
A Propositionlogic-, naturaldeduction-proof app(lication)
Bachelor’s Thesis

Tim Selier

Utrecht University

July 24, 2013

Supervisor: Prof. dr. Vincent van Oostrom
Course load: 7.5 ECTS

1

Abstract
It has been over 2 years ago, my fellow freshmen Cognitive Artificial Intelligence and I
learned something relatively new: Propositional Logic. At that point the most of us only
knew two kinds of syntaxes: math and natural language, no Propositional Logic. We
also had no familiarity with Natural Deduction. In that situation, when constructing a
natural deduction proof, it might be hard to know the valid actions.

At this point, Vincent van Oostrom and I developed an ambition to provide students
with a tool or framework that would enable the student to construct a valid proof and
allow only all the valid actions. Finally we created an implementation of this tool in the
form of an iOS-app, which runs on both iPad and iPhone.

The ultimate goal is to enhance the logic skills of students all over the world. We de-
clared our main ideas and philosophy in the article Clickable Proofs [3]. This article grew
as the app grew and might be considered as a set of answers to questions we encountered.

This app has already been approved by the Apple staff and will be available in the
Apple app store as soon as this document has been reviewed.

2

Acknowledgements
I see expressing your thankfulness with difficult words you wouldn’t use otherwise as one
of the biggest clichés of a thesis project. I used to think those poeple were overdrawing
the situation by saying ”My deepest heartfelt appreciation goes to ...”. Now I finished
my very first thesis project I have a better insight of what drives people to continue
these clichés. It are other people who enable us to reach more, even when their support
is not focused on the content.

However, I still do not feel comfortable expressing myself with genteel words. Therefore
I will just sum up who I am thankful for and why. It is the significance of someone’s
contribution, instead of my pretty words for them that really matter!

I would like to start with my supervisor, Vincent. First he came up with this great
idea, the app, which fitted my profile perfectly. In addition he was willing to teach me
a lot of stuff, both theory and academic skills, which were very useful.

Secondly, I would like to thank my girlfriend, Marit. She understood the importance of
this project and accepted I had less attention left for her, even when I spent to much
time on it.

Also I would like to thank my father, Theo. He examined my report and came up
with a lot of constructive criticism.

My two bosses at work, Flexyz, who have also been patiently to me. However they
would love to see me work more for them, it was no big issue for them that I actually
worked a little bit less.

I would also like to thank all of the test persons.

At last I would like to thank anyone who has shown any form of interest, enthusiasm or
positivism towards this project.

3

Contents
1 Introduction 6

1.1 The app . 6
1.2 Proofpieces . 6

2 The graphical user interface 7
2.1 HTML5 . 7
2.2 iOS . 8

2.2.1 Objective-C . 8
2.2.2 Cocoa touch . 8
2.2.3 Cocoa MVC . 8

2.3 Storyboard . 9
2.4 TopLevelViewController . 11
2.5 ToolboxViewController . 12

2.5.1 Building a proposition for a goal or premise 14

3 The implementation 15
3.1 Proposition . 15

3.1.1 Recursion . 18
3.1.2 VariableProposition . 20

3.2 Proofpieces . 22
3.2.1 BuildingBlock, DropZone . 25
3.2.2 assumptions . 25

3.2.2.1 OwnerTuple . 26
3.2.3 NaturalDeductionViewController . 27

3.2.3.1 Token Provider . 32
3.2.4 Manipulations . 33

3.2.4.1 Initializing a Proofpiece . 33
3.2.4.2 Combining proofpieces . 34

3.2.4.2.1 Unification . 35
3.2.4.2.2 Drag and Drop . 35

3.2.4.3 Splitting . 36
3.2.4.3.1 Ununification . 36
3.2.4.3.2 Drag and Split . 37

3.2.4.4 Duplicating a proof . 37
3.2.4.4.1 Instantiating a duplication 38
3.2.4.4.2 Context menu . 38

3.2.4.5 Removing a proof . 39
3.2.4.5.1 Context menu . 40

4

4 Future features 40
4.1 Sharing . 41
4.2 Saving . 41
4.3 Real multiplatform . 41
4.4 Interaction . 41

5 About this project 41
5.1 Settings our goal . 42
5.2 Learning objective-C . 42
5.3 Formalizing and programming . 42
5.4 Debugging and closed beta testers . 42
5.5 Last but not least . 43

Bibliography 44

5

1 Introduction
One of the starting points was the analogy between this application and Lego. We
wanted to build proofs like you build a Lego structure. You can click Lego blocks on top
of each other, and you can create structures by first creating small substructures.
This analogy is underlined by figure 1, where you can clearly see a natural deduction
proof, aligned over some pieces of Lego.

Figure 1: Example of a proof, in lego

1.1 The app
It is important that the App enables users to search with a mix of bottom-up and top-
down strategies. Another requirement we imposed ourselves is that a user is allowed to
return to a situation made earlier. Furthermore a user will be able to define propositions
that are his premises and goal(s) at the beginning, or even during the construction of the
proof. The following subsections describe briefly what features are involved by meeting
these requirements. In section 3 I will reveal a deeper view of the implementation and
the technical choices involved.

1.2 Proofpieces
The app will deal with proofpieces; those elementary proofpieces and the combined
proofpieces. A proofpiece consists of a logic n-ary connective and n+1 ports [3, chapter
3]. A proofpiece might also contain up to one reference to a port onto another proof-
piece. The latter reference means that the proofpiece is an assumption of the proofpiece
and port it refers to. A proofpiece can be of Introducing or Eliminating nature, often
indicated with an ”E” for elimination or ”I” for introduction. Please notice that the ”E”

6

or ”I” are just names which makes it easier to distinguish the nature of the proofpieces.
A proofpiece always has n input ports for an n-ary connective and one conclusion port,
which is charged with the formula spawned by the main connective combined with the
values of the input ports. At this point we can choose to make our own connectives
and respectively proofpieces. However we will use the proofpieces we already know for
natural deduction in propositional logic i.e. via the syllabus [4]. The following figure 2 is
a display of all the proofpieces implemented in this app. Notice the fractional notation.

α
⊥
α ⊥E

[¬α]

⊥̀
α RAA

[α]̀

⊥
¬α ¬I

α ¬α
⊥ ¬E

α β

α ∧ β
∧I α ∧ β

α ∧EL
α ∧ β

β
∧ER

α
α ∨ β

∨IL
β

α ∨ β
∨IR α ∨ β

[α]̀

γ

[β]̀

γ
γ ∨E

[α]̀

β

α→ β
→I

α α→ β

β
→E

[α]̀

β

[β]̀

α

α↔ β
↔I

α α↔ β

β
↔EL α↔ β β

α ↔ER

Figure 2: Supported proofpieces, as chosen to be complete for natural deduction on the
domain of propositional logic. For further information see Clickable Proofs[3]

2 The graphical user interface
The world of technology is really evolving as we write i.e. the year 2013. A great variety
of operating systems and programming languages are available. It is hard to create an
application that supports most of the operating systems. Our main targets are touch
enabled mobile operating systems, which means Apple’s iOS and Google’s Android at
the moment, but windows 8 is also looking promising for mobile devices.

2.1 HTML5
An option for supporting multiple operating systems is using HTML5. The great ad-
vantage of HTML5 is that all (serious) operating systems contain at least one HTML

7

render-engine and JavaScript engine. There is a project, Phonegap, which would be able
to provide the HTML5-App with a single API, compatible with multiple platforms.
But there is a downside on HTML5. HTML5 based apps commonly don’t feel native.
The idea is nice, but the technology, and its support by the platforms is not mature yet.

2.2 iOS
With HTML5 eliminated as an option, the choices were reduced to whether I wanted
to develop for android or iOS. Programming for Android means programming in Java
with Eclipse, while programming for iOS means Objective-c with Xcode. Eventually I
picked iOS for two reasons. A reason of a practical nature was the availability of iPads
in our direct environment and it would mean that no extra hardware would have to be
acquired. Another reason comes from my own interest: I’m always in for learning new
programming languages.

2.2.1 Objective-C

Objective-C is plain C, enriched with objective oriented programming via the Smalltalk
syntax. Objective-C is a high level programming language. It differs from other lan-
guages like C# and java, where objects implement functions while objective-C imple-
ments messages. A message does not simply have a name, but consists of the set of all
the names of the input variables.
Consider this small example of code that makes a person object walk to some coordinates
for Java and Objective-C.

