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integrating critical pair results

Integrating confluence-by-critical-pair criteria

Theorem (Huet)

term rewrite system is locally confluent if all critical pairs joinable

Theorem (Rosen)

left-linear term rewrite system is confluent if it has no critical pairs

integrate?
abstract rewrite systems: Newman’s Lemma and diamond property
integration: decreasing diagrams
this talk: left-linear first-order term rewrite systems
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integrating critical pair results

Critical peak lemma

Lemma (critical peak)

a multi–multi peak either

• is empty or critical; or

• can be decomposed into smaller such peaks

Assumption

• P set of multi–multi peaks closed under decomposition

• V set of valleys closed under (re)composition

Theorem

if empty and critical peaks in P are in V , then all peaks in P are.

Proof.

by induction on size, using the assumption in the base case, and
closure under decomposition and composition in the step case.
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integrating critical pair results

Derecomposition in action

TRS

a → b g(a) → c b → d
f (g(x), y) → h(x , y , y) f (c , y) → h(b, y , y)

Example (types of rewriting)

rewriting from term t = g(f (g(a), a))

• empty: t = t;

• one=: t → g(f (g(b), a)), t → g(f (c , a)), t → g(h(a, a, a))

• parallel: t pp−→ g(f (g(b), b)), t pp−→ g(f (c , b))

• multi: t ◦−→ g(h(b, a, a)), t ◦−→ g(h(a, b, b))

• many: t � g(f (g(d), a))

Nao Hirokawa Julian Nagele Vincent van Oostrom Michio OyamaguchiCritical Peaks Redefined Φ t Ψ = > 4/13



integrating critical pair results

Derecomposition in action

TRS

a → b g(a) → c b → d
f (g(x), y) → h(x , y , y) f (c , y) → h(b, y , y)

Example (de/recomposing peaks)

multi–parallel peak g(h(b, a, a)) ◦←− g(f (g(a), a)) pp−→ g(f (c , b))

• empty peak g(z) = g(z) = g(z); empty joinable

• multi–parallel peak h(b, a, a) ◦←− f (g(a), a) pp−→ f (c , b)
• empty–one peak a = a→ b; one–empty joinable
• critical multi–one peak h(b, u, u) ◦←− f (g(a), u)→ f (c , u);

empty–one joinable (by rule f (c , y)→ h(b, y , y))

parallel–one joinable h(b, a, a) pp−→ h(b, b, b)← f (c , b)

parallel–one joinable g(h(b, a, a) pp−→ g(h(b, b, b))← g(f (c , b))
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integrating critical pair results

Corollaries to critical peak lemma

Corollary (Huet)

term rewrite system is locally confluent if all critical pairs joinable

Proof.
• P = set of all one=–one= peaks

• V = set of all valleys

base case empty or ordinary (one–one) critical peak
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integrating critical pair results

Corollaries to critical peak lemma

Corollary (Rosen)

left-linear term rewrite system is confluent if it has no critical pairs

Proof.
• P = set of all multi–multi peaks

• V = set of all multi–multi valleys

only empty base case by assumption
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Refinement lattice

Pattern overlap intuition

non-overlapping peak

Example

a← f (g(g(b)))→ f (g(c)) for f (g(x))→ a and g(b)→ c
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Refinement lattice

Pattern overlap intuition

encompasses critical peak

Example

h(a)← h(f (g(b)))→ h(f (c)) for f (g(x))→ a and g(b)→ c
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Refinement lattice

Multiple patterns

Definition (cluster)

term with multiple occurrences of patterns t = MJ~X :=~̀K

• M is the skeleton; term linear in ~X

• ~X is list of second-order variables; gaps

• ~̀ is list of patterns; non-var, linear first-order terms
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Refinement lattice

Coarsening/refining clusters

w

coarser than order w (finer than v) intuition: split and forget

⊥: term without patterns
>: term one big pattern (except for root-edge, vars)

Definition

(N,β) w (M,α) if Nγ = M and β = α ◦ γ for meta-substitution γ
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Refinement lattice

Meet of clusters

u =

refinement order: ς v ζ iff ς = ς u ζ

⊥: term without patterns
>: term one big pattern (except for root-edge, vars)

