
Formalisation of version control with an emphasis on

tree-structured data

Sjoerd Tieleman

August 5, 2006

First supervisor: Vincent van Oostrom

Contents
Preface 3

1 Introduction 4

1.1 Relation to Cognitive Artificial Intelligence 5

2 Formal properties 7

2.1 Preliminaries . 7

2.2 Three-way merging and residual systems 9

3 On text 16

3.1 Subversion . 16

3.2 Darcs . 28

3.3 Miscellaneous notes . 33

4 On trees 35

4.1 Operations on trees . 38

4.2 Tree tools . 40

4.2.1 3DM introduction . 41

4.2.2 Tree matching . 47

4.2.3 Chawathe's matcher . 49

4.2.4 Edit script disambiguation 53

5 Conclusions & future research 57

5.1 Caveats . 57

5.2 Future research . 59

References 60

2

Preface
I would like to say thank you to the following persons who have in some way con-

tributed to this thesis.

Irene Conradie, for her continued support and love, even at times when I was

not too sure about this thesis myself. Thank you for giving it a final read and for

your immaculate grammar checking. My parents Herbert and Ineke, for their faith

in me even when it all took a bit longer than expected. My supervisors Vincent van

Oostrom, Jeroen Scheerder and Albert Visser. Everyone at the “Studielandschap”

who was going through the same thing for the past through months (you know who

you are!). Xander Schrijen, for being a generally smart person and for pointing me

towards Darcs. My (former) colleagues at the IT department, for a mostly great time

these past few years. Besides these people, there have been countless others who gave

me pieces of advice, went out for beers with me and in general gave me a brilliant time

at the University Utrecht. Thank you very much and enjoy this thesis!

This thesis was typeset using the (generally) excellent XeTeX1 software by Jonathan

Kew.
1http://scripts.sil.org/xetex/

3

http://scripts.sil.org/xetex/

1 Introduction
As Lindholm put it so aptly in the opening words of his thesis [Lin01]: “Keeping

data up-to-date across a variety of devices and environments is becoming more and

more important”. We are seeing a sharp increase in the use of mobile devices. These

are small, portable devices which allow us to communicate and be productive in

places (such as public transportation) in which the possibilities were until recently very

limited.2 However, with the coming of these new devices over the last few years, new

questions have risen. For example, how do we make sure that the address book on

every device is up-to-date? Or that all our scheduled appointments are available on

all of our devices? Moreover, how do we propagate changes made on one device

to another? How can we allow two different persons to collaborate on a shared

document? Most of these issues are of considerable interest and seem to centre on

a single topic: the sharing and updating of data. Thus, the central question of this

thesis will be:

How can a formal model of version control on structured data be con-

structed?

The research question will be answered by taking the followings steps. Firstly,

a model will be presented believed to represent version control for arbitrary data

structures; later on, the focus will shift towards ordered lists of lines (for version

control on texts) and ordered trees (for version control on structured data, such as

XML), so a good abstract description will be applicable to both. Secondly, it will be

shown that the model holds for version control as it is implemented in several modern

VCS3s (as operations on ordered lists of lines). Thirdly, the model will be applied

to ordered tree structures (moving from ordered lists of lines to ordered trees, which

form the basis of the syntax of XML, iCal, LaTeX and other tree-like structures).

Finally, the conclusions and the work that still has to be done will be presented.

One of the topics that will be studied is a process known as three-way merging:

two data structures that are derived from a single structure can be merged in such a

way that they become a single, unified new structure. The three-way merge usually

occurs within the context of VCSs. For example, assume that two people are working

on a single document. Each one of them can make a copy of this document and make

some modifications to it. These two new documents may need to be merged in such

a way that the modifications made by both persons are preserved.
2One might argue that the ability to be ‘productive’ anywhere is not A Good ThingTM.
3Version Control System

4

As we will see, traditional VCSs operate on ordered lists of lines (texts). They

are able to operate on the text representation of other structures (such as trees), but

operating directly on the structure instead of the text representation of the structure

allows one to extract more information. It is much more meaningful to be able to say

that a subtree was moved from position a to position b in a tree, than it is to say that

a bunch of text lines was deleted and that some other lines were inserted at a different

position. This is more meaningful for three reasons:

• The description that can be given of some modification is more closely related

to what actually happens. For example, suppose we are editing some LaTeX

document and decide to move an entire chapter with paragraphs, images, tables

and all other content to a different position in the document. One would like

to say that we have moved the chapter (and all of its content) in one single action,

instead of saying that we deleted the chapter and all of its content, and inserted

a new chapter somewhere else (which incidentally has the same content as the

chapter we deleted).

• It allows us to avoid certain problems that arise when we are performing three-

way merging on the text representation (as we will see later on in Section 4).

• The context4 of a node might be used to extract extra information to provide

meaningful help messages or better user interfaces.

1.1 Relation to Cognitive Artificial Intelligence

This work is primarily situated in the field of ubiquitous computing. The term was first

coined by Mark Weiser [Wei91] and covers not only the fact that devices get more

and more portable (e.g. taking your computer with you), but also the fact that it is

desirable that applications and data can move freely between devices (e.g. having all

your stuff available on all your devices). In my view ubiquitous computing is a viable

part of Cognitive Artificial Intelligence as it is a great challenge to provide people

with a consistent, easy-to-use environment. Not only does it require knowledge of

computer science, it also touches upon subjects such as usability, communications

and logic. The topics presented in this thesis are meant as low-level foundations for

tools that can be used to facilitate work on shared documents. These foundations

allow more meaningful information to be extracted and presented to the user, since

preserving structure when modifying data allows one to make use of the information

4Informally: any relevant information such as its content, its siblings, its children.

5

in the structure. The design and implementation of these high-level tools will be left

out of this thesis; but it is the work that is presented in this thesis that allows more

“cognitive” tools to be developed.

The model presented in this thesis allows one to construct user interfaces that

are more intuitive to understand, like a text processor that can understand when an

entire chapter has been moved to a different location in a text and give meaningful

feedback about it to the end user. It can also be useful in a situation where multiple

persons are working on a single document and conflict situations arise. Tools that can

provide meaningful explanations and suggest conflict resolutions can contribute to a

more productive work environment.

Before one can concentrate on the higher level tools that enable all this, one has

to start at the bottom and work one's way up and that is what this thesis focuses on:

working from the bottom up to provide solid ground for the aformentioned tools to

be built upon. Therefore, the first step will be to introduce a model and take it from

there.

6

2 Formal properties
In this section a formal description of version control on a single data structure will

be introduced. An informal definition of what is meant with “version control” will be

given. By version control one can think of two things, roughly split up in a “version”

part and a “control” part, respectively:

• Retaining all the changes that were made to some data structure allows us to see

the entire history of this data structure from the moment it was created to the

moment the last update took place.

• Facilitating the collaborative work on this data structure allows multiple persons

(or computer processes) to modify this data structure concurrently without any

locking issues5 or other constraints.

This is a generalised notion of version control, but these are the two subjects that are

the focus of interest here. Two very important6 concepts in version control are:

Differencing The process of obtaining the difference between two data structures,

also known as obtaining a transition or step to transform one data structure

into another.

Merging The process of combining two data structures to create a new one, while

retaining as much information from both as possible.

2.1 Preliminaries

Version control will be modelled using an abstract rewriting system (ARS) [Ter03]

because an ARS is an elegant, abstract system that can be used to describe changes in

objects. By “abstract” it is meant that it is not defined on what kind of data structures

the model operates. Defining this model in such a way allows it to be used on a wide

variety of data structures, because it is not confined to certain structures. Using it in

real-life situations requires an implementation, and it will be this implementation that

determines on what kind of data structures the model can operate. For now, an ARS

is defined as a quadruple hA, Φ, src, tgti, where:

5Locking issues occur when some process locks the data structure while it is modifying it, such that
no other process can modify it at the same time.

6They are important in the sense that differencing allows us to generate a transition from one object to
another and merging allows concurrent modifications to an object to be reconsolidated in a new object.
Differencing has importance in the “version” part, as it allows us to construct transitions between objects,
merging has importance in the “control” part as it facilitates concurrent work on an object.

7

• A is a set of objects, denoted {a, b, . . . };

• Φ is a set of steps denoted {φ, √, . . . };

• src and tgt are the source and target functions respectively, mapping steps to

objects.

For any step φ : a → b the following holds: src(φ) = a and tgt(φ) = b. This

can be seen as a simplified version control system by assuming that the objects are

the different versions of a file. The steps are the changesets leading from one file to

another; a changeset being defined as an ordered structure of actions to be performed

on its source object to construct the target object. For example, let A be an ARS as

introduced above. Suppose there is some original file a that is put under version

control. This file is added to a repository in its initial state. Now one can make some

changes to this file. At a certain point, one may decide that this new version (let's call

it b) is finished, and commit it to the repository. This new version gets stored in the

repository, and so does the step φ : a → b which is calculated using objects a and

b.7 This means that in its initial state (after adding a to the repository), the ARS looks

like:

h{a}, ∅i

For brevity the src and tgt functions are omitted; A = {a}, Φ = ∅. After the commit

of b the ARS will look like:

h{a, b}, {φ : a → b}i

This means that there now exists a mechanism to perform version control on an object:

starting with an initial object and using steps this results in updated versions of this

object. However, this is not sufficient for complete version control. Version control

also has the property of being able to move backwards from an updated version as far

back as the initial version. Suppose there exist two objects a, b and the step φ with

src(φ) = a and tgt(φ) = b. From this step, one would also like to be able to calculate

the converse step √ with src(√) = b, tgt(√) = a, which allows the transition from b to

a.8

7For now it is not specified how this step gets calculated, this will be explained later on.
8This may seem redundant because a and b are both in the repository at this time. However, we will

see that VCSs almost never store all the objects in the repository, but use a sequence of steps to obtain
objects.

8

2.2 Three-way merging and residual systems

Important in version control is the three-way merge, a combination of differencing and

merging. Three-way merging in version control occurs when there are two modified

versions of a single file; for example, when two persons are working on the same file.

Both may have started from the same file and may have made modifications to it. At

some point these files need to be reconsolidated and preferably this should be done

in an automated fashion.9

Three-way merging in version control (on a single data structure, such as a single

file) will be defined in the context of a residual system with composition [Ter03]. A

residual system, which is an extension of an ARS, requires that for any pair of co-initial

steps from a single state, the residual of the first after the second and the residual of

the second after the first have the same target. This can be illustrated by using a

picture (see Figure 1).

a
φ

ƒƒ°

°

°

°

°

°

°

°

√

¬¬

>

>

>

>

>

>

>

>

b

√/φ
¡¡

=

=

=

=

=

=

=

=

c

φ/√
°°¢

¢

¢

¢

¢

¢

¢

¢

d

Figure 1: Simple residual system

This picture looks attractive to our notion of three-way merging, because there

exist three objects a, b, c and by combining these three objects (and their steps) we

can obtain a new object d which is a result of both φ and √.

An abstract residual system with composition is defined as hA, 1, /, ·i, where:

• A is an ARS;

• 1 is a function from objects to steps;

• / is a function from pairs of co-initial steps to steps;

• · is a function from steps to steps.

For every object a, its trivial step 1a : a → a exists, and for every pair of composable

steps φ : a → b, √ : b → c, their composition φ · √ : a → c exists. Two steps φ, √ are

9Recall the “control” part in version control.

9

composable iff tgt(φ) = src(√). The composition of two steps φ · √ is a new step in

Φ. In some cases it can be reduced to a simpler new step δ where:

src(δ) = src(φ)

tgt(δ) = tgt(√)

It should be noted that by performing this reduction, it becomes impossible to track

which part of δ came from φ and which from √. To retain this information one

simply should not perform the reduction.10 Let us assume that this reduction can

be performed in some cases, because it is dependent on the implementation whether

this is actually the case.11 However, it should be borne in mind that this may be used

later on. For example, suppose there is some step φ that modifies a set of lines in

some text document and suppose there is have some other step √ that modifies a

different set of lines in the resulting document from step φ, then these two steps can

be combined into one step that modifies both sets of lines. It should be noted that

it cannot be determined anymore from which step which change came, as both steps

are now combined into one.