1 # Java:
2 person.walk(10,20);
3
4 # Objective−C:
5 [person walkToX: 10 toY: 20];

The Objective-C code may take a little more characters, but it is clear what the 10 and
the 20 stand for, while in Java this might be problematic.

2.2.2 Cocoa touch

Cocoa touch is a framework that helps implementing a lot of typical touch-based appli-
cations. It is the most top layer of the iOS architecture and is approachable via, and
implemented in Objective-C.

2.2.3 Cocoa MVC

The separation between the model, view and controller is important for bigger, more
complex systems to ensure maintainability and readability. A single model can often
be represented in multiple ways. For example: the model of a natural deduction proof
can be represented via the Fitch-style, or by trees. Also the input style may differ. For

8

example: touch input verses keyboard input.

There are many versions of MVC’s. In each version there is a different set of rela-
tionships between those three. In some versions a change in the model automatically
implies a change in the view. In other models the view is owner of the data. In the
iOS version of MVC none of these latter two is the case. The Controller keeps track
of both the views and the models. It also translates input from the views to action in
the models. See figure 3. On Apple’s online documentation library their philosophy on
MVCs is explained more precisely.

Figure 3: MVC used in iOS systems.
Source: apple.com

2.3 Storyboard
Programming for iOS means having the opportunity to use a storyboard to design your
interface. Storyboards are really useful in visualizing the controlflow of the app. It
also enables us to easily support multiple devices (running iOS). In figures 4 and 5 two
screenshot are displayed of the storyboards of the two versions of the app, the first for
the iPad and the second for the iPhone. We can see clearly that the iPad’s version of the
app has a split view, on top the NaturalDeductionViewController and below some space
for the toolbox which enables the user to create goals and targets. While the iPhone
has not not enough space on its screen to have a split view, it needs another custom
view distribution. For that reason the iPhone uses a UITabBarController, which takes
far less space and still enables the user to access the toolbox view, now hidden behind
the buttons of the TabBar.
See also section 2.5 for more information about the toolbox.

9

http://developer.apple.com/library/iOS/#documentation/general/conceptual/devpedia-cocoacore/MVC.html
http://developer.apple.com/library/iOS/#documentation/uikit/reference/UITabBarController_Class/Reference/Reference.html

Figure 4: Screenshot of the iPad storyboard

10

Figure 5: Screenshot of the iPhone storyboard

2.4 TopLevelViewController
Having two devices with a slightly different interface means the necessity of a slightly
different behavior and thus code for both devices. This is implemented using a single
protocol, with two different implementations. This protocol is called the TopLevelCon-
troller and is implemented by IPadViewController and IPhoneViewController. Both the
TopLevelControllers own an instance of the NaturalDeductionViewController and an
instance of the ToolboxViewController. The NaturalDeductionViewController behaves
identically for both the iPad and the iPhone while the ToolboxViewController behaves
slightly differently for the iPad and the iPhone. See section 2.5 for more details about
the ToolboxViewController.

11

..

TopLevelController (IPadViewController / IPhoneViewController)

.NaturalDeductionViewController. ToolBoxViewController..

Figure 6: TopLevelController hierarchy

The TopLevelController protocol is defined as follows:

1 @protocol TopLevelController <NSObject>
2 /*
3 Allocate one sound producer.
4 */
5 @property(nonatomic,strong) Musician* musician;
6 /*
7 Whether the device is an iPad. (otherwise: iPhone)
8 */
9 @property BOOL isPad;

10
11 @property (strong, nonatomic) NaturalDeductionViewController * naturalDeductionViewController;
12 @property (strong, nonatomic) ToolboxViewController * toolboxViewController;
13
14 /*
15 Important for determining when to allocate a new constant.
16 */
17 @property (strong, nonatomic) AtomicProposition * newestConstantAvailable;
18
19 /*
20 API for ToolBoxViewController to this object.
21 */
22 −(void) addDeductionTreeToNaturalDeductionViewController:(ProofPiece*)deductionTree withBuildingBlock: (

BuildingBlock*) buildingBlock;
23 −(void) addGoalBuildingBlockFromTree:(GoalProofPiece*) tree;
24 −(void) addPremiseBuildingBlockFromTree:(PremiseProofPiece*) tree;
25 −(Boolean) shouldAddTreeFromToolBoxToMainWithPoint: (CGPoint) location;
26 −(void) addDeductionTreesToToolBoxFromClasses: (NSArray*) classes;
27
28
29 /*
30 API for NaturalDeductionViewController to this object
31 */
32 −(void) boundVariableRemoved: (VariableProposition*) prop;
33 @end

2.5 ToolboxViewController
In order to manipulate a lego structure to alter it to the structure you have in mind you
first need to add those basis blocks. The same applies to the app, in order to manipulate
proofs you first need to add basic proofpieces. For that reason the ToolBoxViewCon-
troller is created. The minimum task of this Controller should be the creation of the
basic BuildingBlocks, which are all the blocks defined in section 1.2.

12

Figure 7: Screenshot of the simple proofpiece builder for iPad

In figure 7 a screenshot of the proofpiece creator is displayed in action. By hov-
ering above the red tiles the users will be served with a preview of the corresponding
proofpiece(s) on the right. Subsequently the users can drag that block into the Natu-
ralDeductionViewControllers’ view.

In addition we created two extra types of blocks. One being a goal block, which is
the only block that has exactly one port and no conclusion, because it is the conclusion
itself. The other being the premise block, which also has exactly one port: the conclusion
port. Both of these blocks can be created in the ToolboxViewController by creating a
(non-atomic) proposition. It is notable that this is the only way to insert propositional
constants in the app.

Constants are useful because constants have to property of begin distinct to each
other. For example constant ”a” will never be unifiable with constant ”b”. When a
student is attributed with the task of proving: ”A→B”, it is really the intention that he
constructs a proof where ”A” is not unified with ”B” because then he actually proofed
that ”A→A”. So if a student wants to proof ”A→B”, he would be helped by unifing this
proposition with a constant variant, in this case: ”a→b”.

Consider the use case where a student wants to perform an exercise, he or she can
simply add the premises and the goal. Thereafter the student can insert the proofPieces
needed to finish the proof. If he or she ends up with a valid proof, with only green
buildingBlocks and no unsatisfied dropZones, the proof is complete.

13

Figure 8: Screenshot of the simple proofpiece builder for iPad

In figure 8 a screenshot of the proof and premise builder is shown. On the iPad you
can simply drag the ToolBoxViewControllers view upwards to extend the view. On the
iPhone, those builders are under separate tabs.

2.5.1 Building a proposition for a goal or premise

A premise or goal is basicly a proofpiece with a single port and exists of a single propo-
sition. The atoms of such a proposition are variables and constants. The goal proofpiece
has its dropzone as input while the premise proofpiece has its dropzone as output. To
insert a goal or premise, a user should first define a proposition that the proofpiece
will carry. The App will have a panel where a proposition can be built. This panel is
provided with some buttons, containing logic-connectives, and two lists, one containing
variables and one containing constants. When you press a button, a connective, variable
or constant is inserted. This is done according to the Polish notation. For example: If
you insert ”∧”, the following two inputs will be consumed by this connective. So if you
insert: ”∧, a, b” this will result in ”a∧b” and ”∧, a, ∧ b, c” will result in ”a∧(b∧c)”.
Figure 9 is made by inserting in the following order: ”∧, ∨, a, c, →, a, ∨”.

14

Figure 9: Screenshot of the proposition builder in action

In figure 9 we can see that placeholders, represented with an underscore, indicate
where input propositions are expected. When a Proposition contains no underscore it
is a valid proposition and will be automatically transformed to a ProofPiece. Also the
underscore that is being replaced as first is indicated with a gray background.
The proofpieces that represent the goal and premise blocks are respectively of the type
GoalProofPiece and PremiseProofPiece.

3 The implementation
In this section I will show what kind of objects are used in the application and I will
shed a light on how these are implemented. I will start with the object representing
propositions and proofpieces which live on the model side followed by the BuildingBlock
which is a graphical representation of a proofpiece. After that I will explain what valid
manipulations are available.

