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Abstract

When substitutions and bindings interact, there is a risk of undesired side-effects if
the substitution is applied näıvely. This can be observed in different domains; the
λ-calculus captures this phenomenon in an abstract setting. Its computation rule called
β-reduction may require the renaming of bound variables via α-conversion, in order to
avoid a variable capture. Various restrictions of the λ-calculus in which there is no need
for α-conversion are known from the literature. This holds for finite developments with
no redex creation, for affine λ-calculi with no duplication, for the weak λ-calculus with
weak reduction, and for the safe λ-calculus, where the occurrence of free variables is
restricted according to their type-theoretic order. This thesis presents a characterization
the need for α-conversion by so-called α-paths. These α-paths predict potential name
collisions by relying on the predictive power of legal paths. The existence of α-paths can
be excluded for the aforementioned λ-calculi, if a suitable variable naming convention
is adopted. This does not hold for the simply typed λ-calculus, where the need for
α-conversion sometimes might be unavoidable, nor for the untyped λ-calculus, for which
the question about α-avoidance is shown to be undecidable for the leftmost–outermost
reduction strategy via a reduction from Post’s correspondence problem.
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1 Introduction

The substitution of fungibles1 is a key concept in different areas. In computer science,
substitution is a fundamental concept. It is, for example, the core operation for com-
putation in λ-calculus, applied by compilers to optimize programs and, in general, the
key for reasoning with logical expressions. In music theory, the substitution of chords
is a technique that composers use to add variety to their arrangements. In linguistics,
anaphors substitute the subject they refer to and are used to avoid repetitions.

Even if these notions of substitution have different domains, they all share the following
property: undesired side-effects may arise if the substitution is applied näıvely. To get
an idea of what can happen, let’s look at the following examples.

Program optimization It is part of a good coding style to write readable code. This
often induces outsourcing code sections into their own functions. The downside of having
additional functions is that each function call comes with some overhead. Functions
operate on their own stack frame, which needs to be set up at each function call. A good
compiler should therefore inline many of these calls to recover an efficiently executable
program [25]. Inlining means to replace the function call by its body, avoiding the
call-overhead mentioned above. This substitution can go wrong if done in a näıve way.
Listing 1.1 shows the code of a function that computes the least significant digit of the
scaling of a number by a factor a. Listing 1.2 shows an inlined version where the function
call to scale was replaced by its body.

let a = 3;;

let scale x =
let b = abs(x) in

a * b

let scale_lsd x =
let a = 10 in

(scale x) mod a;;

Listing 1.1: Example of an Ocaml program.

let a = 3;;

let scale_lsd_inlined x =
(* variable shadowing *)
let a = 10 in

(
let b = abs(x) in
a * b

) mod a;;

Listing 1.2: Inlined version (incorrect).

Unfortunately, this optimization attempt went wrong. Why? Because at the moment
when the modulo is computed, the value of the scaling factor a is not 3 anymore, but 10
(it got captured). Hence, this transformation does not preserve the original semantics of
the program. Such name capture is a major issue for any compiler [25] and a solution to

1We intend substitutions that are supposed to preserve certain properties.
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1 Introduction

it is variable renaming. By renaming specific variables appropriately, inlining can safely
be applied. Variable renaming requires the supply of fresh variables. By renaming the
global a to a fresh variable n, as shown in Listing 1.3 and 1.4, we can overcome this issue.

let n = 3;;

let scale x =
let b = abs(x) in

a * b

let scale_lsd x =
let a = 10 in

(scale x) mod n;;

Listing 1.3: Program equivalent to Listing 1.1

(* variable renamed *)
let n = 3;;

let scale_lsd_inlined x =
let a = 10 in

(
let b = abs(x) in
a * b

) mod n;;

Listing 1.4: Inlined version (correct).

