam] deriving (Show)

data Head = Var String | Abs String Lam deriving (Show)

subst x s (Lam h l) = let

(Lam h’ l’) = case h of

(Var y) | x == y -> s

(Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []

_ -> Lam h [] in (Lam h’ (l’++(map (subst x s) l)))

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 2

λ-calculus naïvely

2 2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 2

combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

lifting λz.s (s z)

2 2

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 3

combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

lifting λz.s (s z)

skeleton λz.[] ([] z) 7→ f-symbol Z

maximal free subexpressions s, s

2 2

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 3

combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

Z[x, y] represents λz.x (y z)

2 2

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 3

combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

2 2

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 3

combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

lifting λs.Z[s, s]

its own skeleton 7→ f-symbol S

2 2

no maximal free subexpressions

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 3

combinator system

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

S represents 2 := λsz.s (s z)

2 2

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 3

combinator system

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

2 2

running example, reduces to four

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 3

combinator system

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

2 2

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 3

TGRS

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

Z

@

@

2 2

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 4

TGRS

duplication by sharing in rhs

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 4

TGRS

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 4

TGRS

running example, reduces to four

@

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 4

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

@

S S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 4

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

Z[S,S]

@

S S S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
γ

@

S

Z

γ

@

Z

@

@

2 2 S S

γ

λz.2 (2 z)

β κ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 5

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
@

S

Z@

Z

@

@

λz.2 (2 z) Z[S,S]

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 5

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
@

S

Z@

Z

@

@

λz.2 (2 z) Z[S,S]

normal form (Z is stuck)weak head normal form (under λ) normal form (Z is stuck)

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 6

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]
@

S

Z@

Z

@

@

λz.2 (2 z) Z[S,S]

root-introduce fresh constantroot-introduce fresh constant root-introduce fresh constant

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 6

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

S

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

(z′ fresh; think of as constant)

λz.2 (2 z)

S →α λz′.S z′

Z[S,S]

Z,S-rules as expected (at root)factor α through β (at root) unstuck combinator (at root)

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 6

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

S

Z λz1

z1S

@

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz.2 (2 z)

S →α λz′.S z′

Z[S,S]

α

λz1.(λz.2 (2 z)) z1

α α

λz1.Z[S,S] z1

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 6

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.(λz.2 (2 z)) z1

S →α λz′.S z′

λz1.Z[S,S] z1

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 6

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

λz1

z1S

@

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.(λz.2 (2 z)) z1

S →α λz′.S z′

λz1.Z[S,S] z1

γ

λz1.2 (2 z1)

β κ

λz1.S (S z1)

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 7

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.2 (2 z1)

S →α λz′.S z′

λz1.S (S z1)

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 7

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

@S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.2 (2 z1)

S →α λz′.S z′

λz1.S (S z1)

unshare constructor of redex

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 8

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

λz1

z1S

@

@S

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.2 (2 z1)

S →α λz′.S z′

λz1.S (S z1)

γ

λz1.λz.2 z1 (2 z1 z)

β κ

λz1.Z[S z1,S z1]

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 8

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.λz.2 z1 (2 z1 z)

S →α λz′.S z′

λz1.Z[S z1,S z1]

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 8

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

λz1

z1S

@

Z

z2z1S

@

@

Z

λz1

λz2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1.λz.2 z1 (2 z1 z)

S →α λz′.S z′

λz1.Z[S z1,S z1]

α

λz1z2.(λz.2 z1 (2 z1 z)) z2

α α

λz1z2.Z[S z1,S z1] z2

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 9

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

γ

z2z1S

@

@

Z

λz1

λz2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1z2.(λz.2 z1 (2 z1 z)) z2

S →α λz′.S z′

λz1z2.Z[S z1,S z1] z2

γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 9

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

z2z1S

@

@

Z

λz1

λz2

λz⃗

@

@

z2z1S

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz1z2.(λz.2 z1 (2 z1 z)) z2

S →α λz′.S z′

λz1z2.Z[S z1,S z1] z2

γ

λz⃗.2 z1 (2 z1 z2)

β κ

λz⃗.S z1 (S z1 z2)

γ γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 10

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

λz⃗

@

@

z2z1S

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.2 z1 (2 z1 z2)