When implementing this app it was a goal to use as much local relationships as
possible instead of relationsships defined globally e.g. a top-level array. However I did
not focus on proving efficient complexities, the idea of using these kind of relationships
is that it will decrease complexity. However complexity is always defined as the runtime
of a program, given the amount of input, but in this case the goal was also to increase
modularity which ultimately leads to better readability and maintainability.
A Lego structure is also a set of local connections which sums up to a bigger shape.

3.1 Proposition
We want to do natural deduction on propositional logic. That means that we first have to
define a mechanism that is able to deal with the propositional syntax and its properties.
This mechanism exists of a bundle of Objects. The standard object is ”Proposition” and
the other propositions inherit from this class. The most important feature of a Propo-
sition is that it is able to perform an unification.
We can distinguish these Proposition classes for normal proposition logic: AtomicPropo-
sition which corresponds to the ”propositievariabele” (proposition variable) in the syl-
labus [4], VariableProposition which corresponds to the ”metavariabele” (meta variable)
in the syllabus [4], PropositionAnd, OrProposition, ImplicationProposition, BiImplica-
tionProposition, NotProposition, FalsumProposition. Finally there is a special class
called UndefinedProposition, which represents the underscore mentioned in section 2.5.

The file Proposition.h, listed here below, indicates what messages will be implemented
for all propositions.

15

1 // Proposition.h
2
3 @interface Proposition : NSObject{
4 NSString* conectiveSign;
5 }
6 /*
7 Get a duplicate of this proposition.
8 The structure is copied, and the Variables are fresh. Constants will be original
9 For example: duplicate(A ^ (B ^ A)) ^ a => C ^ (D ^ A) ^ a

10 */
11 @property(strong, nonatomic) id duplicate;
12
13 /*
14 This object that is responsible for managing the variable names.
15 It functions as a library.
16 */
17 @property(weak, nonatomic) id<AlphabethTokenProvider> alphabethTokenProvider;
18
19 /*
20 This boolean will be set to YES if giveBackTokenToProvider is called.
21 It means this object does not longer own the tokens it once was assigned
22 */
23 @property BOOL tokensGivenBackToProvider;
24
25 /*
26 Standard initilizer
27 */
28 −(id) initWithAlphabethTokenProvider: (id<AlphabethTokenProvider>) tokenProvider;
29
30 /*
31 Write the formule to a string according to the infix notation.
32 This first should not get brackets because that is not necessary.
33 */
34 −(NSString*) printAsFirst: (Boolean) first;
35
36 /*
37 Unify this proposition with the given proposition.
38 The recursive rule for unification: if main connective match, try to match corresponding input propositions

.
39 Cycles are not allowed, and will fail (return NO). For example: A and (A\landB) are not unifiable.
40
41 "−(Boolean) unify:(Proposition*) proposition" is a wrapper message which depends on "−(Boolean)

unifyWith:(Proposition*) proposition". The main logic is in the latter, but the first is able to
try, commit or rollback a unfication.

42 */
43 −(Boolean) unify:(Proposition*) proposition;
44 −(Boolean) unifyWith:(Proposition*) proposition;
45
46 /*
47 RollbackTrialUnification and commitTrialUnification are messages called after an unification is finished.

If the unification failed: rollbackTrialUnification is called. Otherwise commitTrialUnification is
called.

48 These methods can reset some variables.
49 */

16

50 −(void) rollbackTrialUnification;
51 −(void) commitTrialUnification;
52
53 /*
54 If an unification is undone: call this message.
55 Be careful: this is no local operation but part of a global operation.
56 */
57 −(void) unUnify;
58
59 /*
60 This function creates the same proposition, but the variables are replaced by its containing value, while

normally an unified variable just has a reference to its counterpart.
61 */
62 −(Proposition*) deepAssignment;
63
64 /*
65 Cleanup message.
66 */
67 −(void) giveBackTokenToProvider;
68
69 /*
70 Helper function of the "duplicate" propery. If the property is nil, this message is called and stored in

the "duplicate" variable.
71 If a proposition is duplicated twice inside a proposition, these duplicates will be the same. (this is

important)
72 */
73 −(id) duplicateCopy;
74 /*
75 Always call these message after getting a duplicate of a proposition. It deletes the duplicate cache.
76 */
77 −(void) clearDuplicateCopies;
78
79 /*
80 Returns a set of al variables that are in this proposition. Even variables that are deeper are returned.

This is important to do cycle detection.
81 */
82 −(NSSet*) variables;
83
84 /*
85 For all variable names in this propostion, the number of references is increased by one.
86 This is often done when a variable is initialized
87 */
88 −(void) increseReferencesToVariableNames;
89
90 /*
91 A UndefinedProposition is not really a proposition. It is an placeholder for an yet to be defined

Proposition. A proposition that has UndefinedProposition is typycally found in the goal/premise
builder and should not occur in the main part of the application.

92 This message will replace the first occurance of an UndefinedProposition with a given proposition.
93 */
94 −(Proposition*) replaceFirstUndefinedPropositionWith:(Proposition*) proposition;
95 /*
96 Indicates wether a proposition contains one or more UndefinedPropositions.
97 */

17

98 −(BOOL) hasUndefindPropositions;
99

100 /*
101 Given an connective, return a new instance of that connective. If the connective has input propositions,

they will be instantiated by UndefinedPropositions.
102 */
103 +(Proposition*) createUndefinedPropositionByConnectiveName: (NSString*) string

withAlphabethTokenProvider: (id<AlphabethTokenProvider>) alphabethTokenProvider;
104 @end

3.1.1 Recursion

A Proposition is defined in a recursive way. A connective often comes together with
zero, one or two Propositions, forming a bigger Proposition. For the reason of simplicity
the Connective is programmed as the container of the Propositions it comes together
with. Sending a message to a Proposition is for that reason often recursively defined.
Typically a message is sent to a Connective, and then that connective sends the same
message to its children.
In the code below this paradigm is demonstrated for the (and) proposition. These
messages are similarly implemented for the other Proposition types.

1 // PropositionAnd.m
2
3 @implementation PropositionAnd
4 @synthesize leftProposition = _leftProposition;
5 @synthesize rightProposition = _rightProposition;
6
7 −(PropositionAnd*) initWithAlphabethTokenProvider:(id<AlphabethTokenProvider>)tokenProvider withLeft:(

Proposition *)left withRight:(Proposition *)right{
8 self = [self initWithAlphabethTokenProvider:tokenProvider];
9 if(self){

10 self.leftProposition = left;
11 self.rightProposition = right;
12 }
13 return self;
14 }
15
16 −(NSString*) printAsFirst:(Boolean) first
17 {
18 return [NSString stringWithFormat:@"%@%@^%@%@",
19 (first?@"":@"("),
20 [self.leftProposition printAsFirst: false],
21 [self.rightProposition printAsFirst: false],
22 (first?@"":@")")];
23 }
24
25 −(BOOL) isEqual:(id)object
26 {
27 if([object isKindOfClass: [PropositionAnd class]])
28 {

18

29 return [self.leftProposition isEqual:[object leftProposition]] && [self.rightProposition isEqual:[
object rightProposition]];

30 }
31 return false;
32 }
33 −(Proposition*) deepAssignment
34 {
35 return [[PropositionAnd alloc] initWithAlphabethTokenProvider:self.alphabethTokenProvider withLeft:[self.

leftProposition deepAssignment] withRight:[self.rightProposition deepAssignment]];
36 }
37
38
39 −(void) rollbackTrialUnification
40 {
41 [self.leftProposition rollbackTrialUnification];
42 [self.rightProposition rollbackTrialUnification];
43 }
44 −(void) commitTrialUnification
45 {
46 [self.leftProposition commitTrialUnification];
47 [self.rightProposition commitTrialUnification];
48 }
49
50 −(void) unUnify{
51 [self.leftProposition unUnify];
52 [self.rightProposition unUnify];
53 }
54 −(Boolean) unifyWith:(Proposition *)proposition{
55 if([proposition isKindOfClass:[PropositionAnd class]]){
56 return [self.leftProposition unifyWith:((PropositionAnd*)proposition).leftProposition]
57 && [self.rightProposition unifyWith:((PropositionAnd*)proposition).rightProposition];
58 }else if([proposition isKindOfClass:[VariableProposition class]]){
59 return [proposition unifyWith:self];
60 }
61 return NO;
62 }
63
64 −(void) giveBackTokenToProvider{
65 [super giveBackTokenToProvider];
66 [self.leftProposition giveBackTokenToProvider];
67 [self.rightProposition giveBackTokenToProvider];
68 }
69 −(id) duplicateCopy
70 {
71 return [[PropositionAnd alloc] initWithAlphabethTokenProvider:self.alphabethTokenProvider withLeft:self.