φ/√ can be read intuitively as φ after √, it is a step consisting of that part of φ

which remains to be done after performing √.

Residual systems are required to satisfy certain identities as listed in Table 1, the

first four identities are relevant for all residual systems, the last three only apply to

residual systems with composition.

The first identity is the most important property concerning residual systems, it is

known as the cube identity, or cube law and states that different paths can be equivalent.

See, for example, Figure 2. Step δ can be written in two ways, depending on which

path has preceded it; first taking the step √ : a → b, or first taking the step χ : a → d.

For good measure, √ and χ are said to be co-initial. Likewise, the steps √/χ and χ/√

are cofinal. δ can be written as (φ/√)/(χ/√) or (φ/χ)/(√/χ). It should be noted

that this does not only hold for the paths we have drawn in Figure 2 (using the double

arrows), but for any of the final steps with target •. From this we may conclude that

for any three co-initial steps, the order in which they are traversed is not relevant. This

means for version control that the order in which any three versions are committed is

not relevant for the end result of a merge between these versions.

10This reduction can be of use in situations where storage space is limited and one is striving for a
space-efficient solution.

11Nowhere in residual systems is it said that this reduction can actually be applied, so we leave it to
our implementation to take care of that.

10

(φ/√)/(χ/√) = (φ/χ)/(√/χ)
φ/φ = 1
φ/1 = φ
1/φ = 1

1 · 1 = 1
χ/(φ · √) = (χ/φ)/√
(φ · √)/χ = ((φ/χ) · (√/(χ/φ)))

Table 1: Residual identities

◦ •

c

~

~

~

~

~ ◦ δ

;C

~

~

~

~

~

~

~

~

d ◦

a

χ

√
+3

φ ¢

¢

¢

¢

¢

b

KS

¢

¢

¢

¢

¢

◦ •

c

~

~

~

~

~

+3 ◦ δ

;C

~

~

~

~

~

~

~

~

d ◦

a

χ

KS

√

φ ¢

¢

¢

¢

¢

b

¢

¢

¢

¢

¢

Figure 2: Cube identity in effect, δ can be written in two ways depending on the path
preceding it.

11

The remaining three identities can be understood fairly easily:

• The residual ‘φ after φ’ is equivalant to the trivial step 1 (second identity);

performing that part of φ that is not in φ means that we do not have to perform

anything at all. Hence it is called the trivial step.

• The residual ‘φ after the trivial step’ is equivalent to φ (third identity); per-

forming that part of φ that is not in 1 means that one has to perform φ in its

completeness, since 1 is inherently an empty step.

• The residual of ’the trivial step after φ’ simply is equivalent to the trivial step;

the trivial step is empty, and therefore one does not have to perform anything

at all.

Still, before being able to perform a three-way merge in a residual system one

require the ability to calculate the difference between two objects (as the objects may be

present, but not necessarily the corresponding steps). Therefore, a new kind of system

is introduced: an abstract version control system which is defined as hAR, ¯ , −i,

where:

• AR is an abstract residual system;

• ¯ is the converse function from steps to steps;

• − is a binary function from objects to steps called difference.

This is an extension on residual systems, because we add the converse and the

difference function. The converse function allows one to calculate a converse step from

a step. Also, the converse of the converse step is the step itself. For example, if φ

is a step, then φ is its converse, where src(φ) = tgt(φ) and tgt(φ) = src(φ). This

automatically means that they are composable and therefore the following holds:

src(φ · φ) = src(φ) = tgt(φ) = tgt(φ · φ)

It should be noted that this composition is not equal to 1src(φ)
12, but it is equivalent

in its source and target, meaning that it is a step from an object to itself.13

The difference function is required to be able to deduce or calculate the step from

one object to another. The function is such that for any two objects a, b ∈ A, it

12After all, we are performing φ, followed by φ.
13The reader should note that not all details concerning the converse and difference functions have been

studied fully, as they are beyond the scope of this thesis. Therefore, it is advisable to do a more thorough
study on the interactions between the various operators in the future.

12

can derive the step a → b. This can be represented as (b − a). This system also

introduces a new identity, listed in table 2. The difference between a and b is equal to

the converse of the difference between b and a.

(a − b) = (b − a)

Table 2: Version control identity

The system makes it possible to have the possibility to move back and forth

between objects using the converse function. The difference function is available, which

allows one to calculate steps between objects and the converse function is available,

which allows one to calculate a step b → a from a step a → b.14 Now the three-

way merge can be described in terms of our operators. The three-way merge is a

ternary function from objects to steps (see also Figure 3, where the dashed arrow is

the resulting (reduced) step):

b ta c =def (b − a) · ((c − a)/(b − a))

The alternative (projection equivalent) step (c − a) · ((b − a)/(c − a)) could have been

taken as well, since three-way merging was defined as a residual system.

a
(b − a)

ƒƒ°

°

°

°

°

°

°

°

(c − a)

¬¬

>

>

>

>

>

>

>

>

≤≤

¬

¬

¬

¬

¬

¬

¬

b

(c − a)/(b − a)
¬¬

>

>

>

>

>

>

>

>

c

(b − a)/(c − a)
ƒƒ°

°

°

°

°

°

°

°

•

Figure 3: Three-way merge

(b − a) · ((c − a)/(b − a)) is of the form φ · (√/φ). According to the laws

of residual systems [Ter03] this is by definition equivalent to φ t √, where t stands

for designated join and should not be confused with the three-way merge, which is a

function from objects to steps, whereas the designated join is a function from pairs of

co-initial steps to steps. Thus, the three-way merge can also be written as:
14One might wonder why the converse step is relevant at all. After all, it was stated that one can use

the difference operator to determine the step between any two objects. This matter will be addressed in
the next section, as it turns out this will come in handy if one doesn't have all the objects available.

13

b ta c =def (b − a) t (c − a)

Perhaps this is a more “natural” notion, as this states that the resulting step is the

join of the changes between a and b and a and c, which is intuitively correct.

The aformentioned projection equivalence (') and projection order (.) relations for any

pair of co-initial steps φ, √ are defined as:

φ . √ if φ/√ = 1
φ ' √ if φ . √ and √ . φ

Projection order can be read intuitively as: “φ is completely contained in √”. In the

case of version control, this means that one set of modifications to a file is completely

contained in the other. Projection equivalence therefore means that both modifications

are completely contained in each other and are thus equivalent, but not necessarily

identical.15 Again, according to the laws for residual systems the following holds:

φ t √ ' √ t φ

(φ t √) t χ ' φ t (√ t χ)

Having defined our three-way merge of the form φ t √, it may therefore be

concluded that:

b ta c ' c ta b

(b ta c) ta d ' b ta (c ta d)

This presents us with two properties for our system:

1. Owing to the commutativity of the three-way merge the order in which two

versions are committed does not matter for the end result;

2. Owing to the associativity of the three-way merge the order in which multiple

(two or more) merges are applied does not matter for the end result.

In other words, the order in which two or more users commit their versions is not

relevant.16 It should be noted that we are only stating this for the cases where there is

automatic merging possible. If automatic merging is not possible due to overlapping

15The main point is that they contain the same modifications, but not necessarily in the same order.
16This point was also noted when explaining the cube identity.

14

steps, then it is assumed that these properties still hold, even though manual, human,

intervention is required. This intervention typically involves a social process in which

the committers all need to agree on which merge is the correct one.17

17Yes, all of them should agree.

15

3 On text
The purpose of this section is to show that the model as introduced in section 2 actually

applies to the current version control systems such as CVS, Subversion, Darcs, and so

on. The ability of these VCSs to operate on texts will be discussed. I will argue that

the version control system introduced in section 2.2 is sufficient for this purpose.

3.1 Subversion

Subversion [CSFP06] and CVS18 are fairly similar in the way they operate. For instance,

they are similar in the way they treat files (per default) as ordered lists of lines and similar

in the way they represent changesets19. Subversion will be the main focus here, because

it is designed as a replacement for CVS, comprehending the basic functionality CVS

has to offer as well as extending it and being more modular in design. Following the

lines of the previous section, it may be said that:

• A file can be seen as an object in a rewriting system. In this thesis text files will

be discussed20, which are represented as ordered lists of lines;

• The difference between two versions of a file, a and b can be represented as a

step a → b;

• A three-way merge of three versions of a file, a, b and c leads to a new file which

incorporates all changes;

• Only delete and insert operations are available. Line modifications, for example,

changing a few words, are represented as a line deletion and insertion. The

same holds for line moves, if a line is moved from position 4 to position 10,

then this is represented as a deletion at position 4 and an insertion at position

10.

How does this work in actual practice? Typically, a user creates a repository in a

central place. This repository will hold all of the files. When a file a gets created

(possibly on another machine, but not necessarily), it optionally receives some initial

modifications and is added to the repository. It is this last step, adding the file to

the repository, that is of interest. The creation of a repository or the creation of a

18Concurrent Versions System
19Changesets are comparable to steps.
20As opposed to arbitrary data structures, which VCSs can also handle, but not so well. In fact, this

thesis is all about the ability of VCSs to be able to operate on more complex data structures.

16

file is not of particular interest. The file is added to the repository by transmitting it

entirely to the repository. As this is the first time that something is added, one can't

help but send over the entire data structure to the repository. Before the user can

take advantage of all the features that version control offers, the file first has to be

checked-out of the repository. This creates a working copy on the users machine. The

reader should note that the working copy and the repository need not be on the same

physical machine (but they may). The working copy is said to be local in the sense that it

is on the users machine. The repository is commonly referred to as being remote. After

checking-out, some changes may be made to the file, leading to local modifications

that are not present in the repository. If the user would commit these changes to the

repository, then the following sequence of actions would be performed:

• The modified file is compared to a locally stored file (in the .svn directory of the

working copy which contains various metadata, including a pristine, unaltered

copy of the file);

• If there are local modifications (and there are in this case) the difference between

the modified version (b) and the original version (a) is computed (using some

differencing algorithm, our − function) as b → a;

• This difference is then sent to the repository where it is stored.

The reader should note that not a → b is used here, but b → a. The step required

to go from b to a is known as a reversed step (or the converse step). For performance

reasons the new version b is stored full-text in the repository with a reversed changeset

b → a to obtain older versions, because most development on a file is assumed to

occur in the most recent versions. This guarantees that the newest version can be

extracted very fast, but older versions can be extracted in near-linear time (linear in

the number of versions you are going back). In the terms used before: b would be

stored, alongside a b → a. Combining b with b → a gives us a again. For now, it

is claimed that b → a can be constructed from a → b, but this claim will be further

developed later on.

For example, suppose there exists some file “test” containing three lines (aptly

named “First line”, “Second line” and “Third line”). Deletion of the second line

results in a changeset that resembles the following:

17

Index: test
===
--- test (revision 1)
+++ test (revision 2)
@@ -1,3 +1,2 @@
First line;

-Second line;
Third line;

Similarly, the reverse changeset, obtained by running diff with its input files swapped,

is21:

Index: test
===
--- test (revision 2)
+++ test (revision 1)
@@ -1,2 +1,3 @@
First line;

+Second line;
Third line;

It should be noted that this is the actual output that Subversion generates if you

issue a diff command to determine the differences. Enough information is preserved

to be able to reconstruct all pieces of a file from a single version, be it the oldest

or the newest, plus its changesets. A slight elaboration on the syntax is in order.

The first four lines of the diff are primarily for display purposes. It contains some

relevant information, namely the name of the file (“test”) and the two revisions that

the diff is calculated for (revision 1 and 2). The “---” and the “+++” indicate which

revision is the source (“---”) and which is the target (“+++”). The fifth line indicates

which portions (or hunks) in the files are modified. The fifth line of the second

changeset can be read as: in revision 2 lines 1 through 2 are considered modified and

in revision 1 lines 1 through 3 are considered modified. This information (which lines

are considered modified) is not used for conflict detection/resolution, which occurs

in a different phase (more on that later).

The three-way merge in Subversion is accomplished as follows: suppose a user

makes some changes to a file that was obtained (checked-out) from the repository.

Before it is committed back to the repository, somebody else already made some

21There exists no software tool or argument for diff to calculate the reverse diff from the original
output, but a tool that can parse the output and return a reverse diff should not be hard to write.