S →α λz′.S z′

λz⃗.S z1 (S z1 z2)

γ γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 10

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

contract shared S-redex

λz⃗

@

@

z2z1S

@

λz⃗

@

@

Z

z2z1

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.2 z1 (2 z1 z2)

S →α λz′.S z′

λz⃗.S z1 (S z1 z2)

γ

λz⃗.(λz.z1 (z1 z)) ((λz.z1 (z1 z)) z2)

fβ fκ

λz⃗.Z[z1, z1] (Z[z1, z1] z2)

γ γ

parallel β (weak family) parallel κ (family)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 11

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

λz⃗

@

@

Z

z2z1

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.(λz.z1 (z1 z)) ((λz.z1 (z1 z)) z2)

S →α λz′.S z′

λz⃗.Z[z1, z1] (Z[z1, z1] z2)

γ γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 11

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

unshare constructor of redex

λz⃗

@

Z @

Z

z2z1

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.(λz.z1 (z1 z)) ((λz.z1 (z1 z)) z2)

S →α λz′.S z′

λz⃗.Z[z1, z1] (Z[z1, z1] z2)

γ γ

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 12

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

@

λz⃗

@

Z @

Z

z2z1

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.(λz.z1 (z1 z)) ((λz.z1 (z1 z)) z2)

S →α λz′.S z′

λz⃗.Z[z1, z1] (Z[z1, z1] z2)

γ

λz⃗.z1 (z1 ((λz.z1 (z1 z)) z2))

β κ

λz⃗.z1 (z1 (Z[z1, z1] z2))

γ γ

λz⃗

@

z2

Z

z1

@

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 12

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.z1 (z1 ((λz.z1 (z1 z)) z2))

S →α λz′.S z′

λz⃗.z1 (z1 (Z[z1, z1] z2))

γ γ

λz⃗

@

z2

Z

z1

@

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 12

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

@

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.z1 (z1 ((λz.z1 (z1 z)) z2))

S →α λz′.S z′

λz⃗.z1 (z1 (Z[z1, z1] z2))

λz⃗.z1 (z1 (z1 (z1 z2)))

β κ

λz⃗.z1 (z1 (z1 (z1 z2)))

γ γ

γ

λz⃗

@

@

@

@

z1 z2

λz⃗

@

z2

Z

z1

@

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 13

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

z2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.z1 (z1 (z1 (z1 z2)))

S →α λz′.S z′

λz⃗.z1 (z1 (z1 (z1 z2)))

γ γ

λz⃗

@

@

@

@

z1

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 13

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

z2

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

λz⃗.z1 (z1 (z1 (z1 z2)))

S →α λz′.S z′

λz⃗.z1 (z1 (z1 (z1 z2)))

γ γ

normal form normal form

normal form

λz⃗

@

@

@

@

z1

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 14

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS

normal form

2 := λsz.s (s z)

(λx.M)N →β M[x:=N]

λz.M →α λz′.(λz.M) z′

Z[x, y] z →κ x (y z)

S z →κ Z[z, z]

Z[x, y] →α λz′.Z[x, y] z′

@

S

Z@

Z

@

@

4

S →α λz′.S z′

4

γ γ

normal form normal form

†4

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 14

Spine strategy

Definition (spine prefix)

λ-term-nodes (@,λx,x) of whnf (recursively; in tree; reachable from root)

Z

@
Z

Z

Z

@

1 leftmost Z is non-green-covered

2 top–middle Z is again non-green-covered
3 top–right @ is green-covered; its spine has Z-redex =⇒ →spκ-step

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 15

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Z

@
Z

Z

Z

@

1 leftmost Z is non-green-covered
2 top–middle Z is again non-green-covered

3 top–right @ is green-covered; its spine has Z-redex =⇒ →spκ-step

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 15

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Z

@
Z

Z

Z

@

1 leftmost Z is non-green-covered
2 top–middle Z is again non-green-covered
3 top–right @ is green-covered; its spine has Z-redex =⇒ →spκ-step