leftProposition.duplicate withRight:self.rightProposition.duplicate];
72 }
73 −(void) clearDuplicateCopies
74 {
75 self.duplicate = nil;
76 [self.leftProposition clearDuplicateCopies];
77 [self.rightProposition clearDuplicateCopies];
78 }
79

19

80 −(NSSet*) variables
81 {
82 return [[self.leftProposition variables] setByAddingObjectsFromSet:[self.rightProposition variables]];
83 }
84 −(void) increseReferencesToVariableNames
85 {
86 [_leftProposition increseReferencesToVariableNames];
87 [_rightProposition increseReferencesToVariableNames];
88 }
89
90 −(Proposition*) replaceFirstUndefinedPropositionWith:(Proposition*) proposition
91 {
92 Proposition * tryLeft = [self.leftProposition replaceFirstUndefinedPropositionWith:proposition];
93 if(tryLeft)
94 {
95 return [[PropositionAnd alloc] initWithAlphabethTokenProvider:self.alphabethTokenProvider withLeft:

tryLeft withRight:self.rightProposition];
96 }
97 Proposition * tryRight = [self.rightProposition replaceFirstUndefinedPropositionWith:proposition];
98 if(tryRight)
99 {

100 return [[PropositionAnd alloc] initWithAlphabethTokenProvider:self.alphabethTokenProvider withLeft:
self.leftProposition withRight:tryRight];

101 }
102
103 // Not for me: maybe an ancestor?
104 return nil;
105 }
106
107 −(BOOL) hasUndefindPropositions{
108 return [self.leftProposition hasUndefindPropositions] || [self.rightProposition hasUndefindPropositions];
109 }
110
111 @end

3.1.2 VariableProposition

A VariableProposition is a special proposition.

1 // VariableProposition.h
2
3 @interface VariableProposition : Proposition
4 @property(strong, nonatomic) NSString* variableName;
5 @property(strong, nonatomic) Proposition * assignment;
6 @property(strong, nonatomic) Proposition * trialAssignment;
7
8 @end

In propositional logic a variable can be unified with another proposition. This unification
means all the occurrences of the variable will be replaced by the proposition, under the
condition that variable does not occur in the proposition.
When an unification is done in this application, we have to take into account that we

20

might want to undo the unification. When we replace all the occurrences of a variable,
we would lose information about the original situation and it will become hard to undo
an unification. For this reason the decision was made to not remove and substitute the
variable, but to maintain the variable and set a reference in that variable to its content.
The variable should now behave like the proposition it has assigned, until the variable
is told to undo the unification.
Another property of a VariableProposition is that it has a name. That name is displayed
while the proposition has no assignment. The VariableProposition is owner of that name
for its own lifecycle. When the VariableProposition is removed, the name is given back
to the name provider.
To build a big structure in Lego you have to click blocks onto each other. Since the
clicking of proofpieces depends on unification and the unification eventually depends on
the unification of variables, this is an important piece of code. Eventually this code helps
us allowing only the valid actions, just like in Lego, where blocks have to be placed in a
way they fit too.

1 // VariableProposition.m
2 −(Boolean) unifyWith: (Proposition*) proposition
3 {
4 // If we are unifing the same variables we are already unified. Skip the rest in that case.
5 if([proposition isKindOfClass:[VariableProposition class]])
6 {
7 if([[self deepAssignment] isEqual:[proposition deepAssignment]]){
8 return YES;
9 }

10 }
11 // If this is the case, we are unifing this var with something that contains this var already. bad

stuff!
12 if([[proposition variables] containsObject:self.deepAssignment])
13 {
14 return NO; // don't cycel on me :(
15 }
16 Proposition * assignment = self.trialAssignment? self.trialAssignment : self.assignment;
17 if(!assignment)
18 {
19 self.trialAssignment = proposition;
20 return YES;
21 }
22 return [assignment unifyWith:proposition];
23 }

As we can see, not the assignment itself is set, but a temporary value is set. After the
unification, if the whole unification has succeeded or failed respectively commitTrialU-
nification or rollbackTrialUnification is called.
Both are listed below and seem to be straightforward.

1 // VariableProposition.m
2
3 −(void) rollbackTrialUnification
4 {

21

5 [self.trialAssignment rollbackTrialUnification];
6 [self.assignment rollbackTrialUnification];
7
8 self.trialAssignment = nil;
9 }

10
11 −(void) commitTrialUnification
12 {
13 if(self.trialAssignment)
14 {
15 self.assignment = self.trialAssignment;
16 self.trialAssignment = nil;
17 }
18 [self.assignment commitTrialUnification];
19 }

3.2 Proofpieces
In our metaphor, an atomic inference rule corresponds to a lego piece, with the inferred
propositions corresponding to the shape of the lego piece (i.e. to its boundary, deter-
minining how it may fit onto other lego pieces). Those pieces, corresponding to instances
of inference rules, are called Proofpieces in the code and are earlier described in section
1.2.
There are an infinite number of correct ProofPieces, but we only want to equip the app
with a set of minimally necessary ProofPiece types. In our case that turns out to be one
or two (two i.e. in the case there is a left and right variant) introduction- and one or two
elimination-Proofpieces per connective. These proofpieces correspond to the inference
rules found in the syllabus [4].
In the app this results in the classes: AssumptionProofPiece, AndIntroductionConnec-
tiveProofPiece, AndEliminationLeftProofPiece, AndEliminiationRightProofPiece, Or-
IntroductionLeftProofPiece, OrIntroductionRightProofPiece, OrEliminationProofPiece,
ImplicationIntroductionProofPiece, ImplictionEliminationProofPiece, NotIntroduction-
ProofPiece, NotEliminationProofPiece, BiimplicationIntroductionProofPiece, BiImpli-
cationLeftEliminationProofPiece, BiImplicationRightEliminationProofPiece, FalsumE-
liminationProofPiece, RAAProofPiece, GoalProofPiece, PremiseProofPiece.

ProofPiece.h is listed as follows:

1 // ProofPiece.h
2
3 @interface ProofPiece : NSObject<NSCopying>
4
5 /*
6 An array with the keys of the input ports. The ports are name with a semantical useful name for the sake

of debugging. This
7 For example, if you have an and−connective, this array could be: "proof1","proof2".
8 */
9 @property (nonatomic, strong) NSArray * proofInputVariables;

22

10
11 /*
12 This is a dictionary of portnames and references to other proofpieces.
13 */
14 @property (strong, nonatomic) NSMutableDictionary * bindings;
15
16 /*
17 This is a dictionary of portnames and the variables that represent that ports.
18 */
19 @property (strong, nonatomic) NSMutableDictionary * variableBindings;
20
21 /*
22 This is a dictionary of portnames and OwnerTuple. An ownertuple is a object that describes the

relationship between a proofpiece−port and one or more PremiseProofPieces.
23 */
24 @property (strong, nonatomic) NSMutableDictionary * assumptionOwnerships;
25
26 /*
27 The ID of this proofpiece. A unique ID means a unique proofpieces.
28 */
29 @property (strong, nonatomic) NSNumber * proofpieceSubId;
30
31 /*
32 The ID of the root proofpiece.
33 */
34 @property (strong, nonatomic) NSNumber * proofpieceRootId;
35 @property (weak, nonatomic) id<AlphabethTokenProvider> alphabethTokenProvider;
36 @property (nonatomic) BOOL isRemoved;
37
38 /*
39 Open assumptions are cached in this set. Don't forget to call "recalculateOpenAssumptions" first.
40 */
41 @property (strong, nonatomic) NSMutableSet * openAssumptions;
42
43 /*
44 The name of the proofpiece type. For example "and−elimination" or a shorthand for that.
45 */
46 @property (strong, nonatomic) NSString * text;
47
48 /*
49 Initializer(s) of the ProofPiece. It gets a reference to the token provider.
50 A very nice feature is the boolean variable "createAlsoAssumptions". If it is set to true all the

assumptions that are allowed to depend on this ProofPiece will be created and if possible, attached
to this proofpiece.