Predicate logic As already mentioned, side-effects caused by a näıve substitution do not
only occur in program optimizations but also in other environments and formalisms with
bindings. In predicate logic, we distinguish between syntactic and semantic substitution.
The difference between these different types of substitution can be illustrated with the
following example inspired by Lamport [21]:

P = ∀y.∃x.x > y y = 2x (1.1)

Statement P claims that for all y we can find a bigger x. Assume we would like to
prove this statement by natural deduction. The first step would be to take an instance
for y to eliminate the ∀-quantifier. In principle, y could also be replaced by 2x. The
syntactic substitution would lead to the following conclusion:

∃x.x > 2x (1.2)

and this clearly is unsatisfiable. This wrong conclusion is due to a variable capture.
The existential quantifier is meant to bind only the first occurrence of the variable x and
not both. In this case, renaming is required before applying the substitution. A correct
semantic substitution could be ∃z.z > 2x, which still has the chance of being satisfiable.

Music Theory This phenomenon also occurs in music theory within the concept of
chord-substitution2. Chord-substitutions are used to add some variety to the music. This
technique consists of replacing a chord with another one that fits the context. Advanced
knowledge is required to understand this technique fully, but the idea is easily explainable
if basics concepts are known.

Accidentals3 are used in musical notes to raise (]) and lower ([) notes or to cancel (\)
previous ones. Their scope ranges from the immediately following note to the end of the
bar. As accidentals control the pitch of occurrences of notes, they act as binders. As we

2https://en.wikipedia.org/wiki/Chord_substitution
3https://en.wikipedia.org/wiki/Accidental_(music)
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have already seen, it can get dangerous if substitutions and bindings interfere and it is
no different here. Figure 1.1 shows an example of a cadence in C major. The C major
(first note) of this cadence could be substituted by a Cmaj7, as shown in Figure 1.2.


 



 CF G7C

Figure 1.1: Cadence in C major



 



 CF G7C7
Figure 1.2: Chord-substitution

If we would näıvely apply this substitution, we would have an unintended side-effect.
The Cmaj7 introduces an accidental ([) that would also control the H-note in the third
chord Gmaj7. The scope of this accidental has, therefore, to end before that chord. This
is why the additional accidental (\) marked in red in Figure 1.2 is needed. In this way
we can preserve the right harmony.

Linguistics In linguistics, there is also a notion of binding. Subjects act as binders and
words like it, she, he, they, . . . , called anaphors, are references to them. An illustrative
example for the notion of binding in linguistics is visualized in Figure 1.3 (lhs). In the
sentence Bob asks Alice whether he can sing, the word he refers back to its binder Bob,
as denoted by the common index 1.

Bob1 asks Alice2 whether he1 can sing.

Bob1 asks John2 whether he2(1) can sing.

Figure 1.3: Näıve name substitution can change the meaning of a sentence.

If we have to express, that Bob asks the same question to John, the instinctive approach
would be to simply substitute John for Alice in the previous sentence, as done in Figure 1.3
(rhs). But Alice cannot simply be replaced by a male name like John, as we then have
ambiguous pronouns. In Bob asks John whether he can sing he could refer to both John
and Bob. This permits different interpretations and can lead to misunderstandings. This
is the reason why the binding theory [10] was established for linguistics. If in the sentence
Bob asks Alice whether he can sing we want to make the name of the person being asked
(Alice) fungible, then one solution could be to reformulate it to something like Bob wants
to know whether he can sing and asks <NAME>.

λ-calculus All the examples presented have illustrated problematic side-effects of näıve
substitutions interfering with bindings. In all these situations, some effort was needed
to allow a safe substitution (renaming of variables, ending of scope, using a different
formulation) but it happily was always possible. The λ-calculus captures this problem in

3



1 Introduction

an abstract setting. Its computation rule called β-reduction is nothing but the application
of substitutions. We can have binding connections between λ-abstractions and variables.

(λx.λy.x)

Figure 1.4: A binding illustrated by the red arrow.

β-reduction has also to be applied in a way that avoids undesired name collisions with
free occurrences of variables (variable capture). The binding connections could be broken
by the näıve substitution, precisely as in the examples shown above. This would lead
to inconsistent results, from which anything could be deduced [3, Fallacy 2.1.10]. To
avoid a variable capture, we rename bound variables via α-conversion, before applying a
substitution.