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 15

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

@
Z

Z

x

Z @

1 leftmost Z is non-green-covered

2 top–middle Z is green-covered; unfold =⇒ →α-step

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 15

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

@
Z

Z

x

Z @

1 leftmost Z is non-green-covered
2 top–middle Z is green-covered; unfold =⇒ →α-step

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 15

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 15

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term
(parallel β-step contracting family of β-redexes; at least one spine)

• →α-step maps back to q−→α-step on λ-term

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 15

Spine strategy

Definition (spine prefix)

λ-term-nodes of whnf (recursively; in tree; reachable from root)

Lemma

• graph G in normal form iff G is spine prefix

• →spγ-step maps back to q−→fspβ-step on λ-term

• →α-step maps back to q−→α-step on λ-term

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 15

Theorem

1 leftmost–outermost →ℓoβ is a spine-strategy (→spβ-strategy) on λ-terms
(not other way around)

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16

Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising
(RD: all maximal reductions yield same nf (if any) and of same length)

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16

Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M
(in turn, #→α bounded via #spγ)

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16

Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16

Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model
(natively allows for parallelism; contrast with (Accattoli, Dal Lago))

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16

Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β (Balabonski), naïve substitution, explicit α
(no need for De Bruijn-indices; no need for machines)

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16

Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?
(since horizontal sharing suffices; cbv for weak values; WiP)

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16

Theorem

1 leftmost–outermost is a spine-strategy on λ-terms

2 →spβ is random descent (RD) strategy, so q−→fspβ is hyper-normalising

3 #spγ ≤ c ·#ℓoβ for reduction of M to nf, for constant c depending on M

4 →spγ maps to optimal strategy for q−→fspκ

Intermediate conclusions

1 classical term-graph rewrite techniques to implement fspβ; ℓoβ-cost model

2 based on weak-β, naïve substitution, explicit α

3 →spγ optimal implementation of combinator system; cbv unproblematic?

4 amortised analysis: discounting α-steps via β-steps initiating them

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 16

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS, weak

a sharing graph implementation of β (Wadsworth 71)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 17

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS, weak

optimal (Blanc, Lévy, Maranget 05) for weak-β (Çağman, Hindley 98); weak-β-families

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 17

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS, weak

optimal for weak-β; weak-β-families

(Schönfinkel 24) OTRS families

(Maranget 91)supercombinator

combinator

(Hughes 82)

optimal for

weak-β-families factor through κ-families in combinator systems into γ-steps (05, Balabonski 12)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 17

λ-calculus ⇐⇒ combinator system ⇐⇒ TGRS, spβ

optimal for weak β; weak families

(Schönfinkel 24) OTRS families

(Maranget 91)supercombinator

combinator

(Hughes 82)

optimal for

spβ-families factor through spκ-families in combinator systems into spγ-steps, with explicit-α (this talk)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 17

Amortised complexity

Idea

measure complexity by averaging over reductions (Tarjan)
(instead of measuring per step)

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 18

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .
(→inc-steps not unit-time; #bit-flips unbounded)

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 18

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 18

Amortised complexity

Idea

measure complexity by averaging over reductions

Example

incrementing a counter in binary 011 →inc 111 →inc 0001 →inc 1001 →inc . . .

Example (inc as term rewrite system; →inc:= →i · →!
b)

s →i i(s) i(0(x)) →b 1(x) i(1(x)) →b 0(i(x)) i(•) →b 1(•)

0(1(1(•))) →i i(0(1(1(•)))) →b 1(1(1(•))) →i i(1(1(1(•)))) →b 0(i(1(1(•)))) →b

0(0(i(1(•)))) →b 0(0(0(i(•)))) →b 0(0(0(1(•)))) →i . . .

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 18

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 19

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)
(no need to label 0’s or •’s)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 19

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels (closed): charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 19

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 19

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

(in general: cost subtracted; charges must remain non-negative, cover
costs of steps; ĉ +

∑
ℓ ≥ c +

∑
r for each (linear) rule ℓ →ĉ,c r)

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 19

Banker’s / accounting method in TRSs

Idea

distinguish between charge ĉ and cost c of steps. i-steps add charge to pay for
cost of subsequent b-steps; labelled (N) symbols as saving-account for charges

Example

s →3̂,1 i2̂(s) i2̂(0(x)) →0̂,1 11̂(x) i2̂(11̂(x)) →0̂,1 0(i2̂(x)) i2̂(•) →0̂,1 11̂(•)

• ι̂ initially labels: charge i with 2̂ and 1 with 1̂; preserved by steps

• is a labelling: if t ↠ s, then tι̂ ↠ sι̂

• cost of reduction from t bounded by amortized cost, ≤ 3 ·#i +
∑

tι̂

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 19

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in .