51 */
52 −(id) initWithAlphabethTokenProvider: (id<AlphabethTokenProvider>) alphabethTokenProvider;
53 −(id) initWithAlphabethTokenProvider: (id<AlphabethTokenProvider>) alphabethTokenProvider

createAlsoAssumptions:(BOOL) createAlsoAssumptions;
54
55 /*
56 Helper function for −(id) copyWithZone:(NSZone *)zone
57 copyWithZone returns a copy of the proofPiece.
58 */
59 −(void) copyChildrenTo: (ProofPiece*) copyOfTree withZone:(NSZone*) zone;

23

60
61 /*
62 With this method you can apply two proofpieces to each other. It will attach the conclusion of this

Proofpieces to the port named by the "key" value on the "copiedTree" input var.
63 */
64 −(void) setBinding: (ProofPiece *) copiedTree forKey:(NSString*)key;
65
66 /*
67 Remove the childtree "tree".
68 */
69 −(NSString*) removeChild: (ProofPiece *) tree;
70
71 /*
72 This method will undo ALL unification in the tree, and its children.
73 This method is ussually called on the root−tree
74 */
75 −(void) undoUnifications;
76
77 /*
78 This method will redo all the unification in the tree and its childen.
79 undoUnifications and reEvaluateUnifications are often called when a single unification needs te be undo.

First: remove the binding and than undo and reEvaluate the unifcations.
80 */
81 −(void) reEvaluateUnifications;
82
83 /*
84 Calculates what assumptions are still not covered by its owner.
85 */
86 −(NSMutableSet*) recalculateOpenAssumptions;
87
88 −(void) giveBackTokensToProvider;
89
90 /*
91 This function will create a new proofpiece with the same structure as the current proofpiece, but with

new variables.
92 AssumptionProofpieces that are stil "open" are not duplicated but copied instead.
93 For example: if you copy: [A]1 that results to [A]1.
94 If you copy: [A]1 ... (A−>A)1 that results to [B]1 ... (B−>B)1
95 */
96 −(ProofPiece*) duplicateWithOpenAssumptionsOnRoot:(NSMutableSet*) unconnectedOwnerTuples;
97
98 /*
99 Called after duplicating a ProofPiece. This will remove cached variables created while making a duplicate

of this ProofPiece.
100 */
101 −(void) clearDuplicates;
102
103 /*
104 This message will help preventing creating cycles in a proof.
105 If this message return YES, the currect ProofPiece contains a cycle and should be considered invalid.
106 */
107 −(BOOL) noCyclesWithTreeIdsSeen: (NSArray*) treeIdsSeen;
108
109 /*

24

110 A message that reports to the tokenprovider that the propositions (variables) are referenced one time
more.

111 */
112 −(void)claimVariableNames;
113
114 @end

3.2.1 BuildingBlock, DropZone

Now we got our proofpieces defined, we need a way to interact with them. Before ex-
ploring the controller which is responsible for this, we will take a look at the graphical
counter object of the Proofpiece; the BuildingBlock. The BuildingBlock has a blockId,
which corresponds to the ProofPieceSubId on the ProofPiece. The buildingblock also
has an array with so called DropZones. A dropzone represents a port. Since the Build-
ingBlock and the DropZone are views, they do not implement business logic. Instead
the code focuses on the representation and gesture recognition and delegation. The
BuildingBlocks will be draggable, and the dropzones are fixedly attached to the Build-
ingBlock.
A BuildingBlock is typically colored green, but is red when the corresponding Proofpiece
depends on an assumption that has not been made yet in the proof.

Figure 10: Example of a building block

3.2.2 assumptions

When doing natural deduction on propositional logic, we want to use assumptions. If an
assumption is made, it has to be retracted somewhere in the proof. If the assumption
remains unretracted the overall proof is not complete. In the application, a proofpiece
will be colored red instead of green when it depends on an unretracted assumption.
If an invalid tree has a branch that is valid on its own, that branch is colored green.
Assumptions have uniquely identifying labels which can also be found on the port that
retracts the assumption.

25

(a) Example: Assumptions 0 is not re-
tracted yet.

(b) Example: Assumptions 0 is here
retracted.E is unified by D∧B

Figure 11: Example assumptions

3.2.2.1 OwnerTuple

Ports of inference rules in natural deduction may have a dependency on assumptions,
which are programmed as AssumptionProofPiece. In the tool, the inference rule and its
ports’ assumptions are separate proofpieces between which a connection is maintained.
This connection is implemented with an OwnerTuple. The OwnerTuple can have a
name which is typically a number. It does not refer to the AssumptionProofPiece but
the AssumptionProofPiece does always refer to its OwnerTuple. Also the OwnerTuple

26

does not refer to a single port but it refers to the port name and a list of ProofPieces.
These ProofPieces are all hardcopies of the same ProofPiece. The usecase where multiple
ProofPieces are around is when a ProofPiece is being connected (clicked) on another
proofpiece and a temporary copy of the proofpiece is introduced.

1 // OwnerTuple.h
2
3 @interface OwnerTuple : NSObject<NSCopying>
4 /*
5 A set of (the same!) proofpieces.
6 */
7 @property(nonatomic, strong) NSMutableSet* proofpieces;
8 /*
9 Used to point out the port on the proofpiece(s)

10 */
11 @property(nonatomic, strong) NSString * key;
12
13 @property(nonatomic, weak) id<AlphabethTokenProvider> tokenProvider;
14 @property NSUInteger numberOfAssumptions;
15 @property(strong, nonatomic) NSString * assumptionReferenceToken;
16 /*
17 A placeholder for a copy of this ownerTuple. When the tree is being copied this object is copied too.
18 */
19 @property(strong, nonatomic) OwnerTuple * duplicate;
20
21 /*
22 Straightforward initializers.
23 */
24 −(id) initWithTree: (ProofPiece*) tree withKey: (NSString*) key withTokenProvider: (id<

AlphabethTokenProvider>) tokenProvider;
25 −(id) initWithTrees: (NSMutableSet*) trees withKey: (NSString*) key withTokenProvider: (id<

AlphabethTokenProvider>) tokenProvider;
26 /*
27 Shortcut to the proposition of the port.
28 */
29 −(Proposition*) proposition;
30 /*
31 Name of the relationship (lazy instantiated)
32 */
33 −(NSString*) lazyAssumptionReferenceToken;
34 −(void) checkForGivingBackToken;
35 @end

3.2.3 NaturalDeductionViewController

The NaturalDeductionViewController is one of the important classes in this app. It
basically controls a canvas on which the BuildingBlocks interact. It also can receive
messages from its parent ViewController, for example to insert a new proofpiece. This
class is also charged with the responsibility of controlling tokens used in the app. It holds
a registry of what tokens are already used which makes it possible to recycle some tokens.

27

Below are all the messages listed that are declared in the NaturalDeductionViewCon-
troller.

1 /*
2 Create three alphabeths for: variables, constants and relationship
3 */
4 −(void) initAlphabeth
5
6
7 /*
8 The sender is a buildingblock. Try to find another buildingblock that intersects one of its dropzones

with a dropzone of the sender.
9 If such a buildingblock is found, the message "start" is called to check wether the transaction can

acctually be started.
10
11 */
12 − (DroppingTransaction*) findNewTransactionWithSender: (id) sender
13
14
15 /*
16 A buildingblock is touched and dragging starts.
17 */
18 − (void) startDragging:(UITouch *)touch sender:(id)sender
19
20
21 /*
22 A buildingblock is being dragged.
23 Check if transaction invoked on this object is still valid.
24 If there are no (valid) transactions for this block: search for a new one. (findNewTransactionWithSender

is called).
25 */
26 − (void) dragging:(UITouch *)touch sender:(id)sender
27
28
29 /*
30 This function will drag a complete tree (And its subtrees).
31 */
32 − (void) dragSubTrees: (ProofPiece*) tree withOffset: (CGPoint) offset
33
34
35 /*
36 This function is called when you stop dragging. If a transaction was open, it will be comitted!
37 */
38 − (void) dropping: (UITouch *)touch sender:(id)sender
39
40
41 /*
42 Not used yet
43 */
44 − (void) doubleTapped:(id)sender
45
46
47 /*