Definition

(N,β) w (M,α) if Nγ = M and β = α ◦ γ for meta-substitution γ
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Refinement lattice

Join of clusters

t =

refinement order: ς v ζ iff ς t ζ = ζ

⊥: term without patterns
>: term one big pattern (except for root-edge, vars)

Definition

(N,β) w (M,α) if Nγ = M and β = α ◦ γ for meta-substitution γ
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refinement order: ς v ζ iff ς t ζ = ζ
⊥: term without patterns
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Refinement lattice

Coarsening finite distributive lattice

Birkhoff’s Fundamental Theorem for Distributive Lattices

a finite distributive lattice v is isomorphic to the ⊆-lattice of
downward closed sets of its join-irreducible elements

Join-irreducible

if not smallest and not the join of two smaller elements

• single symbol; f (~v)

• two adjacent symbols; f (~v1, g(~v2), ~v3);

node and edge positions are join-irreducible w.r.t. v

Theorem

clusters are sets of positions that are downward-closed
(edge is larger than its endpoints/nodes)
v is finite distributive lattice isomorphic to ⊆ (on sets of positions)
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Coarsening finite distributive lattice

Birkhoff’s Fundamental Theorem for Distributive Lattices

a finite distributive lattice v is isomorphic to the ⊆-lattice of
downward closed sets of its join-irreducible elements

Join-irreducible

if not smallest and not the join of two smaller elements; for v:

• single symbol; f (~v)

• two adjacent symbols; f (~v1, g(~v2), ~v3); (A single symbols f ,g)

node and edge positions are join-irreducible w.r.t. v

Theorem

clusters are sets of positions that are downward-closed
(edge is larger than its endpoints/nodes)
v is finite distributive lattice isomorphic to ⊆ (on sets of positions)
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Refinement lattice

Redefining critical peaks via refinement

Lemma (Multisteps as clusters)

t ◦−→ s iff t = MJ~X :=~̀K and MJ~X :=~rK = s, for rules
−−−→
`→ r

refinement extended to multisteps via left-hand side (t)

Definition

s Φ ◦←− t ◦−→Ψ u critical if non-empty and Φ tΨ = >

Critical peak lemma

if s Φ ◦←− t ◦−→Ψ u then

• Φ tΨ = >: empty or variable-instance of critical peak; or

• Φ tΨ 6= >: Φ = Φ
[x :=Φ1]
0 and Ψ = Ψ

[x :=Ψ1]
0 , both smaller
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more integration

More consequences of critical peak lemma

Corollary (Okui)

if multi–one critical peaks are many–multi joinable then confluent

Proof.
• P = set of all multi–one= peaks

• V = set of all many–multi valleys
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more integration

More consequences of critical peak lemma

Corollary (Gramlich,Toyama,Felgenhauer)

confluent if parallel–one critical peaks are many–parallel joinable

Proof.
• P = set of all parallel–one= peaks

• V = set of all many–parallel valleys

parallel not composition closed; [Toyama,Gramlich] conditions
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more integration

More consequences of critical peak lemma

Corollary (Huet,Toyama,vO)

confluent if every inner–outer critical peak multi–empty joinable

Proof.
• P = set of all multi–multi peaks

• V = set of all multi–multi valleys

multi–multi critical peaks split into such with less overlap
induction on amount of overlap; based on distributive lattice
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more integration

Conclusion

• integrated critical peak criteria

• based on de/recomposition with critical peaks as base case

• refinement is finite distributive lattice on clusters

• positions synthesised (via Birkhoff) as join-irreducible clusters

• critical peak redefinition as Φ tΨ = >
• critical peak definitions in literature covered

• one–one: Knuth–Bendix, Huet
• parallel–one: Toyama, Gramlich
• multi–one: Okui
• multi–multi: Felgenhauer
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more integration

Current and future work

• integrate with decreasing diagrams into HOT-criterion
(same authors; work done at moment of FSCD deadline . . . )

• non-left-linear (refinement not a distributive lattice)

• higher-order (refinement is distributive lattice)

• investigate when finitely many critical multi–multi peaks

• investigate closure under (re)composition of decreasingness
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