Figure 1.5 shows two reduction sequences, an incorrect one 1 , where the substitution
is näıvely applied and the initially free variable y gets captured (this näıve substitution
creates a binding connection that did not exist before), and a correct one 2 , where
α-conversion is applied before the actual substitution.

(λx.λy.x) y 1 6−→
β
λy.y

2 −→
α
λx.(λz.x) y −→

β
λz.y

Figure 1.5: Näıve substitution can lead to a variable capture.

The need for α-conversion seems to be random, unpredictable and in some cases it is
even unavoidable – but this is not always the case. Various restrictions of the λ-calculus in
which the need for α-conversion is avoidable are known from the literature. By adhering to
a variable naming convention and limiting the reduction length, restricting the occurrence
of variables, modifying the reduction rule, or by introducing an explicit notion of scope
we can allow α-free computations. This holds for example for developments [3, Definition
11.2.11] like the underlined λ-calculus with no redex-creation, for affine λ-calculi with
no duplication, for the weak λ-calculus with weak reduction, for the safe λ-calculus [9]
where the occurrence of free variables is restricted according to their type-theoretic order
and for the adbmal-calculus4 with an explicit symbol for ending scopes [18]. Since all
these different calculi share this common property, an interesting research question is
whether there is a uniform characterization to it. Our answer to this question are the
so-called α-paths presented in this thesis.

These α-paths predict potential name collisions and thus the need for α-conversion.
They are a generalization of the self-capturing chains5 introduced by Vincent van Oostrom
in [17] for the µ-calculus (Appendix A.1) and rely on a notion of legal paths due to Asperti
and Guerrini [2]. Via the α-paths, we can prove for the above mentioned calculi that no
α-conversion is ever needed if a suitable variable naming convention is adopted.

4Not covered in this thesis.
5which were in turn inspired by Melliès’ notion of gripping
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Why α-avoidance? There are multiple reasons why α-free computations are preferable.
One important reason is that it enables a more efficient computation based on näıve
substitutions. Näıve substitutions or capture-permitting substitutions, in contrast to
capture-avoiding substitutions, do not care about potential name collisions. It is in the
nature of things that this results in a faster computation.

Another benefit will be noticeable at the latest as soon as one thinks about how to
implement β-reduction for the ordinary lambda calculus. α-conversion requires the supply
of fresh variables, which is a non-trivial problem (see for example [31]). The need for
fresh variables itself is not the real issue. Rather it is the implicit requirement to have
an unbounded supply. In plain terms, this means that one is forced to either provide
a large list of fresh variables, as the exact needs cannot be estimated, or to introduce
some impurity, as for example done in [24]. A function generating fresh variable names
could, for example, make use of a counter that is incremented at each function call. Both
approaches are not ideal, the former will overestimate the resource usage (and still can
fail), and the latter is inconsistent with the requirement of stateless and deterministic
computations.

The number of α-conversions required to reduce a term to normal form can be quadratic
in the size of the input. For example, the exponentiation of Church numerals [3, Definition
6.4.4] reduced using the leftmost–outermost reduction strategy requires n/2 α-conversions
where n is the number of β-conversions, if both numerals use the same variable name
for the inner abstraction. A single initial α-conversion would allow an α-free reduction
to normal form and save much effort in this case. This is another strong argument that
shows that the initial manipulation of terms is not only a shift of a dynamic problem to
a static one, but a substantial retrenchment.

bN 1 2 3 4 5 6 7 ...
1 1/2 1/2 1/2 1/2 1/2 1/2 1/2
2 2/4 3/6 4/8 5/10 6/12 7/14 8/16
3 3/6 7/14 13/26 21/42 31/62 43/86 57/114
4 4/8 15/30 40/80 85/170 156/312 259/518 400/800
5 5/10 31/62 121/242 341/682 781/1562 1555/3110 2801/5602
6 6/12 63/126 364/728 1365/2730 3906/7816 9331/18662 19608/39216
...