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in .

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in 2nd.

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid if

• ⟨M,⊥,+⟩ a monoid;

• ≤ well-founded order with ⊥ least;

• + is ≤-monotonic in both arguments; strictly in 2nd.

main example: ordinals with zero, addition, less–than–or–equal

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid

• measure on → maps steps to M − {⊥};

• measure of finite reduction is sum of steps;

• measure of infinite reduction is ⊤;

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid

• measure on → maps steps to M − {⊥};

• measure of finite reduction is sum (+; tail to head) of steps (starting with ⊥);

• measure of infinite reduction is ⊤;

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Definition

⟨M,⊥,+,≤⟩ derivation monoid

• measure on → maps steps to M − {⊥};

• measure of finite reduction is sum of steps;

• measure of infinite reduction is ⊤ (fresh top greater than all m ∈ M);

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely
(reductions lifts uniquely)

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift
(local update; cf. Lévy, Hyland–Wadsworth etc.)

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally
(locality of TRS rules accounts for distributed nature of accounts)

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Notions from TRS theory for Banker’s account

Idea 1 (Toyama, 16, 22)

measure steps; assign appropriate weights in derivation monoid ⟨N,0,+,≤⟩

Idea 2 (Terese, 03)

define a notion of labelling for abstract and term rewriting:

• ARS: initial labelling of objects such that every step lifts uniquely

• TRSs: label symbols and rules such that steps lift

• amortised: natural numbers to store charges locally

here: charging β-steps suffices to account for α-steps

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 20

Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t (three structures) for (closed) rule ϱ : ℓ → r if

s ↔∗
SC C[ℓ] →ϱ C[r] ↔∗

SC t

with s, t unique SC-normal forms of C[ℓ],C[r] (94, van Raamsdonk 96)

(string) rule ϱ : bc → e, step
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 21

Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if

s SC↞ C[ℓ] →ϱ C[r] ↠SC t

SC substitution calculus; s SC↞ C[ℓ] matching of ℓ; C[r] ↠SC t substitution of r

(string) rule ϱ : bc → e, step
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 21

Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step
aϱd : abcd → aed

(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step

(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step
(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 21

Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step aϱd : abcd → aed
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step

f [ϱ[h[a]]] : f [g[h[a],h[a]]] → f [i]

where SC has rules (x.x)t → t, (x.y)t → y if x ̸= y, (x.f [⃗s])t → f [
−−−−→
(x.si)t]

(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step
(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 21

Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step aϱd : abcd → aed
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step f [ϱ[h[a]]] : f [g[h[a],h[a]]] → f [i]
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

where SC is λ→
αβη (writing x.M for abstraction)

(term-graph)

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 21

Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step aϱd : abcd → aed
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step f [ϱ[h[a]]] : f [g[h[a],h[a]]] → f [i]
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 21

Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step aϱd : abcd → aed
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step f [ϱ[h[a]]] : f [g[h[a],h[a]]] → f [i]
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)

h →
E

→
I

h h h→
C

SC is �-calculus for indirection nodes (•) with gc and maximal sharing

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 21

Unit-time steps in structured rewrite systems?

Structured rewriting

step C[ϱ] from s to t for rule ϱ : ℓ → r if s SC↞ C[ℓ] →ϱ C[r] ↠SC t

(string) rule ϱ : bc → e, step aϱd : abcd → aed
(first-order term) rule x.ϱ[x] : x.g[x, x] → x.i, step f [ϱ[h[a]]] : f [g[h[a],h[a]]] → f [i]
(higher-order term) rule ξ : P,Q.∀x.P ∧ (Q x) → P,Q.P ∧ ∀x.Qx , step

(y = 0)∨(ξ (y ≤ 6) (x.y ≤ x)):(y = 0)∨∀x.(y ≤ 6)∧(y ≤ x) → (y = 0)∨((y ≤ 6)∧∀x.(y ≤ x))