18

other (disjoint) changes to the file and committed it to the repository. As the users

attempts to commit the changes, a notification comes from the repository that the

version that the modifications were made in is outdated and the local copy should

be updated. With disjoint changes we mean that both versions contain modifications

on different lines, i.e. no overlapping edits. This is the standard case, we will see

a counter-example later on.22 At this point the three-way merge takes place on the

client, not on the machine that hosts the repository. So, the user has three versions

at his disposal: the version that’s the most current version in the repository (rep), the

version that he has made his changes to (the working copy: wc) and the version that both

versions originated from (org). Three-way merging can then be expressed as:

wc torg rep

The graphical representation can be seen in Figure 4.

org
(wc − org)

||z

z

z

z

z

z

z

z (rep − org)

""

E

E

E

E

E

E

E

E

wc

(rep − org)/(wc − org)
""

E

E

E

E

E

E

E

E

E

rep

(wc − org)/(rep − org)
||x

x

x

x

x

x

x

x

new

Figure 4: Three-way merge in Subversion

As can be seen, the end result is a new version “new”. This new version is not

automatically committed to the repository, but remains in the users working copy.

The user can choose to inspect it (to verify that all changes have been correctly incor-

porated), possibly modify it and commit it to the repository.

The only changesets that are used here are the changesets (wc − org) and

(rep − org). Is has not yet been specified how they were obtained. In fact, a client

application may choose to record all changes to a file as they are made. This means that

the changeset does not have to be computed at commit-time, but is already available

for use. However, the standard Subversion client does not do this as it requires

support in the text editor one uses. So, the standard Subversion client simply uses a

differencing algorithm to obtain this changeset known as xdelta.

22This notion of overlap probably has some resemblance to the notion of critical pairs in term rewriting
systems [Ter03]. In fact, version control on texts could probably be represented as a string rewriting
system. This direction will not be pursued, but it may be interesting.

19

What remains to be defined is what the / does in this case. Recall the definition

from the previous section: / is the residual operator and φ/√ can be read as φ after

√. So, at some point √ has been performed and next φ is performed minus any

steps that have been taken by √. In the terminology of Subversion this means that

(rep − org)/(wc − org) can be read as performing that part of (rep − org)
that is left after (wc − org). The reader should recall that both versions of the

file (the working copy and the one that's currently in the repository) have disjoint

modifications. Therefore, in this case (rep − org)/(wc − org) is equivalent to

(rep − org) (and likewise for the complementing step). However, difficulties may

arise if this is claimed, because the sources and targets for composition are now off. We

cannot say that they are truly equivalent. Recall Figure 4 which implies the following:

src((rep − org)/(wc − org)) = wc

tgt((rep − org)/(wc − org)) = new

src((rep − org)) = org

tgt((rep − org)) = rep

These steps are however almost equivalent in terms of specifying which actions need

to be taken to get from “wc” to “new”. For example, suppose that in (wc − org)
some lines (between lines 3 and 4) were inserted into the data structure. That means

that (rep − org) might not be able to be applied directly if it is located after these

lines, as it could have the wrong line numbers associated with it. Therefore, the step

requires some post-processing and one could say that the residual operator is exactly that

post-processing.

As said, in some cases, however, it is possible that there are overlapping edits.

Some of these can be automatically applied, for example, suppose a users creates

some file consisting of the following lines:

First line;
Second line;
Third line;

He commits this file to the repository. Someone else checks out this file and makes

some modifications to it, resulting in a new version:

20

First line;
Second line, with edits;
Third line;
Fourth line;

This version is committed to the repository. Meanwhile, the user has made a modifi-

cation, which yields in the following version:

First line;
Second line, with edits;
Third line;

That is, he has made the same edit to the second line, but has omitted adding the

fourth line. When he tries to commit this, he gets the “out of date” message and

is required to update his local version. Subversion is smart enough to notice that

even though there are overlapping edits (the second line), both edits are the same and

automatic three-way merging occurs, yielding in a version where both the edit of the

second line and the adding of the fourth line are present. He is then free to commit

this version.

Alternatively, suppose the repository contains the original file as listed previously

(which consists of three lines). Now, again assume that two people create their own

versions:

First line;
Second line; (modified)
Third line;

First line;
Second (inserted) line;
Third line;

These versions cannot be merged automatically, as both persons have made different

edits to the second line. This is where granularity (also) comes into play. For Subver-

sion, the granularity is at the level of individual lines. That means that the smallest

modification it can observe is a line modification. It does not matter if only one

letter is changed in the line, or the whole line is modified, it will only notice that the

21

line has been modified. The granularity could be increased to for example the level

of individual words (white-space separated entities). But for most general purposes,

granularity at the level of individual lines is sufficient. In this example one would be

able to make use of an increased level of granularity as modifications were made to

different parts of the line, so they could be consolidated into a single new version:

First line;
Second (inserted) line; (modified)
Third line;

So far, we have seen how the system introduced in the previous section can be

mapped onto Subversion. However, one problem remains, that is how to define the

semantics of the "/" operator, which can be roughly translated to the question: which

three-way merges can be performed automatically and how are they performed?

• φ/√ can be performed automatically, if:

– There is no overlap between φ and √.

This cannot be expressed formally as there is no way to correctly represent

overlap between φ and √. For text it suffices to say that each step modifies

its own distinct part of the file: φ modifies some set of lines (a continuous

block of text), √ modifies some set of lines, with φ ∩ √ = ∅.

– φ ' √

If φ and √ are equal at least up to projection equivalence, then the same edits

have been made, and there exists no conflict.

– φ . √ or √ . φ

Recall that φ . √ if φ/√ = 1. This means that every change made in φ

is also in √. Therefore, no conflict exists. Likewise for √ . φ.

• φ/√ cannot be performed automatically in all other cases.

Combining all this, we can start to model Subversion using the systems introduced

in the previous section. Let A be a rewriting system hA, Φ, src, tgti such that:

• A is a set of key-value pairs (x : a) where x is some natural number x > 0 and

a is an ordered list of text lines. x will be known as the revision number and can

22

be used to identify a version;23

• Φ is a set of tuples (φ, x, y) where φ is …and x, y are two natural numbers

x, y > 0 pointing to versions in A, not unlike keys in a database or pointers in

programming. x, y are the src and tgt of the step respectively;

• src and tgt are two functions Φ → A, able to extract the source and target

objects from a step by dereferencing (looking up) the labels x, y in a step.

It is important to bear in mind that rewriting systems implicitly have a way of com-

bining an object with a step to get a new object. The presented system requires some

mechanism to do this and that mechanism will be the traditional UNIX patch tool. It

takes an object and a step as its arguments and returns the patched object.

Let AR be a residual system with composition hA, 1, /, ·i such that:

• A is the rewriting system that was just created;

• 1 is the trivial (empty) step;

• / is the residual operator for any pair of co-initial steps Φ × Φ → Φ;

• · is the composition operator for any pair of composable steps Φ × Φ → Φ.

This extension allows one to speak of empty steps, the use of the residual operator

(which we will use in modelling the three-way merge) and the composition of steps

(more on that later).

Let AVC be a version control system hAR, −,̄ i such that:

• AR is the residual system introduced above;

• − is the difference operator A × A → Φ, for convenience we could just use the

UNIX diff tool for this;24

• ¯ is the converse operator Φ → Φ.

23Caveat: this only applies to the situation where we have one file in our repository. If we are adding
more files, then we need to add these to the existing rewriting system, or create a new rewriting system
for that file. That means we have to account for interactions between these files and use a different
identifier than revision numbers since revision numbers in Subversion apply to the entire repository and
not in a file-by-file fashion where each file has its own revision number. CVS, however, does allow files
to have its own revision number.

24Note that this is not the default tool Subversion uses, it uses a custom algorithm called xdelta.
However, Subversion allows you to choose your own diff tool, so we can use diff for it.

23

Again, this is an extension of our system. The difference between two objects

can now be calculated. This is necessary because the step may not always be available.

Furthermore, the requirement that steps can be reversed can now be fulfilled.

For illustrative purposes it will be shown how a typical workflow in Subversion is

handled by the formal model. The following actions will be performed:

1. Create a repository.
This is as easy as instantiating the aformentioned model using A, AR, AVC .
This results in an empty repository where A = ∅, Φ = ∅.

2. Import a file into the repository.
This is done in Subversion using the svn import command. Suppose a file a is
imported. This updates the repository to A = {(1 : a)}, Φ = ∅.

3. Check-out the repository.
One can use the svn checkout command. This results in a working copy on the
client machine.

4. Modify the file.
Use your favourite text editor.

5. Commit the file.
This is where it gets interesting: at the moment the svn commit command is
issues, the difference between the modified file (let’s label it “b”) and the pristine
version “a” is calculated using (b − a). This results in the step (φ, a, b). This
step φ (which is shorthand for (φ, a, b)) is sent to the repository, where it
is used to construct b from a. b is stored full-text in the repository, a is
deleted and φ (the converse) is stored in Φ. That results in the following:
A = {(2 : b)}, Φ = {(φ, a, b)}.25

6. Again, modify the file.
Use your favourite text editor once more.

7. Let someone else commit a (different) modified version.
Suppose someone committed a new version c before you were able to commit,
that leaves the repository as: A = {(3 : c)}, Φ = {(φ, a, b), (√, b, c)}.

8. Attempt to commit the modified version, resulting in a three-way merge.
Trying to commit version d, the user gets notified that the version he started
working on (b) is outdated and superceded by c. This requires that he updates

25The observant reader probably notices that a was deleted, but a step (φ, a, b) is still available from
which one should be able to extract the source and target objects. The source is not particularly hard, as that
is b, which is in A. The target however is a which was just deleted. So, the pointer analogy is not entirely
correct, because the pointer is still there, but the object no longer is. Of course this can be repaired by
augmenting the src and tgt functions in such a way that they can apply the needed steps to the object
that we do have in the repository to (re)construct the requested object.

24

his local copy. That results in a three-way merge c tb d. See Figure 5.
Recall that the three-way merge was defined as a concatenation of two steps,
in this case one can use: (d − b) · ((c − b)/(d − b)). Conveniently, (d − b)
is already available at the user’s disposal, it was calculated when first trying to
commit version d. What happens is that when updating d (using the residual
operator) the step (c − b)/(d − b) is calculated and applied to the working
copy d. (c − b) is available because that step can simply be retrieved from
the repository. Applying the new (concatenated) step effectively leads to a new
version e (assuming that the merge was applied succesfully). This new version
can then be committed, and the difference (e − c) gets calculated (which is
equivalent to (d − b)/(c − b), mind you, so this can be calculated by using
/ or by using (e − c)) and added to the repository. The new repository then
looks like:

A = {(4 : e)}, Φ = {(φ, a, b), (√, b, c), (χ, c, e)}

That indeed means the working copy d cannot be extracted anymore. It has
never entered the repository, and therefore one cannot return to that state.
Therefore, it is advisable that one verifies the merged version before committing
after a three-way merge (if at all possible).

b
(c − b)

°°¢

¢

¢

¢

¢

¢

¢

¢

(d − b)

¡¡

=

=

=

=

=

=

=

=

c

(d − b)/(c − b)
¡¡

>

>

>

>

>

>

>

>

d

(c − b)/(d − b)
ƒƒ°

°

°

°

°

°

°

e

Figure 5: Three-way merge in Subversion

This example should give the reader a bit of understanding how version control

actually works. As said, storing the reverse steps has the nice property that it is very

fast to check-out the latest revision (linear in object size: O(n) where n is the size of

the object). Older versions can be checked-out in O(n ·
P

m) time where
P

m is

the combined size of the steps that are required to be applied.26

Three things have not been explained yet: how the /, · and ¯ work.

• The residual operator operates on two co-initial steps and returns a new step.

Assuming the unified diff 27 is used for this, one can simply determine which

26This can probably be studied a bit better, however it is meant illustrative: no nasty complexity issues
arise.

27The unified diff can be calculated using the -u flag on the diff tool. This diff is reversable, and uses a

25

lines have changed between the source object and the two derived objects.