28

48 Add a proofPiece, and its child proofpieces to the main view.
49 */
50 − (NSNumber *) addTree: (ProofPiece *) proofPiece
51
52
53 /*
54 Add a proofpiece, but if it was already attached to a BuildingBlock, add that buildingblock instead of

creating a new one.
55 */
56 − (NSNumber *) addTree: (ProofPiece*) tree withBlock: (BuildingBlock *) block
57
58
59 /*
60 Try to start a transaction.
61 Check for cycle detection.
62 Try to unify the propositions.
63 Return whether the starting of the transaction succeeded.
64 If this function fails it could start a sound.
65 If this function succeeds the ProofPiece that has the conclusion on it will be copied and display as if

the block was already dropped.
66 */
67 − (BOOL) start: (id)transaction
68
69
70 /*
71 When a BuildingBlock is dropped on another BuildingBlock this function is called.
72
73 The temporary block introduced on start will remain, and the original block will be deleted.
74 */
75 − (void) commit:(id)transaction
76
77
78
79 /*
80 Rollback is called when you move a BuilingBlock away from an other BuildingBlock.
81 The temporary block is removed.
82 */
83 − (void) rollback:(id)transaction
84
85
86 /*
87 Set this Boolean for the buildingblocks corresponding to a particular tree.
88 */
89 − (void) changeTransactionOfTree:(ProofPiece*)tree to: (Boolean) isInTransaction
90
91
92 /*
93 Set this Boolean for the buildingblocks corresponding to a particular tree.
94 */
95 − (void) changeLockForBreakingOfTree:(ProofPiece*)tree to: (Boolean) lockForBreaking
96
97
98 /*
99 Cut a deductiontree in two parts.

29

100 */
101 − (void) cutProofpieceOnPiece: (ProofPiece *) tree formatTree: (Boolean) formatTree
102
103
104
105 /*
106 Retrieve all the root−ProofPieces
107 */
108 −(NSMutableArray*) getRootPieces
109
110
111 /* Remove a proofPiece */
112 − (void) removeProofPiece: (ProofPiece *) proofPiece
113
114
115
116 /*
117 Color the BuildingBlock red or green.
118 */
119 −(void) recolorAssumptions: (ProofPiece*) proofPiece withOpenAssumptions: (NSMutableSet*) openAssumptions
120
121
122 /*
123 Reevaluate the strings for the dropzones.
124 */
125 −(void) relabelDropzones: (ProofPiece*) proofPiece
126 −(void) relabelDropzones: (ProofPiece*) proofPiece fromDropZone: (DropZone*) dropZoneConclusion
127
128
129 /*
130 Format the treesizes in two round, a pre−proces round (startFormatTreeSizes) and a finish round (

finishFormatTreeSizes)
131 */
132 −(void) formatTreeSizes: (ProofPiece *) tree withPoint:(CGPoint)start
133
134
135
136 /*
137 Calculate the widths
138 */
139 − (NSUInteger) startFormatTreeSizes: (ProofPiece *) tree withOffset:(CGPoint) start
140
141
142 /*
143 Set the widths calculated in at "startFormatTreeSizes"
144 */
145 − (void) finishFormatTreeSizes: (ProofPiece *) tree withStart: (CGPoint) start
146
147 − (void) movePositionOfTree:(ProofPiece*)tree withPosition: (CGPoint) position
148
149 /*
150 Reorder the blocks. Set every child in front of its parent
151 */
152 − (void) reorderBlockOfTree:(ProofPiece*)tree

30

153
154
155 /*
156 Check for cycle detection
157 */
158 −(BOOL) noCyclesOnTarget:(ProofPiece*)targetTree withSubjectTree:(ProofPiece*)subjectTree forKey: (NSString

*) key
159
160
161 /*
162 AlphabethTokenProvider protocol implementation
163 */
164 −(NSString*) getNewTokenOfType:(NSString *)type
165
166
167 /*
168 Tokenprovider method to decrease (release) a token count
169 */
170 −(void)decreaseReference:(id)token forType:(NSString *)type
171
172
173 /*
174 Tokenprovider method to increase (allocate) a token count
175 */
176 −(void)increaseReference:(id)token forType:(NSString *)type
177
178
179 /*
180 A ProofPiece with a corresponding BuildingBlock are insertered at a given position.
181 */
182 −(void) insertTreeFromToolbox: (ProofPiece*) tree withBlock: (BuildingBlock*) block onPosition: (CGPoint)

position
183
184
185 /*
186 If a longpressed is recognized, you get the options to copy or remove a proofpiece.
187 */
188 −(void) longPressed: (UILongPressGestureRecognizer*) sender
189
190
191 /*
192 Open the modal window, add modifier buttons like: duplicate and remove.
193 Idea: Make here a TEX−output thingy, or a share button!
194 */
195 −(void) startEditing: (ProofPiece*) tree
196
197
198 /*
199 Bring the buildingblocks corresponding to a proofpiece to the front.
200 */
201 −(void) bringProofPieceToFront: (ProofPiece*) tree
202
203
204 /*

31

205 Close the modal window.
206 */
207 −(void) cancelEditing
208
209
210 /*
211 The copy button was pressed, copy the current editing tree, and make some cool animation to divide them

from each other.
212 */
213 −(void) duplicateCurrentEditingProofPiece
214
215
216 /*
217 "Are you sure you want to delete this proofPiece??"
218 */
219 −(void) confirmDeleteCurrentEditingProofPiece
220
221
222 − (void)alertView:(UIAlertView *)alertView clickedButtonAtIndex:(NSInteger)buttonIndex
223
224
225 /*
226 Delete the current editing tree.
227 */
228 −(void) deleteCurrentEditingTree
229 /*
230 Delete a tree (used in deleteCurrentEditingTree)
231 */
232 −(void) deleteTree: (ProofPiece*) tree
233
234
235 /*
236 Get access to the musician via its parent
237 */
238 −(Musician*) musician

3.2.3.1 Token Provider

A token provider can serve tokens of different types i.e. variablenames, constantnames
and ralationnames. The token provider is a protocol, which is adopted by the NaturalD-
eductionViewController.

The Protocol is listed below:

1 @protocol AlphabethTokenProvider <NSObject>
2 − (NSString*) getNewTokenOfType:(NSString*)type;
3 − (void) decreaseReference: (id) token forType: (NSString*) type;
4 − (void) increaseReference: (id) token forType: (NSString*) type;
5 − (void) initAlphabeth;
6
7 @property(strong,nonatomic) NSMutableArray * boundVariables;
8 @end

32

3.2.4 Manipulations

We can distinguish five manipulations we can perform on proofpieces, which are com-
pletely analogue to the manipulations possible on Lego. First we need to initialize a
proofpiece. Secondly we want to combine some proofpieces. After that we might want
to correct a mistake by splitting a proof. As an extra we implemented the possibility of
duplicating a proofpiece. Finally a proof might be removed.

3.2.4.1 Initializing a Proofpiece

Every type of inference rule has its own behavior, just like every differt type of lego
block has a different shape and interacts in another way to other blocks. The behavior
of Proofpiece is determined when it is initialized.

Below a code snippet of the ImplicationIntroductionProofPiece initializer to illustrate
the pattern used on initialization.