(term-graph)
0µul

suc

0

mul mul

suc

0

mul

mulµul, step :rule mul 0

0

:

Observation

SC complex; unit-time steps a priori unreasonable for structured rewriting

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 21

Conclusions

• rewriting useful both for simple description and efficient implementation
(no intermediate abstract machines (Krivine))

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus (, van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . .) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama,)
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps

full paper in preparation (with Clemens Grabmayer) thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 22

Conclusions

• rewriting useful both for simple description and efficient implementation

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators
(rid of binders, no intermediate let-calculus; combinator system novel?)

• substitution calculus (, van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . .) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama,)
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps

full paper in preparation (with Clemens Grabmayer) thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 22

Conclusions

• rewriting useful both for simple description and efficient implementation

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus (, van Raamsdonk) useful to modularise TGR
(� makes matching and substitution explicit; see paper)

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . .) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama,)
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps

full paper in preparation (with Clemens Grabmayer) thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 22

Conclusions

• rewriting useful both for simple description and efficient implementation

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus (, van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . .) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama,)
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps

full paper in preparation (with Clemens Grabmayer) thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 22

Conclusions

• rewriting useful both for simple description and efficient implementation

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus (, van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . .) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama,)
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps

full paper in preparation (with Clemens Grabmayer) thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 22

Conclusions

• rewriting useful both for simple description and efficient implementation

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus (, van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . .) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama,)
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps
(abstract from replication; cf. Java abstracting from garbage collection)

full paper in preparation (with Clemens Grabmayer) thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 22

Conclusions

• rewriting useful both for simple description and efficient implementation

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus (, van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . .) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama,)
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps

full paper in preparation (with Clemens Grabmayer)

thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 22

Conclusions

• rewriting useful both for simple description and efficient implementation

• higher-order rewriting useful to bridge λ-calculus ⇐⇒ supercombinators

• substitution calculus (, van Raamsdonk) useful to modularise TGR

• classical techniques (Schönfinkel, Wadsworth, Hughes,. . .) for complexity

• labelling (Terese) and derivation monoids, random descent (Toyama,)
techniques give smooth theoretical basis for complexity analysis

• Gödel not convinced by λβ / TRS; me neither because no unit-time steps

full paper in preparation (with Clemens Grabmayer) thanks: students,
co-workers (Zwitserlood, Hendriks, Heijltjes,. . .)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 22

Reduction to (wh)nf in λβ, naïvely, in Haskell
data Lam = Lam Head [Lam] deriving (Show)

data Head = Var String | Abs String Lam deriving (Show)

subst x s (Lam h l) = let

(Lam h' l') = case h of

(Var y) | x == y -> s

(Abs y u) | x /= y -> Lam (Abs y (subst x s u)) []

_ -> Lam h [] in (Lam h' (l'++(map (subst x s) l)))

whnf (Lam (Abs x t) (u:l)) = let Lam h s = subst x u t in whnf (Lam h (s++l))

whnf t = t

nf = rnf (\x -> 1)

rnf f t = let

(Lam h l) = whnf t

f' x = \y -> f y + (if (x==y) then 1 else 0)

v x = x++"_"++show (f x) in case h of

(Abs x _) -> Lam (Abs (v x) (rnf (f' x) (Lam h [Lam (Var (v x)) []]))) []

_ -> Lam h (map (rnf f) l)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 23

λ-calculus ⇐⇒ interaction nets (Lafont 90), strong

characterisation of optimal β (Lévy 78); families

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 24

λ-calculus ⇐⇒ interaction nets (Lafont 90), strong

not factor through TRS; horizontal sharing not enough

sharing graph implementation of β families (Lamping 90)

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 24

A puzzle to ponder on α-conversion

• give an upperbound on the #α-renamings needed to β-reduce
((2 8) (4 9)) (5 7) (4 2) to normal form?

• note 1: application of Church-numerals is exponentiation; k n ↠β nk

• note 2: whether α-conversion is needed in a β-reduction is undecidable

Seminar otoo Deivid Vale’s PhD defence, Nijmegen, Netherlands April 18th 2024 25