That results in two options:

1. There are no overlapping changes in the two derived versions;

2. There are overlapping changes in the two derived versions.

If there are no overlapping changes, then the residual operator can simply return

the (reduced) concatenation of the two co-initial steps. If there are overlapping

changes then there are (again) two options:

1. The overlapping edits are identical;

2. The overlapping edits are not identical.

If the edits are identical, then one can simply pick one and use that. If they

are not identical, there is a conflict and one cannot continue. Having a conflict

requires that you are required to manually merge the files and mark the result

as resolved before anything else can be done with the file. Intuitively this means

that the three-way merge is not finished until it has been manually resolved.28

• Assume there exist two composable steps φ, √, where composable means that

tgt(φ) = src(√). Composition can be achieved by simply performing the first

step and then the second. Reduction of two composable steps is somewhat

harder, but not too hard, there are again two possibilities:

1. The steps are non-overlapping29;

2. The steps are (partially) overlapping.

In the first case, the reduction is simply a new step with its source the source of

the first step and its target the target of the second step. The new step can be

described by taking the union of the two steps, that is, a unified diff with its begin

position the smallest begin position of any of its composable steps and with

end position the biggest end position of the two steps. For example, assume we

have two composable steps φ and √. φ has start position line 5 and end position

line 8, √ has start position line 15 and end position line 20. The resulting step

will have start position 5 and end position 20.

block-like notation to highlight the changed parts of a file.
28Recall the remarks about manual intervention. We still assume the residual properties to hold even

after manual resolution.
29In a slightly different way from the residual case: composable steps that have overlapping edits do

not cause conflicts, they are sequential in nature, not parallel, meaning that they can always be applied in
order.

26

In the second case, two edits may have to be combined into one. Suppose the

following composable steps are available:

[...]
-Second line;
+Second line, modified;
[...]

[...]
-Second line, modified;
+Second line, altered;
[...]

These can be combined into a new reduced step that looks like:

[...]
-Second line;
+Second line, altered;
[...]

• The converse of a step can be done by switching its source and target and by taking

the unified diff, changing the order of line deletions and insertions (deletions

always precede insertions in this format) and replacing the + and − line flags

with − and +.30

In conclusion, it has been shown that the version control system Subversion can

be (partially) modelled by applying the model introduced in the previous section. Of

course some caveats apply. As said, we are operating only on one file here. VCSs

typically operate on multiple files. A design choice can be made here. One can

choose to combine all files in the same rewriting system. However, that may result in

unexpected results. For example, three-way merges can only be applied to versions

that originate from the same source object. There currently is no way to determine

that this is indeed the case as any step can be generated using the diff operator, not

just steps between corresponding versions. All that is stated is that there are some

objects that can be combined to form a new object. More on using multiple files (not

just in Subversion, but more generic) will be presented later on in the conclusion.

30Diff does not recognize line moves or updates. Everything is represented as a deletion and/or an
insertion, hence these are the only actions that Subversion detects.

27

3.2 Darcs

Another interesting version control system that shall briefly be mentioned is Darcs [Rou06].

It is interesting in that it takes a slightly different approach from the traditional VCSs

such as Subversion and CVS.

Roundy takes certain ideas from quantum mechanics and applies them to version

control. He speaks of changes to the tree (the file tree) as patches.31 These patches can

either be primitive patches (file add/removal, directory rename, hunk replacement32

within a file), or they can be composite patches. The formal model that was introduced

does not make any distinction between primitive or composite changesets, but it does

share some similarities with the system used by Darcs. For example, one could say

that steps always represent a composite patch which may only contain a single patch,

such as a line insertion.

This theory of patches that Darcs thrives on enables it have some “advanced” features

that other VCSs do not possess, such as:

• Every patch is invertible. Moreover, this inverse can be computed from knowl-

edge of the patch only;

• Sequential patches can be reordered, although this reordering can fail, which

means the second patch is dependent on the first;

• Patches which are parallel can be merged, and the result of a set of merges is

independent of the order in which the merges are performed.

A slight elaboration on these properties is in order. The first property (invertible

patches) is something that is also proposed in the formal model. Steps can be con-

verted and the converted step can be obtained from the original step alone. The

second property (reordering of patches) can in fact be seen as a mechanism to signal

conflicts. A reordering can and will fail due to a conflict, but also due to modifica-

tions that occur on lines that were introduced by some other patch. Roundy call this a

dependency. This can mean that the two patches (or in our case changesets) contain

conflicting actions or that one of the patches modifies pieces of other patches. The

third property states what we try to obtain using a residual system: merging of two

parallel patches can be obtained by taking any of the possible routes (applying the first

and then the second, or applying the second and then the first). The result will have

31Comparable to how other VCSs speak of changesets.
32The modification of one or more consecutive lines in a file.

28

to be the same, no matter which route has been taken. Again the independence of the

patches plays a role here.

Another design feature of Darcs is the fact that every check-out is in fact a new

repository on the user's system which is a branch in the central repository. This allows

users to take advantage of version control features inside their local repository without

disrupting the central repository. In this sense Darcs is a distributed version control

system. Darcs does not store reverse patches (or changesets) in its repository (as

Subversion and CVS do). As noted, this may turn into a computational nightmare.

Currently33, Darcs (the program itself) consists of more than 3800 patches. An initial

check-out takes considerable time, because every patch first has to be downloaded (in

total more than 500MB worth of patches) and then applied. To compensate for this

Darcs allows for checkpointing along the way. So, at given points one may choose

to create a snapshot of the files and store these in the repository. After that, upon

check-out (and provided one enters the correct command-line switch) one will get the

latest snapshot with any patches that may have been applied later. There is a drawback:

one can't go back further in patches then the checkpoint; it is only a partial repository.

However, one can pull additional patches from the central repository if needed.

Parallel patches in Darcs have a striking resemblance to our residual system. Darcs’

definition of merging two parallel patches to a single patch is:

P2||P1 ⇒ P2
0P1 ←→ P1

0P2

This reads as that two parallel patches P1 and P2 can be merged to a patch P2
0P1

which commutes with P1
0P2. The resemblance here is that in our model we can have

two changesets derived from a single source; performing a three-way merge results

in a new changeset which incorporates both changesets and is also independent in

applying the first after the second or vice versa. In that sense, they also commute.

Furthermore, Darcs has the property that a merge of two parallel patches cannot

fail. This seems rather odd, for there are merges that cannot be done automatically

(i.e. when we are in conflict). Darcs remedies this by constructing a special kind

of patch called a merger which still satisfies the commutation property and tries to

resolve this. In the case where there is no automatic resolution possible, Darcs uses

a CVS/Subversion like mechanism by inserting conflict markers (more on this later)

and requiring the user to resolve the conflict manually. This is actually quite close to

the assumption that conflicting merges are still a residual system, even if it requires

33As checked on june 13, 2006.

29

manual merging. Recall that the assumption is made that if there is a conflict, all

committers should agree on a resolution. If they all agree then the one can say that it

is still a residual system.

Darcs has a slightly different view on conflicts than Subversion. For instance:

in Subversion it is possible that a line has been modified in both versions of a file.

However, if that change is identical in both versions, then there is no conflict and

there can be automatic resolution. Darcs does not have this functionality. Instead, it

ignores the parts that are in conflict. Other parts that may be included in the patch

are performed as usual, only the conflicting parts34 are ignored. A conflict can be

resolved by introducing a new patch which has a dependency on both the conflicting

patches.

Dependency was already briefly introduced, but it deserves some more explana-

tion as it is an intrinsic part of Darcs. Normally, patches are independent of one

another. This means that they operate on separate parts of a file or on separate files.

Independent patches are very much preferred, because they have the commutation

property by definition. This also means that Darcs has no strict notion of ordering (if

all patches are independent). This is very much in contrast to “traditional” VCSs, such

as Subversion or CVS which induce a strict ordering on the files and the repository.

CVS does this on a per-file basis (each file has its own version number which gets

increased everytime a change to it is committed to the repository), Subversion does

this on a repository basis (each file does not have its own version number, but it is the

state of the entire repository that is recorded each commit). However, it is possible

(and useful) to obtain versions in Darcs. This is done by grouping a set of patches

into a tag. For example, if we were to release a software product which is maintained

in a Darcs repository, we may want to ship only a subset of the patches because we

are currently working on a new feature which is not yet fully implemented/tested.

Dependent patches introduce an ordering of patches. This ordering only holds

for the patches that are dependent on eachother. Dependency of patches in Darcs can

be seen as a directed graph. We'll restrict ourselves for the moment to hunk patches

where some text lines are changed in a document. The first patch that enters the

repository is often the initial state of a file. After that additional patches may be made

that apply to this file. For example, suppose we add a file to the repository that has

ten lines of text. Now we add to new patches, one that modified line 5 and one that

modifies line 8. These patches are independent of each other, but are dependent

on the first patch, as they modify something that was added by the first patch. We

34Most likely hunk replacements.

30

can visualize this by making the first patch the initial node of a graph, with edges

towards the other two patches. Because the last two patches are not dependent on

each other they do not have an edge between them. Now suppose we add a new patch

that changes lines 3 through 6. This means that this patch is not only dependent on

the first patch, but also on the patch that modified line 5. After that we may decide

that line 5 needs another change. This new patch is only dependent on the previous

patch that modified lines 3 through 6. See Figure 6 for a visual representation of the

dependency graph, the label in the node indicates the order in which they were added,

arrows from one node to another indicate that the node is dependent on the other

one.

?>=<89:;1
@@

°

°

°

°

°

°

°

°

°

°

^^

>

>

>

>

>

>

>

>

>

>

OO

?>=<89:;4
OO

?>=<89:;2// ?>=<89:;3

?>=<89:;5

Figure 6: Dependency graph after five patches

This makes Darcs quite a different beast from Subversion. For the formal model

this means that we are probably not going to be speaking much of objects, as everything

in Darcs is done in terms of patches (or steps). That means we might need some empty

object on which the steps can operate. However, the dependency between patches

cannot be so easily represented using our formal model as there exists no way of

expressing that two steps are dependent on each other (or on more than one step).

It should be noted that the strong notion of independence between the patches

in Darcs is a very attractive property to have. Compare this to the notion presented

earlier, that (due to the cube law) the order of commits is not relevant for the end

result. With additional research into Darcs one might be able to model Darcs using

the systems introduced earlier.

Even though there exists no way to indicate step dependence in the formal model,

it can be modelled usings objects and steps. The above figure indicates step depen-

dence. To model this using the version control model one needs to translate “step

dependence” to “object dependence”. If two steps are independent than they can be

co-initial. If two steps are dependent then they cannot be co-initial. In the depen-

31

dency example presented here, one could represent the dependencies using a residual

system as shown in Figure 7.

•

1

≤≤

•
2

ƒƒƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

3

¬¬

@

@

@

@

@

@

@

@

@

•
4

ƒƒƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

3/2
@

@

@

¬¬

@

@

@

•

2/3
ƒƒƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

•
5

ƒƒƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

(3/2)/4
@

@

@

¬¬

@

@

@

•

4/(3/2)
ƒƒƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

•

((3/2)/4)/5
¬¬

@

@

@

@

@

@

@

@

@

•

5/((3/2)/4)
ƒƒƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

•

Figure 7: Dependency graph converted for use with residual system

Intuitively, this translates to the fact that steps that are dependent on another step

can only operate on the resulting object of the step they are dependent on. Now, if

one wanted to release a version by using a tag (a selection of patches) as Darcs does not

explicitly have the notion of version, one could simply pick the corresponding object

from the graph in Figure 7. It should be noted that because this is now a residual

system the cube identity also holds and it is possible to have any number of steps that

are independent, thus co-initial. Again, the order of commits does not matter. To

make it a bit more concrete why dependent patches cannot be co-initial, assume for

a moment that we have two hunk replacement patches, one that inserts a line into an

empty document at position 1 and one that deletes the line from that document. If

one was to say that these patches are dependent, but also co-initial then the diagram

listen in Figure 8.

In conclusion, there is no way that one would be able to perform a delete before

an insert35, therefore these dependent patches cannot be represented as a co-initial

pair. It is highly recommended that additional research takes place to find the correct

mapping of the formal model to Darcs, as it has an interesting view on version control.