1 −(id) initWithAlphabethTokenProvider: (id<AlphabethTokenProvider>) alphabethTokenProvider{
2 /*
3 Send to the main init.
4 */
5 self = [self initWithAlphabethTokenProvider:alphabethTokenProvider createAlsoAssumptions:NO];
6 return self;
7 }
8
9 −(id) initWithAlphabethTokenProvider: (id<AlphabethTokenProvider>) alphabethTokenProvider

createAlsoAssumptions:(BOOL)createAlsoAssumptions
10 {
11 self = [super initWithAlphabethTokenProvider: alphabethTokenProvider];
12 if(self)
13 {
14 // Set the text of the block, here: implication introduction
15 self.text = @"$−>$I";
16
17 // What input−ports do we have? one named: consequent.
18 _proofInputVariables = [[NSArray alloc] initWithObjects: @"consequent", nil]; // Readonly
19
20 // Store a reference to the tokenprovider.
21 self.alphabethTokenProvider = alphabethTokenProvider;
22
23 // Create proposition, used for in− and ouput ports but also assumptionProofPieces.
24
25 // A
26 Proposition * antecedent = [[VariableProposition alloc] initWithAlphabethTokenProvider:

alphabethTokenProvider];
27 // B
28 Proposition * consequent = [[VariableProposition alloc] initWithAlphabethTokenProvider:

alphabethTokenProvider];
29 // A −> B
30 Proposition * implication = [[ImplicationProposition alloc] initWithAlphabethTokenProvider:self.

alphabethTokenProvider withAntecedent:antecedent withConsequent:consequent];

33

31
32 _antecendent = antecedent;
33
34 // Attach the proposition (variable) to the input port "consequent"
35 [self.variableBindings setObject:consequent forKey: @"consequent"];
36
37 // Attach the proposition (implication prop.) to the output port.
38 [self.variableBindings setObject:implication forKey:@"conclusion"];
39
40 // If we would like to auto create a single instance of assumption that depend on a port in this

proofpiece, do so.
41 if(createAlsoAssumptions)
42 {
43 // First create an ownertuple (so we can compare ownerships of proofpieces).
44 OwnerTuple * ownerConsequent = [[OwnerTuple alloc] initWithTree:self withKey:@"consequent"

withTokenProvider:self.alphabethTokenProvider];
45 // This is how the ownership is stored for a port. (in this case: "consequent")
46 [self.assumptionOwnerships setObject:ownerConsequent forKey:@"consequent"];
47
48 // create the assumption.
49 AssumptionProofPiece * assumption = [[AssumptionProofPiece alloc] initWithProposition:antecedent

withOwner:ownerConsequent withAlphabethTokenProvider:self.alphabethTokenProvider];
50
51 // In this case we can connect the created assumption to the proofpiece. If that is not possible

they should not be (directly) attached.
52 [self setBinding:assumption forKey:@"consequent"];
53 }
54
55 // tell the tokenprovider what tokens we used.
56 [self claimVariableNames];
57 }
58 return self;
59 }

3.2.4.2 Combining proofpieces

Combining proofpieces happens through unification via the ports. In the simple case: if
the proposition of the conclusion port of a proof piece is unifiable with the proposition
of an input port of a proof piece, these ports are clickable with each other. If a user
decides to click these ports on each other the unification will be kept and the unification
is reflected in the propositions of both the proofpieces. Also the proofpieces are now
attached to each other and form together one bigger proofpiece.

In the NaturalDeductionViewController the following message is responsible for han-
deling starting a transaction. It returns TRUE if this transaction is valid:

1 /*
2 Try to start a transaction.
3 Check for cycle detection.
4 Try to unify the propositions.
5 Return whether the starting of the transaction succeeded.

34

6 If this function fails it could start a sound.
7 If this function succeeds the ProofPiece that has the conclusion on it will be copied and display as if

the block was already dropped.
8 */
9 − (BOOL) start: (id)transaction

This message is called when a transaction should be committed.

1 − (void) commit:(id)transaction

This message is called to undo a started transaction and its unifications.

1 − (void) rollback:(id)transaction

3.2.4.2.1 Unification

Unification is done via an algorithm that is comparable to the unification algorithm of
Montanari and Martelli [2]. A big difference is that unifications are stored locally, and
also the original VariablePropositions remain stored. If you for example unify a Variable
”X” with a constant ”a” than X will yield a reference to a, but it will never be replaced
by its containments.

The following code demonstrates how the unify message works. It tries unifyWith,
which carries the recursion. When this trial code is ran, some temporary values are set
for the proposition and its child propositions. If no problem is encountered, the message
commitTrialUnification is called to set the temporary as the final value.
When a problem is encountered; the message rollbackTrialUnification is called to clean
up the temporary variables.

1 −(Boolean) unify:(Proposition *)proposition
2 {
3 if([self unifyWith:proposition])
4 {
5 [self commitTrialUnification];
6 [proposition commitTrialUnification];
7 return YES;
8 }
9 [self rollbackTrialUnification];

10 [proposition rollbackTrialUnification];
11 return NO;
12 }

3.2.4.2.2 Drag and Drop

Drag and Drop is the most obvious paradigm for manipulating your proofpieces. The
presentation of a proofpiece is a quadrangle. As discussed earlier: a proofpiece has mul-
tiple ports. These ports are represented by a quadrangular pieces on the proofpiece,
with rounded and dashed borders. A proofpiece can be dragged around. If a port of
proofpiece intersects (in the 2d space) another port, the program will determine whether

35

these ports are able to be attached on each other i.e. whether the proposition on their
respective ports are unifiable or not and no loops will occur. If the latter is the case and
the user drops the proofpiece, by releasing its finger from the screen, the two proofpieces
will become one bigger proofpiece.

In the NaturalDeductionViewController the following messages are responsible for han-
deling a drag event:

1 /*
2 A buildingblock is being dragged.
3 Check if transaction invoked on this object is still valid.
4 If there are no (valid) transactions for this block: search for a new one. (findNewTransactionWithSender

is called).
5 */
6 − (void) dragging:(UITouch *)touch sender:(id)sender
7
8 /*
9 The sender is a buildingblock. Try to find another buildingblock that intersects one of its dropzones

with a dropzone of the sender.
10 If such a buildingblock is found, the message "start" is called to check wether the transaction can

acctually be started.
11
12 */
13 − (DroppingTransaction*) findNewTransactionWithSender: (id) sender

3.2.4.3 Splitting

The opposite action of combining, in this case, would be splitting. It is really desirable
to be able to split a proofpiece e.g. in the case the user made a wrong connexion and
wants to correct it. Because this is the opposite action of combining, we want to undo
the unification done when combining.

3.2.4.3.1 Ununification

We dealt with a very interesting problem: the undoing of a previously done unification.
Since all the (known) unification algorithms do not keep count of the number of the
references made, it is impossible to simply release an unification when it’s undone. The
alternative is to recalculate all the unifications except the unification you want to undo.

Unfortunately we had to choose for the latter. This small subproblem was about to
swallow more time than it should.

A small introduction to the problem is illustrated at Figure 12. Assume Figure 12a as
an environment with four variables: A, B, C and D. A is unified with C two times, A
and D three times, C and D one time and D and B are unified one time. This results
in a situation where all the variables are unified to the same variable. If we ununify D
with B one time, the weight of the edge between them is lowered by one. Since the new

36

weight will be zero, the edge will be removed resulting in figure 12b. We can now say A,
C and D are different from B because they are not necessarily unified. It is not always
the case that ununfication leads to variables becoming independent. Consider Figure
12c, where altough A and D have been ununified twice and C and D are ununified once,
all the variables are still unified to each other.

..A. B.

C

.

D

.

2x

.

3x

.

1x

.

1x

(a) Example 1

..A. B.

C

.

D

.

2x

.

3x

.

1x

(b) Example 2

..A. B.

C

.

D

.

2x

.

1x

.

1x

(c) Example 3

Figure 12: Three examples of unification environments

3.2.4.3.2 Drag and Split

The action of splitting two directly connected atomic proofpieces is implemented by
touching both the proofpieces, with two separate fingers, followed by dragging the pieces
away from each other. When the pieces are seperated wide enough from each other, the
dividing action is immediate. The latter comparison is made in the ”−(void)dragging :
(UITouch∗)touchsender : (id)sender” message

3.2.4.4 Duplicating a proof

Though it is not possible to duplicate a Lego structure in a single action, such a manip-
ulation would be really helpful. This manipulation is therefore considerd as bonus we

37

thought we would make the user happy with.

3.2.4.4.1 Instantiating a duplication

There are multiple ways to look at a duplication. One way is copying the complete
proof and the other where only the structure is copied. Since we simply do not want
connective proofs te occur more than once, we chose the latter. However there is one
exception: an assumption may be used multiple times. Therefore will assumptions that
are not yet connected to their assumers be hardcopied, which also means it will contain
the same OwnerTuple.

Consider a ∧-introduction atomic proofpiece yielded with the proposition A∧B as
conclusion, then duplicating would mean create a proofpiece yielded with a copy of the
structure of A∧B as conclusion. In this case the conclusion of the duplicated proofpiece
could be: C∧D.