Table 1.1: Number of α-conversions/β-conversions needed for the exponentiation bN

Example 1.1. The exponentiation 22 in λ-calculus using Church numerals can be
computed by applying 2 to itself (2 2). The 2 in church numerals corresponds to
λfx.f (f x). Figure 1.6 shows the computation of 22 using leftmost-outermost reduction.
On the left-hand side α-conversion is needed three times in the six β-conversions (written
as a separate step), for the α-equivalent term on the right-hand side, no α-conversion is
needed.

Last but not least, the importance of the relation of the input and the output of a
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1 Introduction

−→
I

(λfx.f (f x)) (λfx.f (f x))

→β λx.(λfx.f (f x)) ((λfx.f (f x)) x)

→α λx.(λfx′.f (f x′)) ((λfx.f (f x)) x)

→β λx.λx′.((λfx.f (f x)) x) (((λfx.f (f x)) x) x′)

→α λx.λx′.((λfx′.f (f x′)) x) (((λfx.f (f x)) x) x′)

→β λx.λx′.(λx′.x (x x′)) (((λfx.f (f x)) x) x′)

→β λx.λx′.x (x (((λfx.f (f x)) x) x′))

→α λx.λx′.x (x (((λfx′.f (f x′)) x) x′))

→β λx.λx′.x (x ((λx′.x (x x′)) x′))

→β λx.λx′.x (x (x (x x′)))

−→
I

(λfy.f (f y)) (λfx.f (f x))

→β λy.(λfx.f (f x)) ((λfx.f (f x)) y)

→β λy.λx.((λfx.f (f x)) y) (((λfx.f (f x)) y) x)

→β λy.λx.(λx.y (y x)) (((λfx.f (f x)) y) x)

→β λy.λx.y (y (((λfx.f (f x)) y) x))

→β λy.λx.y (y ((λx.y (y x)) x))

→β λy.λx.y (y (y (y x)))

Figure 1.6: Different computations of 22 using leftmost-outermost reduction.

computation should not be underestimated. Proofs often only work out if they argue
modulo α. In α-free reductions, one can argue with syntactic equality instead of α-
equivalence which is a stronger statement. This can facilitate proofs. The relation to the
input is also important for debugging. Assume some α-conversion is needed at some point
during computation or that a compiler decides to rename variables in order to prevent
the need for α-conversion. In both cases, it will be hard for the programmer to trace
back errors concerning computations with the renamed variables, as they do not appear
in the source code. Proof assistants also have to deal with this problem. Isabelle6, for
example, uses additional labels (colors) for variables to distinguish between user-defined
and internal variables to avoid name collisions.

de Bruijn’s namefree calculus There is an alternative representation of λ-terms due to
de Bruijn [14]. In its namefree calculus indices are used instead of variables and there is
therefore no need to rename variables. One may therefore think this also means to avoid
α-conversion, but that’s not the case as the problem of name collisions is only transposed
to the problem of index collisions. Indices may need to be updated when contracting
redexes. To get a deeper understanding why that is the case, interested readers are
referred to Appendix A.3.

From a dynamic to a static problem This thesis is about α-avoidance, but what does
it mean to avoid α? What we aim for in this thesis is to characterize the need for
α-conversion in different λ-calculi and to find out more about which circumstances lead
to naming problems. An interesting question, for example, is whether we could define
naming conventions or reduction strategies that allow reducing λ-terms in a näıve way.
In the end, this can allow moving a dynamic problem (the ad hoc renaming in a β-step)
to a static one (finding an α-equivalent λ-term for which every reduction sequence from
it is α-free). α-avoidance, as we use it in this thesis, does not mean completely getting

6https://isabelle.in.tum.de/
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rid of this operation but avoiding it in the dynamic process of β-reduction.