To find this mapping would go beyond the scope of this thesis.

35For obvious reasons, a line cannot be deleted before it is inserted.

32

•
insert

ƒƒƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

delete

¬¬

@

@

@

@

@

@

@

@

@

•

delete/insert
¬¬

@

@

@

@

@

@

@

@

@

•

insert/delete
ƒƒƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

ƒ

•

Figure 8: Insert/delete example

3.3 Miscellaneous notes

It should be noted that in the case of a conflict during three-way merging, both

Subversion and Darcs exhibit some (unwanted) behaviour: they both insert conflict

markers (as does for example CVS) into the file that is being edited. They are inserted

to make it more apparent to the user which sections are in conflict. However, in doing

so they disrupt the file they are operating on. An example of these markers is listed

here:

First line
<<<<<<< .mine
Second line, modified by me
=======
Second line, modified by someone
>>>>>>> .r110
Third line

This (simple) fragment has conflict markers around the second line, indicated with

“<” and “>” and the revisions. The first line after the conflict marker is modified by

the user as indicated with “mine”. The first line after the separator (“=======”) is

modified by someone else in revision 110 as indicated with “r110”.

The problem may be obvious, the VCS inserts its own text into files that may not

see this as valid strings, for example “=======” will not be recognised as a valid

statement in many programming languages. What's more, if one decides to move

from this line-based data structure to a different structure such as a tree (as we will see

later), chances are that these markers will invalidate the file’s structure by inserting data

into the textual representation of the structure. One might argue that files that are in

conflict require attention (to resolve the conflict) and therefore it is not a big problem

as the conflict markers will be removed by the user, however one would like to see

the conflict information stored alongside the original file and not inside as the chance of

33

data corruption is imminent. This calls for another extension on our version control

system, however I feel that this is beyond the scope of this thesis (but still worth noting

here).

34

4 On trees
We will now turn our focus to a different kind of structure: a tree structure. The

formal model introduced in section 2 will be used in applying it to tree structures. So

far we have already seen that what has been introduced can be used to model existing

VCSs (up to a certain point). The decision to focus on tree structures has been made

because they are the structures underlying the syntax of XML files [BPSM+04], a data

format which is open and easily readable. Furthermore, it is very useful for modelling

structured data. An XML file basically is a rooted, ordered tree. This means that an

XML file is required to have a single root element and all other elements are children

to this single root element. Not all XML files are required to be ordered, but we

will focus on ordered trees; the unordered case can be achieved by loosening some

restrictions on our model. The reader should note that while this sounds harmless, the

inherent complexity of comparing/matching trees will increase (and has been shown

to be NP-hard [Cha99], [ZWS95]).

While the aim is to eventually deal with XML files, all operations will be performed

on tree structures. There are different data formats that also structure data in a tree-

like fashion (such as the iCalendar format [DS98]) which we do not want to exclude

from the design. This means that if one was to implement the model, one would

have to use some parser to read structured files, perform operations on the underlying

tree structure, and output the new structure. This does not guarantee that reading

and parsing a file, performing no operation, and outputting it will yield precisely the

same file (byte for byte) as the input file. However, it will guarantee that the input and

output files are at least semantically equivalent (since performing no operations on a

tree should yield the exact same tree).

Insert Insertion of a single leaf node
Delete Deletion of a single leaf node
Update Update of a single node value
Move Moving of a single node or subtree

Table 3: Operations on tree

First of all, an agreement should be reached on which operations can be performed

on trees. These operations are listed (informally) in Table 3 (taken from [CRGMW96]).

The first two actions (insert and delete) are pretty straight-forward, they are the basic

operations with which one can construct a full step from one tree to another. Update

can be expressed as a delete and an insert, but we shall see that it is much more helpful

35

(in terms of user interaction and structuring) to have a specific action for an update.

Likewise, a move is useful as it provides a more detailed view of what the difference is

between two trees; it is more useful to know that a node (or subtree) has moved to a

different location in the tree then specifying that one (or more) node was deleted and

inserted at a new location. Furthermore, it allows more parallel operations on a tree

in a single changeset. For example, a move of a subtree could be expressed as a bunch

of deletions and insertions. However, this would mark all of the nodes in the subtree

as changed and therefore any other actions on this subtree would lead to conflicts.

Observe Figure 9: we have a source tree T0 and two derived trees T1, T2. TM is the

merged tree, which features changes made in T1, as well as changes made in T2.

In T1 the nodes labelled 2 and 3 have switched order, and in T2 the nodes labelled

4 and 5 have switched order. Note that the node labelled 6 automatically also moves,

because it is a child of 4. The set of changed nodes in T1 is therefore {2, 3}, the set of

changed nodes in T2 is {4, 5}. This means we do not have a conflict (the changes are

not overlapping), and can therefore perform a merge. We could never have done this

merge using insertions and deletions on the trees, because the sets of changed nodes

would then have been {2, 3, 4, 5, 6} and {4, 5, 6} for T1, T2 respectively. Likewise, if

we were using an XML representation of these trees, and tried to perform the merge

using the standard line-based merging and differencing tools, we would have run into

the same problem. See Table 4 for an example using a textual representation; lines

marked with an exclamation mark are modified with respect to T0.

T0 T1 T2

<1>
<2>

<4>
<6 />

</4>
<5 />

</2>
<3 />

</1>

<1>
! <3 />
! <2>
! <4>
! <6 />
! </4>
! <5 />
! </2>
</1>

<1>
<2>

! <5 />
! <4>
! <6 />
! </4>

</2>
<3 />

</1>

Table 4: Textual representation of T0, T1 and T2

Later on, these operations also included a “Copy” operation [Lin01]. However,

36

?>=<89:;1

¢

¢

¢

¢

¢

¢

=

=

=

=

=

=

?>=<89:;2

¢

¢

¢

¢

¢

¢

?>=<89:;3

?>=<89:;4 ?>=<89:;5

?>=<89:;6
T0

?>=<89:;1

¢

¢

¢

¢

¢

¢

=

=

=

=

=

=

?>=<89:;3 ?>=<89:;2

¢

¢

¢

¢

¢

¢

?>=<89:;4 ?>=<89:;5

?>=<89:;6

?>=<89:;1

¢

¢

¢

¢

¢

¢

=

=

=

=

=

=

?>=<89:;2

¢

¢

¢

¢

¢

¢

?>=<89:;3

?>=<89:;5 ?>=<89:;4

?>=<89:;6
T1 T2

?>=<89:;1

¢

¢

¢

¢

¢

¢

=

=

=

=

=

=

?>=<89:;3 ?>=<89:;2

¢

¢

¢

¢

¢

¢

?>=<89:;5 ?>=<89:;4

?>=<89:;6
TM

Figure 9: Moving a subtree and reordering its children

37

in later work [Lin04] the author argued that the “Copy” operation is very uncommon

in real-life examples (as opposed to explicitly constructed use cases) and it was too

dependent on the semantics of the data. Copying also brings in a plethora of hard to

answer questions: are we using some notion of sharing here? Do copied nodes need

to be updated when the node they were copied from is updated? Should copied nodes

be deleted when the original node is deleted? Should we allow for the “uncopying”

of a copied node, where the original and the copy are somehow unified? All of

these questions are beyond the scope of our research and we find it is much easier

to just say that a new node was inserted, instead of saying that a node was copied.

Omitting copying also brings down the complexity of the matching algorithm (more

on matching later).36

For these operations to be meaningful we have to be a bit more precise about what

they do and why. For example when deleting a node with children. Will the children

be deleted as well, or will they simply become children of the parent node of the

deleted node? This could mean that we run into semantic problems, after all, we have

some DTD37 or schema to adhere to when using XML. Our model design will not

factor in these semantics. We will concentrate ourselves purely on the tree structure

at hand and leave the checking of (in)correctness to the underlying application. We

will be operating under the assumption that if we have T0, T1 and T2 for a three-way

merge and they are in accordance with the defined structure of the tree, the resulting

tree TM will also be in accordance with the defined structure.

4.1 Operations on trees

We now turn to define what our actions should look like. Actions may be grouped

together in an ordered list (or some other ordered data structure) to produce an edit-

script.

For most operations we need to be able to precisely specify at which point in

the tree the operation should be performed. For illustrative purposes, we will use a

notation resembling XPath notation [CD99].

For example, suppose we have the following XML fragment for a fictious calendar:

36This is a trade-off: an increase in number of semantic operations also increases the complexity of
the matching algorithm, as more heuristics are needed to extract these semantics from two trees.

37Document Type Definition, a typing mechanism commonly used to describe the structure of XML
files.

38

<cal>
<item>

<date>2006-03-21</date>
<desc>Appointment with supervisor</desc>

</item>

<item>
<date>2006-03-22</date>
<desc>Visit dentist</desc>

</item>
</cal>

This can be seen as a root node <cal> with two child nodes (the two <item> nodes); each

child contains a <date> and a <desc> node. We refer to the <desc> node in the second

<item> node as /cal/item[2]/desc. Figure 10 shows this in tree form. Now, performing

GFED@ABCcal

k

k

k

k

k

k

k

k

k

k

k

k

k

S

S

S

S

S

S

S

S

S

S

S

S

S

GFED@ABCitem

w

w

w

w

w

w

w

G

G

G

G

G

G

G

GFED@ABCitem

w

w

w

w

w

w

w

G

G

G

G

G

G

G

GFED@ABCdate GFED@ABCdesc GFED@ABCdate GFED@ABCdesc

Figure 10: Fictious calendar fragment

operations on this tree instead of the plain text representation will give us a more

useful description of the meaning of these operations. For example, assume that your

dentist appointment is being rescheduled. Performing an operation on a text file could

yield a (human-readable) diff such as “Line 8 has changed from ‘<date>2006-03-22</date>’

to ‘<date>2006-03-25</date>’.”.38 Note that it would require knowledge and examination

of the text file to determine what kind of item we are actually changing, there is no

helpful information in this message other than the line number. If we were to operate

on the tree structure, we would be able to generate messages like “The item ‘Visit

dentist’ was rescheduled from March 22, 2006 to March 25, 2006.”.

This kind of information is clearly much more useful to the end user as we are

giving direct cues as to what is happening, instead of leaving it up to the user to go

and see what exactly has changed in the text file. Because we know that the date that

was modified is contained in the second item in the calendar, we can grab additional

38And this is after post-processing, a normal diff would simply say “Line 8 was deleted. A new line
was inserted at position 8 with value ‘<date>2006-03-25</date>’.”.

39

information from that item to present to the user. We are not going to focus on this,

as it is the job of higher level tools to generate these messages, but this point is merely

made for illustrative purposes; retaining the data structure can provide us with useful

additional information that we would lose when ignoring the structure. Of course

we could use extra domain-specific heuristics and algorithms to provide meaningful

messages to the end user while operating on plain text, but it's easier to provide them

using the original structure of the data.

Much of the work in this section will focus on determining proper definitions of

the residual (/) operator and the difference (−) function, as they are what makes the

model introduced earlier “pluggable”.

Insertion / Deletion Insertion and deletion are closely related, as their each others

opposites: insertion is the converse of deletion. Since we are requiring that

the converse of a step can be calculated using only the step itself, we will need

to make sure that insertion and deletions preserve as much information as

possible, regarding the position in the tree, as well possible content of the node.

A position in the tree can be precisely identified using a nodes parent (which it

is required to have, except the root node), its optional children, and its left and

right neighbours.

Update Updating a node requires that in the update operation we maintain the old

state of the node, as well as the new state. For example, if we were changing

some value in the node (think of an argument in an XML node) we need to

maintain the old value of the argument and the new value.

Move Moving a node/subtree requires information regarding the old and new posi-

tion of the node/subtree. Just like the insertion/deletion, we can pinpoint the

position of the node/subtree using parent, children and neighbour information.