The copying is done by the following message on the ProofPieces:

1 /*
2 This function will create a new proofpiece with the same structure as the current proofpiece, but with

new variables.
3 AssumptionProofpieces that are stil "open" are not duplicated but copied instead.
4 For example: if you copy: [A]1 that results to [A]1.
5 If you copy: [A]1 ... (A−>A)1 that results to [B]1 ... (B−>B)1
6 */
7 −(ProofPiece*) duplicateWithOpenAssumptionsOnRoot:(NSMutableSet*) unconnectedOwnerTuples;

3.2.4.4.2 Context menu

Coping of a proofpiece can be trigger by opening a context menu, as seen in figure 13,
on the proofpiece and then simply pressing the duplicate button.

The following methods from the NaturalDeductionViewController are involved with
handeling the context menu.

1 /*
2 If a longpressed is recognized, you get the options to copy or remove a proofpiece.
3 */
4 −(void) longPressed: (UILongPressGestureRecognizer*) sender
5
6
7 /*
8 Open the modal window, add modifier buttons like: duplicate and remove.
9 Idea: Make here a TEX−output thingy, or a share button!

10 */
11 −(void) startEditing: (ProofPiece*) tree
12
13
14 /*
15 Bring the buildingblocks corresponding to a proofpiece to the front.
16 */
17 −(void) bringProofPieceToFront: (ProofPiece*) tree

38

Figure 13: Screenshot of a context menu

18
19
20 /*
21 Close the modal window.
22 */
23 −(void) cancelEditing
24
25 /*
26 The copy button was pressed, copy the current editing tree, and make some cool animation to divide them

from each other.
27 */
28 −(void) duplicateCurrentEditingProofPiece
29
30 /*
31 Delete the current editing tree.
32 */
33 −(void) deleteCurrentEditingTree

3.2.4.5 Removing a proof

The final manipulation is a final manipulation. I mean of course the removal of a proof.
The deletion is done by the following code in the NaturalDeductionViewController:

1 /*
2 Delete a tree (used in deleteCurrentEditingTree)
3 */
4 −(void) deleteTree: (ProofPiece*) tree

39

Figure 14

3.2.4.5.1 Context menu

A proof can be removed via the context menu, described in section 3.2.4.4.2, by pressing
the delete button. A confirmation conversation will start which which can be seen in
figure 14.

The following message of the NaturalDeductionViewController are involved beside
the once mentioned in section 13:

1 /*
2 "Are you sure you want to delete this proofPiece??"
3 */
4 −(void) confirmDeleteCurrentEditingProofPiece
5
6 /*
7 Delete the current editing tree.
8 */
9 −(void) deleteCurrentEditingTree

4 Future features
As no single software project ever is completed, this app is also not finished yet. The
number of bugs are as we speak at an acceptable level for the beta. But there is still a
small amount of known bugs, and most probably some bugs that have still not exposed
their selves.
There are also some features we are really excited about, and we really wish to implement

40

them after finishing this project. Below a small overview of some of those features.

4.1 Sharing
It would be a ”cool” feature if someone could just post a proof on their Facebook, but
there are other ways to share a proof. You might think about a LATEX-export button, so
a person can one tap export a proof to a report. Another nice idea is that students and
teachers can send their current state/proof to each other e.g. via internet or bluetooth.
A sequel to the latter idea is that a teacher/professor can send exercises to his/her
students!

4.2 Saving
Saving a proof would be really useful. A simple example would be that a user saves
it state and can simply load that state again. But another example would be saving a
complete proof into one new proofPiece, which can be reused. An example of such a
proofpiece could be the proof of the excluded middle law! Saving could be done locally
but also on iCloud, which enables a user to create a proof on you iPad, and finish it on
your iPhone (while sitting in the overcrowded bus to the Uithof).

4.3 Real multiplatform
If this app proofs to be a success we should consider expanding our scope. In other
words: Android and pc support. Maintaining and creating three or four code bases
would be tough. In that case we could reconsider the use of HTML5.

4.4 Interaction
Ofcourse we could make the app more powerful by adding more ways to interact with
it. For example We would like to add the possibility to add an assumption directly via
a candidate owner of that assumption.

5 About this project
This project initiated as my bachelor thesis project in November 2012 and was intended
to terminate in Februari 2013. The proposed study load was 7.5 European Credit Trans-
fer System points which would mean 210 hours available for the entire project. Even-
tually it seemed we underestimated the project because the project consited of a lot
of small tasks and side issues which all demanded a considerable lot of time, resulting
in consuming approximately around 300 hours. I will sum most of the aspects in the
following subsections.

41

5.1 Settings our goal
It all starting when I was looking for a bachelor thesis project and my supervisor intro-
duced me his idea to create a deduction app of propositional logic. He stated that there
is an app called ”The Logic App SD” which is capable of constructing propositional logic
proofs but it does that via the Fitch-style calculus [5]. We did not think this is a really
intuitive way of interacting with logic and actually understanding the proofs you make.
That is where our ambition comes from to create a deduction app that works with a less
static user interface and where deduction is represented by trees.

We immediately came up with analogy of Lego and we insisted on keeping this
analogy. In the end this would make it easier to make design choices because we asked
ourselves the question ”what would Lego do?”.

5.2 Learning objective-C
I already had a lot of experience with other programming languages, but objective-C
was relatively new for me. Also I had never really used Xcode before. Luckily I had
played with the iOS programming tools once so I knew what it meant and how to get
resources to learn about the iOS environments.

I started with following online lectures at Standford University called ”Developing
Apps for iOS” with course code CS193p. The lectures were all recorded in 2011 and
uploaded in the ”iTunes U”.

Also I signed up for the apple development program. It enables me to run and test
the app on multiple devices and finaly distribute the app on the Apple app store.

5.3 Formalizing and programming
Especially in the beginning the weekly sessions of myself and my supervisor were about
generalizing and formalizing natural deduction for propositional logic. Eventually we
wrote a paper on Clickable Proofs [3] where we discussed how proofpieces look like and
how they would be interacted to each other. Also we emphasized the role of unification
through the ports and we explored the correctness of the system.

While formalizing the system I was programming the app in parallel. While pro-
gramming I came up with questions we had to answer so we were formalizing on the
go.

5.4 Debugging and closed beta testers
In the first stage of development where we had nothing interesting to show the only
real testers were my supervisor and me. When we reached a representable status where
the idea was clear and no major bugs would occur we decided that some people who
were interested in the app would receive a copy of the app. We found approximately
ten people who wanted to test the app. Those people received a copy of the app and a
certificate to enable their device to run the app. Also I created a small website, found

42

https://itunes.apple.com/nl/app/the-logic-app-sd/id519918661?mt=8

at http://www.students.science.uu.nl/~3688844/ND-app/[1], to notify the testers
about new downloads, changes made and bugs that were still unsolved.

It was nice to have beta testers around. They always look in a different way to a
piece of software than the developer because the developer is too close on the project to
maintain an objective view and notice the flaws and bugs.

Thank you testers!

5.5 Last but not least
Finally I wrote the document you are reading right now. I look at this document to
justify all the design choices and time spent.

43

http://www.students.science.uu.nl/~3688844/ND-app/

Bibliography
[1] Development website.

[2] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Trans.
Program. Lang. Syst., 4(2):258–282, April 1982.

[3] Vincent van Oostrom and Tim Selier. Clickable proofs. February 2013.

[4] Hendrik Jan Veenstra, Vincent van Oostrom, Albert Visser, and Jesse Mulder. Parvu-
lae logicales: Propositielogica.

[5] Wikipedia. Fitch-style calculus.

44

	Introduction
	The app
	Proofpieces

	The graphical user interface
	HTML5
	iOS
	Objective-C
	Cocoa touch
	Cocoa MVC

	Storyboard
	TopLevelViewController
	ToolboxViewController
	Building a proposition for a goal or premise

	The implementation
	Proposition
	Recursion
	VariableProposition

	Proofpieces
	BuildingBlock, DropZone
	assumptions
	OwnerTuple

	NaturalDeductionViewController
	Token Provider

	Manipulations
	Initializing a Proofpiece
	Combining proofpieces
	Unification
	Drag and Drop

	Splitting
	Ununification
	Drag and Split

	Duplicating a proof
	Instantiating a duplication
	Context menu

	Removing a proof
	Context menu

	Future features
	Sharing
	Saving
	Real multiplatform
	Interaction

	About this project
	Settings our goal
	Learning objective-C
	Formalizing and programming
	Debugging and closed beta testers
	Last but not least

	Bibliography