Outlook In Chapter 2 we present some basic concepts of the λ-calculus, based on the
unrestricted, untyped λ-calculus. We also give a precise definition of what it means
to avoid α or that α can be avoided. In Chapter 3 we introduce the so-called α-paths
that can be used to characterize the need for α-conversion. These α-paths will then
be instantiated to different λ-calculi: developments (Chapter 4), the affine λ-calculus
(Chapter 5), the weak λ-calculus (Chapter 6), the safe λ-calculus (Chapter 7), the simply-
typed λ-calculus and finally for the untyped λ-calculus (Chapter 9) for which we show
that the question about α-avoidance is undecidable for the leftmost–outermost reduction
strategy.
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2 Preliminaries

This chapter presents some basic concepts of the λ-calculus, based on the unrestricted,
untyped λ-calculus. This calculus is well-known and well-studied. In this chapter, we
will only introduce the main concepts relevant for this topic. We refer the interested
readers to [3, 11] and [30, Chapter 10] for a deeper understanding. We will conclude with
giving the definition of what it means to avoid α or that α can be avoided, the main
notion investigated in this thesis. Understanding the different concepts for the untyped
λ-calculus should give a good foundation for the rest of this thesis, as the more restrictive
calculi discussed in this thesis add only slight modifications of some definitions.

2.1 Terms
Definition 2.1. The set of λ-terms Λ is inductively defined as:

x ∈ V → x ∈ Λ,
M,N ∈ Λ → (M N) ∈ Λ,

M ∈ Λ, x ∈ V → (λx.M) ∈ Λ.

where V is a countably infinite set of variables. Sometime we also consider λ-terms
over a set of constants Γ [30]. In that case we write ΛΓ and have the additional case

Γ ∈ ΛΓ

If Γ is a singleton we write Λc, where c is the constant.

Convention 2.2. For readability purposes some conventions are used:

• outermost brackets are omitted

• applications associate to the left

• nested abstractions can be combined

Example 2.3. The following are valid λ-terms. The right hand side shows the same
term, where the above mentioned notational conventions are applied:

x = x
(x y) = x y

(λx.(x y)) = λx.x y
((λx.(x y))x) = (λx.x y)x

(((λx.(λy.(x y))) y)x) = (λxy.x y) y x

8



2.1 Terms

Definition 2.4. The set of subterms Sub(M) of a λ-term M is inductively defined as:

Sub(M) =


{x} if M = x

Sub(N) ∪ {M} if M = λx.N

Sub(N1) ∪ Sub(N2) ∪ {M} if M = N1N2

Example 2.5. Let M = (λxy.x y) y x. Then

Sub(M) = {M, (λxy.x y) y, (λxy.x y), (λy.x y), x y, x, y}

As we can see in Example 2.5, x and y are subterms of the term M , but if we talk
about these subterms, then we do not know exactly which subterm is intended as both
occur twice. This is why we need positions. Positions allow us to talk about specific
subterms in a λ-term M .

Definition 2.6. A position in a λ-term is a finite sequence of 1s and 2s. The set of
positions Pos(M) of a λ-term M is inductively defined as:

Pos(M) =


{ε} if M is a variable
{ε} ∪ {1 · Pos(N)} if M = λx.N

{ε} ∪ {1 · Pos(N1)} ∪ {2 · Pos(N2)} if M = N1N2

where · denotes string concatenation (to all positions in the set).

Example 2.7. Let M = (λxy.x y) y x. Then

Pos(M) = {ε, 1, 11, 111, 1111, 11111, 11112, 2, 12}

Definition 2.8. A position p is said to be a strict prefix of a position q, if q = p · q′
where q′ is non-empty. We use the notation p ≺ q to denote that p is a prefix of q.

Example 2.9. ε ≺ 1 and 11 ≺ 1121 but 11 ⊀ 1221 and 1 ⊀ 1.

Definition 2.10. A position p is said to be a prefix of a position q, if p = q or p ≺ q.
We use the notation p � q to denote that p is a prefix of q.

Example 2.11. 1 � 1.

Definition 2.12. Two positions p, q are said to be parallel, denoted by p ‖ q, if p �
q ∧ q � p.

Example 2.13. 12 ‖ 21 and 1211 ‖ 2 but 2211 ∦ 2

Proposition 2.14. Positions that start with a distinct number are parallel.

Proof. Assume p = c1 · p′ and q = c2 · q′ where c1 6= c2. Then p 6= c2 · q′ · s = q · s and
q 6= c1 · p′ · s = p · s.

Proposition 2.15. If p ‖ q, then s · p ‖ s · q.