4.2 Tree tools

Before turning to the implementation of our model, we want to look at the technology

we will be using for our tree operations. We will look at the 3DM39 tool [Lin01] as

a basis for our model and try to determine whether we can leverage this existing

technology to suit our needs. Several tools have been used for performing actions on

trees (or rather: XML files), but not all of them are suitable for our cause. Possible

tools to use include:
393-way merging, Differencing and Matching

40

• Traditional Unix diff and patch tools, used by the version control systems intro-

duced earlier. As said, they suffer from the fact that they can't operate properly

on structured data, as they tend to run into a lot of conflicts, for example

when doing something as simple as moving a subtree and reordering some of

its children. The diff3 tool can be used to perform a merge between three text

documents.40

• XMLTreeDiff, a tool developed by IBM Alphaworks41. XMLTreeDiff is used

in XMiddle [MCZE02], a middleware for portable devices such as PDAs, cell

phones, etc. Unfortunately, XMLTreeDiff suffers from two significant flaws:

it is closed source, and therefore we cannot study its internals, but more im-

portantly, it has been retired by IBM (for unknown reasons) and is no longer

available. XMLTreeDiff appears to be replaced with a different tool called

“XML Diff and Merge Tool”42. However, this tool also is closed source, only

functions as a GUI43 tool, does not have any API44s available to embed/use it

in another tool and requires a commercial license for use. Therefore, it is hardly

useful for our purposes.

4.2.1 3DM introduction

3DM provides us with two things: tree differencing, and tree merging. Both are

very interesting for us: we need to have a good notion of differencing (as to give a

good definition of the difference operator, which in turn plays a vital part in three-way

merging; recall our definition of three-way merging using the residual, difference and

composition operators from section 2). We might be able to use some ideas from

Lindholm's merging algorithm in our model.

The 3DM tool consists of three parts: tree matching, tree merging and tree dif-

ferencing.

Tree matching A matching between two trees T and T 0 (where T 0 is some modifi-

cation of T) is a set of edges or tuples (n, m), where n, m are nodes such that

n ∈ T and m ∈ T 0. Matchings tell us which nodes in distinct trees correspond

to each other. They are used to detect changes that transform one tree in an-

other, they are not meant as a differencing mechanism, they merely determine

40How's that for bad naming!
41http://alphaworks.ibm.com/
42http://alphaworks.ibm.com/tech/xmldiffmerge/
43Graphical User Interface
44Application Programming Interface

41

http://alphaworks.ibm.com/
http://alphaworks.ibm.com/tech/xmldiffmerge/

which nodes in two trees are related to each other. The matching is used in the

process of determining an edit script or the difference between two trees (which

we will explain a bit further on). For an example see Figure 11. The dashed

lines represent the found matches. Nodes 1 and 4 are matched and nodes 2

and 5 are matched. Node 3 is unmatched.

Tree merging A merge (or three-way merge) between a base tree TB and two derived

trees T1 and T2, resulting in a new tree TM .

Tree differencing An algorithm to encode the difference between two trees, prefer-

ably as space-efficiently as possible. The differencing algorithm is based on

encoding the matching between two trees.

?>=<89:;1

¢

¢

¢

¢

¢

¢

=

=

=

=

=

=

GF ED

?>=<89:;4

¢

¢

¢

¢

¢

¢

?>=<89:;2
@A BC

?>=<89:;3 ?>=<89:;5

T T 0

Figure 11: Matching example between T and T 0

It should be obvious that the differencing as mentioned above is not quite the

differencing we are looking for. We are looking for a diff from which in any case the

converse can be computed.45 However, seeing as the difference is based on encoding

the matching, we might be able to encode the matching in a different way to be able

to fulfil this requirement. Each aspect of 3DM is designed to be pluggable in nature,

so modifications can be made to each module (matching, merging or differencing).

A matching between nodes in original tree T0 and a modified tree T 0 (where

T 0 stands for either of the derived trees, T1 and T2) is interpreted in terms of edit

operations. A node n ∈ T0 with no match in one of the trees in T 0 is considered

deleted in that tree. A node m ∈ T 0 with no match in T0 is considered inserted into that
45This requirement is in conflict with encoding the diff “as space-efficiently as possible”; being able

to calculate the reverse requires that the old and the new situation are available. Encoding as space-
efficiently as possible requires storing as little information as possible, so the old situation doesn't get
stored. This is a design choice.

42

tree. Matching is expressed with the predicate m(n, m), which is true iff n and m are

matched. Matching is required to satisfy five requirements:

1. Every node in T1 is matched to at most one node in T0 and any node in T0 may

have at most one match in each of T1;

2. The (artificial) parents of the roots of the trees are matched;

3. A matching is reflexive;

4. A matching is symmetric;

5. A matching is transitive.

Likewise for T0 and T2. Note that the first property effectively prohibits the

“Copy” operation. The last three properties effectively are a definition of an equiva-

lence relation, which makes the matching relation an equivalence relation between two

nodes in separate trees. The second property states that each tree Tk has an artificial

parent ⊥k and for all related trees, these parents are matched to each other. It will be

explained why we need this artificial parent in a moment. Tree matching generally is

one of the hardest things to do in the process of tree merging, as it requires a solid

definition of how two nodes can be matched using some matching function. Various

literature exists that describes this phenomenon [CGM97, CRGMW96] and it is very

important that we are able to find a good matching, because differencing depends on

the matching. In fact, differencing can be trivially described once a matching between

two trees T0, T1 is found using the following rules:

• Any node that exists in T0, but has no matching node in T1 is said to be deleted ;

• Any node that exists in T1, but has no matching node in T0 is said to be inserted ;

• Any node that exists in T0, that has a matching node in T1, but has a different

parent, or different neighbours in T1 is said to be moved ;46

• Any node that exists in T0, has a matching node in T1, but has a different

content is said to be updated ;

• All other nodes are matched, due to the fact that all unmatched nodes are already

filtered out by the first two rules, and are considered unchanged.

46Position in the tree for any node is determined by its parent and its direct neighbours. This is a
design choice, it suffices to express the parent and the number of siblings left (or right, just make it
consistent) of a node to determine position in a child list.

43

And likewise for T0 and T2. Trees can be described by use of parent-child-successor

(PCS) relations. Many more representations of trees exist, but for our purpose we

choose this one. This PCS relation is a ternary relation pcs(r, p, s) expressing that r

is the parent of both p and s, and that s immediately follows p in the child list of r

(recall that we are using ordered trees, so the order of the children must be preserved).

The set of relations expressing the tree Tk is denoted Tk. The start and end of a

child list are expressed with the symbols a and ` respectively. There exists an artificial

parent for the root Rk of the tree Tk, designated with ⊥k. There exists a PCS relation

with an empty child list for each leaf node, thereby guaranteeing that there exists a

PCS relation pcs(n, ∗, ∗) for each node n. The artificial parent ⊥k is used to indicate

the position of the root node of the tree. Because the root node has no siblings or

parent, there would otherwise be no pcs relation for the root node to indicate that it

is the root node.

GFED@ABCa0

}

}

}

}

}

}

A

A

A

A

A

A

GFED@ABCb0
?>=<89:;c0

Figure 12: T0

So, a simple tree T0 as listed in figure 12 can be represented using PCS relations

as:

T0 = {pcs(⊥0, a, a0), pcs(⊥0, a0, `),

pcs(a0, a, b0), pcs(a0, b0, c0), pcs(a0, c0, `),

pcs(b0, a, `), pcs(co, a, `)}

Furthermore, since we are going to deal with XML files, we also need to differ-

entiate between text and element nodes and possible node attributes. To facilitate

this, we not only need PCS relations in our tree description, but also something to

indicate content. Consider for example the following XML (or XHTML [W3C02], a

reformulation of HTML in XML) fragment:

This text is bold

44

This fragment maps beautifully to the tree in figure 12, the result can be seen in figure

13. Keep in mind that even though the labels of the nodes are still a0, b0 and c0; we

are showing the content in the node now.

?>=<89:;b

|

|

|

|

|

|

A

A

A

A

A

A

GFED@ABCtext GFED@ABCimg

Figure 13: T0 with XML

So, we can add content relations to our existing PCS relations using the relation

c(n, c) to indicate that the node labeled n has the content c. This means that we'll

add the following content relations to our PCS relations:

c(a0, {type: element, name: b, attributes: {}}),

c(b0, {type: text, chardata: This text is bold}),

c(c0, {type: element, name: img, attributes: φ})

Lindholm does not specify in his paper what the attributes should look like, merely

that they are a set of attributes and values, so they are presumably unordered and

without repetitions. A logical solution (in line with Lindholm's definitions) would be

to let φ be an unordered set of key-value pairs k : v where k is the key and v is the

value of the attribute. Resulting in:

φ = {src : tree.jpg, alt : Inline image of a tree}

This also means that the granularity for attribute changes is placed at the node level:

one changed attribute marks the entire node as updated, which is fair enough.

Changes to a tree can be described using these PCS and content relations. For

example,

c(a0, {type: element, name: i, attributes: {}})

means that the content of the node labelled a0 is now i instead of b.

It should be obvious that this notion is not suitable as a correct representation

of a changeset for our purposes. For one, it does not fulfill the property that every

changeset has a converse, and that this converse can be computed solely from the

changeset. The content changes merely state the updated content, and provide no

means of reverting to the old situation.

45

Likewise, for a structural change:

pcs(a0, a, c0)

means that the node labelled c0 is the leftmost child node of a0; no information is

retained regarding the old position. Several changes (both content and structure) can

be combined into a changeset. This set should be consistent, which in turn means that

it should be unambiguous. This holds if the changes in the set state no more than one

content, parent, predecessor, and successor for each node.47

To come up with a suitable implementation of our abstract model, we need to

define the following things: objects, steps, src and tgt, 1a, ·, /, −, .̄

Starting from the ground up, that means that we let A be a rewriting system

hA, Φ, src, tgti such that:

• A is a finite set of key-value pairs (a : T) where a is a label and T is a rooted,

ordered, labelled tree;

• Φ is a finite set of steps, where steps are represented by a triple (φ, a, b) where

φ is a rooted, ordered, labelled tree, and a and b are tree labels, respectively the

src and tgt of the step. a and b are not unlike pointers in programming, or keys

in database theory.

• src and tgt are functions of type Φ → A.

The src and tgt functions work on a step by obtaining the labels from the tuple

(φ, a, b). With this label they can look up the corresponding object in A. For most

practical purposes it would even be sufficient not to look up the corresponding objects;

suppose we are trying to determine whether two steps are composable. It would be

sufficient to extract the tgt of the first step and the src of the second to determine

this. There is no need to actually retrieve the objects from A and compare them node

by node, step by step.

Stepping up to residual systems, we let AR be a residual system hA, 1, /, ·i. The

residual operator is the most important part here, it is what determines whether and

how we can perform a three-way merge. For any two co-initial steps it can determine

the cofinal steps. It is this part of our system that also signals conflicts. If the

residual is successful, it returns a step, so it's a function Φ × Φ → Φ. For any

47It is not consistent because it may state multiple positions and multiple child lists for a node, and it is
ambiguous because that means it can be read in multiple ways, where there is no way of determining what
is the correct reading.

46

two co-initial steps (φ, a, b), (√, a, c) (recall that the sources need to be identical),

(φ, a, b)/(√, a, c) ⇒ (χ, c, d) for some new d (see figure 14). Composition on two

steps is fairly easy, as it will probably suffice here to simply concatenate one step to

the other.

(a : T0)
(φ,a,b)

yys

s

s

s

s

s

s

s

s

s

(√,a,c)

%%

K

K

K

K

K

K

K

K

K

K

(b : T1)

(√,a,c)/(φ,a,b)
%%

K

K

K

K

K

K

K

K

K

K

(c : T2)

(φ,a,b)/(√,a,c)
yys

s

s

s

s

s

s

s

s

s

(d : TM)

Figure 14: Residual system

Let AV C be a version control system hAR, −,̄ i. As said, − is the difference

operator, and operates on two objects and resulting in a step: A × A → Φ. This

is also a very important operator as it plays a part in the three-way merging process.

For this operator we'll use the techniques described by Lindholm for matching and

differencing. The ¯ operator is the converse operator, operating on steps: Φ → Φ.

4.2.2 Tree matching

The matcher presented in [Lin01] still allows for copies of nodes, which we will not

use. Matching is only touched upon lightly in [Lin04]; there a heuristic matcher is used

to build one-to-one matchings between T1 and T0, as well as between T2 and T0. The

resulting match is then extended in such a way that it satisfies the five requirements

presented earlier on. The matcher consists of three parts:

Node similarity To be able to match nodes, there needs to exist some way of de-

termining how similar nodes are. Suppose the content of a node is slightly

modified, we still want to be able to match the original node to the modified

node. Therefore, there needs to be a notion of node similarity.

Matching truncated subtrees This is the part that actually does the first stage

of matching. A truncated subtree of a tree T is a subtree of T , which have

all descendants of some of the nodes in the subtree removed. In short, the

matcher recursively traverses T1 to find matching truncated subtrees in TB .

Once a subtree is found it is marked as such, and matching occurs for its

children. The matching occurs in four steps [Lin01]:

47

1. Finding matches

Each node in T1 is traversed and it is attempted to find a match in TB

by first matching exactly on node content, that is, a match is found if

its content is exactly the same. If multiple nodes are found in TB it is

heuristically determined which node is the best match (using node context)

and that node is returned. If no exact matches are found, the node is

returned which has the smallest nodeDistance, which is smaller than some

threshold to indicate the maximum distance for two nodes to be consid-

ered matched. A match in TB is only valid if it is not matched to some

node already.48

2. Finding matching subtrees

Subtrees are matched by traversing T1 depth-first, starting at matched

node n ∈ T1 and m ∈ TB . Subtrees are recursed as long as the current

nodes of the traversal has exactly the same number of children, and the

content of the children match exactly.

3. Selecting the best matching subtree

If more than one subtree is matched in TB then the most suitable one

is selected as the match. This is determined by number of nodes in the

subtree (larger subtrees are considered better matches) and by context

(looking at siblings). If there is no matching subtree no match is made.

4. Matching and recursing

After the best subtree rooted at m ∈ TB is matched to some subtree

rooted at n ∈ T1, the nodes of the subtree are matched with their corre-

sponding nodes in the subtree of TB .

Matching similar unmatched nodes Postprocessing takes place in the form of

an algorithm that tries to match any unmatched nodes that may remain. It does

this by taking pairs of unmatched nodes n ∈ T1, m ∈ TB and looking at their

position in the tree (whereas matching previously looked more at content than

position). A pair n, m of nodes is matched if their parents are matched, and

if either the left or right siblings (if they exist) are matched. If neither sibling

matches they are still considered matched if they are the left-most or right-most

node. To avoid a domino effect this is done bottom-up.

48In [Lin01] it is not a one-to-one relation, but a one-to-many. Multiple nodes may be matched. Here
we are explicitly denying multiple matches.

48

In short, matching in [Lin01] and [Lin04] is done by first matching nodes on

content, then trying to match maximal subtrees from these nodes and finally try to

match any unmatched nodes that remain.

4.2.3 Chawathe's matcher

Lindholm's matcher is derived from the matcher presented in [CRGMW96]. Due to

the fact that Lindholm remains rather vague regarding the matcher used in [Lin04],

we will also present the matcher due to Chawathe et al.

The assumption is made that all nodes in an ordered tree have a label and a value.

For interior nodes (non-leaf nodes) the value may be null or empty. The existance of

unique identifiers is not assumed. The label of a node does not have to be unique.

For example, suppose we have some XML element <document>. Its label is “document”.

Now consider an element <paragraph>. Its label is “paragraph”, but multiple paragraphs

may exists in a document.

The focus of the paper is finding a transformation from some “old” tree T1 to a

“new” tree T2. The notion of a correspondence between nodes that have identical

or similar values is formalized as a matching between node identifiers. Matchings are

one-to-one. The change detection problem presented here is split into two problems:

• The Good Matching problem, concerned with finding a “good” matching between

two trees;

• The Minimum Conforming Edit Script (MCES) problem, concerned with finding a

minimal edit script based on the matching found.

The actions that can eventually end up in the edit script are:

• Insert; The insertion of a new leaf node, denoted by ins((x, l, v), y, k) where

x is the node identifier, l is a label, v is a value (assumed null if omitted). It is

inserted as the kth child of y.

• Delete; The deletion of a leaf node, denoted by del(x) where x is the node

identifier.

• Update; The update of the value of a node, denoted by upd(x, val), where x is

the node identifier and val is the new value.

• Move; The move of a subtree (a single leaf node is also a subtree), denoted by

mov(x, y, k), where x is the node identifier, y is the new parent and k is the

new position in the child list of y.

49

Naturally, these matching problems also occur to a lesser degree when we are operating

on texts. However, they are much easier to resolve there, as the only actions that

we allow are insertions and deletions and we are not retaining any other structural

information. In fact, the diff command implicitly creates a matching between lines

in two texts by finding sequences of lines common to both files, interspersed with

groups of differing lines called hunks. From this matching the difference can be

easily constructed since we only have to account for deletes and inserts (parts that are

unmatched).

Regarding the actions listed above, we feel we should note that there is no record

kept of the “old” situation when describing changes. When moving a subtree/node,

only its new position is stored in the edit script, not its old position. We need this old

position to be able to calculate the converse step. That means that if we are to use

this matcher/diff generator we will have to augment it to also store the old situation.

Likewise for update a node value: we need to maintain the old value in the edit script.

As indicated, the delete and insert operations operate solely on leaf nodes. This

means that if we want to insert an interior node, we first insert it as a leaf node and

then move some subtree under it. If we want to delete an interior node, we first need

to move its subtree somewhere else and then delete it. Or delete all its children with

it (for example, when we mean to delete an entire subtree).

For the MCES there must be a way to express the cost of an edit script: cD(x),

cI(x), cU (x) and cM (x) denote the cost for deleting, inserting, updating and moving

respectively. Chawathe et al assume that the cost of deleting, inserting and moving are

equal and are unit cost operations: cD(x) = cI(x) = cM (x) = 1 for all x. The cost

of updating a node is given by a function, compare, that evaluates how different the old

value is from the new value. The idea behind this is that it should be cheaper to move

and update a node, then it is to delete and insert a node. Likewise, just an update on

a node should be cheaper than a delete and an insert. This compare function takes two

nodes as its input and outputs a number in the range [0, 2]. This intuitively states that it

is preferred to update changed nodes than it is to delete it and insert a new one, unless

they are very different (in which case it is unlikely that they are corresponding nodes).

The compare function should therefore return a cost greater than 1 for very dissimilar

nodes and smaller than 1 for similar nodes. It could simply determine the percentage

of identical text, or use some heuristics to determine similarity.49 Or interestingly, we

49As it turns out, it is not easy to measure text similarity. For example, constructing a histogram on
character usage will yield approximately the same results for a given language, for any text of sufficient
size.

50

might use another version control system there. In theory, there is nothing holding us

back from using another (perhaps different) system to provide version control facilities

for node values , as version control on node values is separated from version control

on the tree structure. We will touch upon this interesting idea a bit later. The edit

script generated is supposed to give a transformation from T1 to T 0
1, which in turn

is isomorphic to T2, where two trees are isomorphic when only their node identifiers

differ.

Finding a MCES given a matching M for two trees T1, T2 and an empty edit script

E involves five phases:

1. Update phase. In this phase the trees are scanned for pairs of nodes (x, y) ∈ M

whose value differ. If found, an update operation is added to E and applied to

T1.

2. Align phase. In this phase the interior nodes of the trees are scanned. For

any pair of matched interior nodes (x, y) ∈ M we say that their children are

misaligned if they are in a different order in T2 than they are in T1. For each

misaligned child a move operation is added to E and applied to T1.

3. Insert phase. In this phase T2 is scanned for any unmatched nodes z ∈ T2

where p(z)50 is matched to some node x ∈ T1. A new node identifier is

generated, an insert operation is added to E and applied to T1.

4. Move phase. In this phase we scan for pairs of nodes (x, y) ∈ M such that

(p(x), p(y)) /∈ M . We then look for the matching node to p(y) in T1, call

this node v. We then add a move operation to E such that x is moved to be a

child of v with the correct position in the child list (which we can do because

we have already aligned the children) and apply it to T1.

5. Delete phase. In this phase we look for unmatched leaf nodes x ∈ T1. For

each of these nodes we add a delete operation to E and apply it to T1.

Give a matching M , the MCES algorithm consists of two steps:

1. A breadth-first traversal of T2 combining the following four phases in a single

pass: update, insert, align, move;

2. A traversal of T1 to delete any unmatched nodes.

50The parent of z.

51

After these two runs, we have a minimum cost edit script, a total matching M 0 and a

(copy of) T1 that is isomorphic to T2.

For the matching itself (which serves as an input for the MCES algorithm) Chawathe

et al. first define criteria that the matching algorithm must satisfy:

1. Two leaf nodes that are “too dissimilar” may not be matched. This is formulated

by stating that two nodes may only be matched if their labels are identical and if

the difference between the value of the two nodes is between some predefined

range, this difference can be calculated using the compare function.

2. For interior nodes the comparison using node values is not really helpful, as they

often are empty. Again, the labels are required to be identical. Furthermore,

similarity is determined using the number of common descendants (children).

Furthermore, two assumptions are proposed, that may or may not hold:

1. There is an ordering <l on the labels in the structuring schema such that a node

with label l1 can appear as the descendant of a node with label l2 only if l1 <l l2.

2. For any leaf node x ∈ T1, there is at most one leaf y ∈ T2 such that

compare(v(x), x(y)) ≤ 1 and vice versa.

The first assumption imposes the acyclic labels condition: certain labels may only

occur as children of other labels. The second assumption states that for any leaf node

the compare function will only return a cost value smaller than 1 for at most one other

node in its partner tree.

A matching is said to be maximal if it is not possible to augment it without vio-

lating the two criteria introduced above. According to Chawathe et al. the matching

criteria imply that there exists a unique maximal matching. Furthermore, given the

two assumptions, that unique maximal matching is also the best matching.

The matching algorithm presented, ”FastMatch” uses a function equal to compare

nodes. Intuitively, a node-pair gets added to the matching iff two nodes are equal.

Formally, equal is defined:

• For leaf nodes, equal(x, y) is true iff l(x) = l(y) and compare(v(x), v(y)) ≤ f ,

where f is a parameter in the range [0, 1];

• For interior nodes, equal(x, y) is true iff l(x) = l(y) and |common(x,y)|
max(|x|,|y|) > t,

where t is a parameter in the range [0.5, 1] and common is a function from nodes

to node-pairs, returning the node-pairs of matched children of x and y. |x| is

52

defined as the number of children of a node x. |common(x, y)| is the number

of pairs returned by common. Informally, this means that in addition to having

identical labels, more than half of a node's children need be matched to the

children of some other node for them to be considered matched (more than

half of the children of the node with the most children).

Finally, the actual matchers works in two phases which are identical except that

the first operates on leaf nodes, and the second on interior nodes. The algorithm is as

follows for each leaf or interior (depending on phase) node label l, with initial empty

matching M :

1. Construct a chain S1 of equally labelled nodes in T1; nodes appearing earlier in

the tree (using an in-order traversal of T1 where siblings are visited left-to-right)

will appear earlier in the chain.

2. Construct a chain S2 of equally labelled nodes in T2; similarly to the way S1 is

constructed.

3. Find the longest common subsequence (LCS) for these chains, using the equal func-

tion. This return the pairs of nodes that are in this subsequence.

4. Each pair of nodes x, y ∈ LCS is added to the matching M .

5. For each unmatched node x ∈ S1, if there is an unmatched node y ∈ S2 such

that equal(x, y) then (x, y) is added to M and x, y are marked “matched”.

4.2.4 Edit script disambiguation

Lindholm's and Chawathe's matchers both create a minimal edit script. That is, each

node that is modified has at most one insert, update, delete or move in that script.

However, suppose we have some text editor that does indeed keep track of the changes

that are made each save (we'll ignore the case where every keystroke is recorded). If

we were writing a document, we may make multiple edits to a particular part, say a

sentence, before we commit our document (for example, some latex document, like

a thesis). As we now already have the edit script available at commit time (with edits

for each consecutive save of the document), it would be a waste not to use this and

simply try to calculate a new edit script as we would in a regular commit.51

51Some popular synchronisation tools for PDAs and other handheld devices keep their own edit
scripts, especially for the purpose of not have to calculate their own structured diffs. This is useful in for
example calendaring tools. These devices consequently do not have to compare entire data structures
with each other, which is most of the time infeasible due to constraints on CPU power and available
memory.

53

So, suppose we have some edit scripts available containing any number of updates,

deletions, insertions and moves. How do we move to a minimal edit script?

For any number of updates, this is fairly easy. Updates are the only type of

actions that modify a node value. Furthermore, they don't have any relation to the

tree structure, whereas deletions, insertions and moves operate on the tree structure.

Remember that edit scripts are in order, so we can simply collapse all updates into one

update: the update that changes the value of a node to the value of the last update in

the edit script. Consider two consecutive updates of a node value: a to b, b to c. This

can be collapsed to a single update a to c.

Unfortunately, for structural updates (such as move, insert and delete) things aren't

so easy. By far the easiest method would be to apply all actions in the edit script to

the tree and at the end determine what has changed, but that would be calculating the

matching which we discussed in the previous sections. The issue at hand is the fact

that subtrees may become intertwined at some point in the edit script. That is, one

subtree b may be moved such that it becomes a child of node a. This is where it is

important to remember that all actions are in order and that this order must not be

disturbed. For calculating the MCES this does not apply; there we can use to fixed

data structures and determine the order in which actions take place ourselves. Here,

we must adhere to the ordering to guarantee that the resulting edit script is equivalent

with the original (ambiguous) edit script.

Another thing to keep in mind is that the matcher presented in [CRGMW96] only

allows deletions and insertions on leaf nodes.52 Deletion of a subtree therefore will

yield a number of deletions in the edit script. We will assume (informally) that the edit

scripts are correct, in that sense that if a node is inserted at some part of the edit script,

no operations on that node may precede it. Likewise, if at some point in the edit script

a node is deleted, no operations on that node may follow. Using that information, we

may decide that the disambiguation algorithm consists of four phases: insert, update,

move, delete.

Consider an (ordered) edit script E and a disambiguated edit script E0 which is

initially empty, then the following holds:

• For any node that is inserted in E, we can place its insertion at the beginning of

our resulting edit script E0. As there may be entire subtrees inserted, we must

maintain the order in which inserts take place in E. This is the insertion phase.

52Insertion may be an ill-chosen term as it implies that the node can be inserted at any point in the
tree, addition or appending might be better.

54

• For any node that has precisely one update in E, we may copy this update to

E0. For any node that has more than one update in E, we may collapse all

updates into one update, with as its old value the old value of the first update,

and as its new value the new value of the last update. This resulting update is

added to E0.

• For moving a node or subtree we also need some sort of collapsing mechanism,

to create a single move from any number of moves. As said, moves may become

intertwined, with which we mean that a subtree may be moved to become a

part of another subtree, which in itself may be moved to a new position. Any

two nodes a, b that at least have one move in E and at some point in the

transformation become each others parent or child or part of the same child list

are said to be move-dependant. However, for any node that is not move-dependant

on another node and has one or more moves in E we can determine its final

parent by collapsing its moves into one move, similar in the way we collapse

multiple updates into one update. The result is that we end up with one move

per moved node, regardless of how many times it was actually moved. These

moves may then be added to E0.

For move-dependant nodes we need to take extra precautions that their collapsed

move actually moves them to the correct position in a child list (as intertwined

moves can cause incorrect child lists if we simply collapsed all moves as if they

were not move-dependant). Harmless as this may sound, it probably is not that

easy to implement.

• For any node that is deleted in E, we can place its deletion at the end of our

resulting edit script E0. As there may be entire subtrees deleted, we must

maintain the order in which deletes take place in E. For any node that is

deleted in E and has its value updated at some point in E, we may remove

these updates (as the node is deleted anyway and updating its value has no

structural consequences). This is the deletion phase.

One might wonder why we should bother with this disambiguation anyway; the

extra information that we have available (due to all the changes being available) are

basically thrown away by performing this (rather hard) disambiguation. The end result

is an edit script that may be a bit closer to what actually happened, but it remains the

question if this resulting edit script is a “better” edit script than the one obtained from

a generated matching.

55

In conclusion: two matchers have been presented, Chawathe's matcher and a

combination of Lindholm's matchers. A few remarks can be made here. Lindholm's

matcher allows for node labels to change from one versions to another, Chawathe's

does not. It requires in the matching criteria that for any two nodes to be matched at

least their labels should be identical (along with other requirements). This is in favor

of Lindholm's matcher. However, Lindholm's matcher (as he describes it in [Lin04])

is never formally presented and we therefore lack the ability to evaluate it.

The work on matchers is nowhere complete and presumably there may be better

suited matchers out there. This is where our model (and 3DM) shine: the model

allows different tools to be plugged in for its operators, and 3DM allows different

matchers, diffs and mergers to be plugged in (in addition to the stuff that is already

available).

56

5 Conclusions & future research
At the end of this thesis I would like to review what has been done and found and

discuss what remains as future research. Furthermore, what kind of possibilities are

opened due to the research presented?

Firstly, a formal model that uses ideas from rewriting systems was presented with

the purpose of modelling a version control system. After using rewriting and residual

systems, they were augmented with a new kind of system: an abstract version control

system, which added extra functionality (the converse and difference operators) required

for version control. By using a residual system as the basis a significant amount of

functionality was obtained “for free”. This included one of the necessary requirements

for performing three-way merges: the guarantee that for every pair of co-initial steps

there is a pair of convergent cofinal steps. The missing link was a way of obtaining an

unknown step between two objects, which is why we introduced the difference operator.

The converse operator was added to be able to store information in a way similar to the

way Subversion stores reverse changesets.

Secondly, the model was applied to existing version control technology: Subver-

sion and Darcs. Using an instantiation of our model a simplified version of Subversion

was fairly accurately modelled. It was shown that existing tools could be used in the

model (for example, using the traditional diff and patch tools).

Finally, the model was used to provide version control on tree structures. Specif-

ically, we looked at rooted, ordered trees for the reason that they are the underlying

data structures to file formats such as XML and HTML, iCal, LaTeX etc. The 3DM

tool was shown to be very useful for the model, as it provided matching, differencing

and merging functionality, which could be plugged into the formal model fairly easily.

5.1 Caveats

Of course the goal is to make this study as complete as possible. However, given the

limited scope of this thesis, not all relevant aspects could be extensively examined.

Therefore, a few caveats are in order:

• The interaction between various operators, especially ¯, − and / has not been

studied fully. The functions − and / are closely related to each other as they

both provide some sort of differencing function, − between two objects and /
between two steps.

• The presented model only accounts for version control on a single data struc-

57

ture. It must be extended at some point to be able to operate on multiple

structures. One way of doing this would be to create a version control system

that has sets of version control systems as the objects it operates on.

• In the Subversion example the revision number was used as an identifier for

the version. When more files are added to the repository this cannot be used

anymore, as Subversion uses revision numbers to indicate the state of the repos-

itory as a whole and not the state of each individual file. CVS, on the contrary,

does allow individual revision numbers for files, but it would probably be better

to assign some other identifiers to the different versions of the files.

• Tree merging has not been discussed.53 Tree merging allows us to apply a

changeset to a tree. This not a very complicated operation as we can just apply

the actions in the changeset in order to the tree.

• The research on the tree matcher designed by Lindholm could be expanded to

provide a more accurate account of what the current status of this matcher is

(due to the differences in matching algorithms in [Lin01, Lin04]).

• Darcs could be studied more. We have seen that the formal model does not map

onto it very easily. This is regrettable as Darcs has some promising features such

as its strong independence between patches. With additional work I believe that

it will be possible to find a good mapping.

• The tree matcher only works on ordered trees and does not take any structural

constraints into account. Not all data is ordered per se and on the other hand,

various data does have structural constraints.54 Matchers should respect these

structural constraints as it in fact may make matching easier (two nodes may not

be matched if that would invalidate the structural constraints).

• Branching has not been discussed, even though branching is something that

occurs frequently in version control systems. Branching occurs when some

development on files should not take place in the main line of development due

to stability issues, testing and so on. Fortunately for us, branching can result in

a tree-like structure which once again can be put under version control.55

53Here merging means applying a changeset to a tree, not three-way merging
54For example, in (X)HTML the <tr> element (table row) may only occur in a <table> element.
55In some cases it is more appropriate to look at branching VCSs as a directed graph, but that is also

a data structure one might be able to put under version control.

58

5.2 Future research

The work presented here opens some interesting possibilities for future research.

Worth noting are:

• Designing version control systems at file system level. One can see a file system

as a tree, representing files with leaf nodes and directories with interior nodes.

This means we can easily build a version system that operates on file system

objects. File nodes can then have a version control system as their value which

in turn permits version control on the contents of a file. Manipulation on the

contents of a file therefore has no structural implications for the tree.

• Designing a truly user-friendly/user-centric version control system that does

not involve complex manipulations on the command-line. Current version

control systems are generally not thought of as being user-friendly. That means

that the adoption rate is very low (apart from academic or business uses). The

“general public” will only use it if it is available in an easy-to-use fashion.

• Designing new matchers, differencers and mergers for other data structures.

These do not need to be limited to “basic” structures as trees, graphs and

lists, but may also be designed for a specific file format and make use of the

defining characteristics of that format (Java sources, PostScript files, various

image formats and so on).

59

References
[BPSM+04] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and

François Yergeau. Extensible Markup Language (XML) 1.0 (Third Edi-

tion). Technical report, W3C, 2004.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath). Technical

report, W3C, November 1999.

[CGM97] S. Chawathe and H. Garcia-Molina. Meaningful Change Detection

in Structured Data. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, page 26–37, Tuscon, Arizona, May

1997.

[Cha99] S.S. Chawathe. Managing Change in Heterogenous Autonomous Databases.

PhD thesis, Stanford University, 1999.

[CRGMW96] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change

detection in hierarchically structured information. In Proceedings of the

ACM SIGMOD International Conference on Management of Data, page 493–

504, Montréal, Québec, June 1996.

[CSFP06] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato.

Version Control with Subversion. <http://svnbook.red-bean.com/nightly/en/

svn-book.pdf>, revision 2191 edition, May 2006.

[DS98] F. Dawson and D. Stenerson. Internet Calendaring and Scheduling

Core Object Specification. RFC 2445, Internet Engineering Task Force,

1998.

[Lin01] Tancred Lindholm. A 3-way Merging Algorithm for Synchronizing

Ordered Trees – the 3DM merging and differencing tool for XML.

Master's thesis, Helsinki University of Technology, September 2001.

[Lin04] Tancred Lindholm. A Three-way Merge for XML Documents. In

Proceedings of 2004 ACM symposium on Document engineering, 2004.

[MCZE02] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. XMIDDLE: A

Data-Sharing Middleware for Mobile Computing. Int. Journal on Personal

and Wireless Communications, 21(1):77–103, April 2002.

60

http://svnbook.red-bean.com/nightly/en/svn-book.pdf
http://svnbook.red-bean.com/nightly/en/svn-book.pdf

[Rou06] David Roundy. Darcs 1.0.7. <http://www.darcs.net/darcs.ps>, May 2006.

[Ter03] Terese. Term Rewriting Systems. Number 55 in Cambridge Tracts in Theo-

retical Computer Science. Cambridge University Press, The Edinburgh

Building, Cambridge CB2 2RU, UK, 2003.

[W3C02] W3C. XHTML 1.0 The Extensible HyperText Markup Language (Sec-

ond Edition). Technical report, W3C, 2002.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific American,

265(3):94–102, September 1991.

[ZWS95] Kaizhong Zhang, Jason T.L. Wang, and Dennis Shasha. On The Editing

Distance Between Undirected Acyclic Graphs, 1995.

61

http://www.darcs.net/darcs.ps

	Preface
	Introduction
	Relation to Cognitive Artificial Intelligence

	Formal properties
	Preliminaries
	Three-way merging and residual systems

	On text
	Subversion
	Darcs
	Miscellaneous notes

	On trees
	Operations on trees
	Tree tools
	3DM introduction
	Tree matching
	Chawathe's matcher
	Edit script disambiguation

	Conclusions & future research
	Caveats
	Future research

	References