9



2 Preliminaries

Proof. Assume p ‖ q. This means that p � q and q � p.

p � q ∧ q � p
=⇒ ¬∃q′.q = p · q′ ∧ ¬∃p′.p = q · p′
=⇒ ¬∃q′.s · q 6= s · p · q′ ∧ ¬∃p′.s · p 6= s · q · p′
=⇒ s · p � s · q ∧ s · q � s · p
=⇒ s · p ‖ s · q

Proposition 2.16. Let M N be a λ-term. Then the positions in M and N are pairwise
parallel. Stated formally: ∀p ∈ Pos(M), q ∈ Pos(N).p ‖ q.

Proof. Let p ∈ Pos(M) and q ∈ Pos(N) in a λ-term M N , then p = s · 1 · p′ and
q = s · 2 · q′, where s is the position of the application. We know that 1 · p′ ‖ 2 · q′ as they
start with a different number and by Proposition 2.15 we can conclude that p ‖ q.

Definition 2.17. A position p is set to be left of a position q, written as p ‖l q, if
p = s · 1 · p′ and q = s · 2 · q′ where s is a common prefix and p′, q′ are arbitrary.

Proposition 2.18. If p ‖l q, then p ‖ q.

Proof. Since we have p ‖l q, we can write p = s·1·p′ and q = s·2·q′. From Proposition 2.14
we know that 1 · p′ ‖ 2 · q′ and by Proposition 2.15 we can conclude that s · 1 · p′ ‖ s · 2 · q′,
so p ‖ q.

Proposition 2.19. ‖l is transitive.

Proof. Assume we have p ‖l q and q ‖l r. By Definition 2.18 we have p = s · 1 · p′ and
q = s · 2 · q′ for some s, p′, q′. Since we have q ‖l r, we must have that s = t · 1 · s′ and
r = t · 2 · s′, for some t, s′. This results in p = t · 1 · s′ · 1 · p′. By Definition 2.18 it follows
that p ‖l r.

Definition 2.20. We write M |p for the subterm of a λ-term M at position p.

Example 2.21. (λxy.x y) y x|1 = (λxy.x y) y, (λxy.x y) y x|12 = y

Definition 2.22. We write M(p) for the symbol of a λ-term M at position p. It is
defined as:

M(p) =


x if M |p = x

λx if M |p = λx.N

@ if M |p = N1N2

Example 2.23. λy.z(ε) = λy

Definition 2.24. The set of all symbols of a λ-term M is defined as:

Sym(M) = {M(p) where p ∈ Pos(M)}

Example 2.25. Sym(λx.(λy.x y) z) = {λx, λy, x, y, z}.

10
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2.2 Terms as graphs
λ-terms can also be represented via a labeled graph. The set of vertices and edges of this
graph are introduced next.
Definition 2.26. The set of vertices V(M) of a λ-term M is defined as:

V(M) = Pos(M)

Definition 2.27. The edges E(M,p) in a λ-term M prefixed by p is a set of pairs
inductively defined as:

E(M,p) =


{} if M = x

{(p, p · 1), (p, p · 2)} ∪ E(N1, p · 1) ∪ E(N2, p · 2) if M = N1N2

{(p, p · 1)} ∪ E(N, p · 1) if M = λx.N

where p serves as accumulator. We write E(M) as abbreviation for E(M, ε).
Definition 2.28. The set of labeled symbols LS(M) of a λ-term M is defined as:

LS(M) = {(v,M(v)) | v ∈ V(M)}

where M(v) is the symbol at position v. We write M(v)v for short to denote such
symbols.
Remark 2.29. We may call labeled symbols nodes and more specifically @-nodes, if the
label is a @, λ-nodes if the label is a λx or v-nodes if the label is a variable.
Definition 2.30. A labeled graph G(M) of a λ-term M is a pair consisting of a set of
labeled symbols LS(M) and a set of edges E(M) in M .

G(M) = (LS(M), E(M))

Example 2.31. Figure 2.1 is a visualization of the graph G(M) where M = (λxy.x y) y x.

@ε

@1 x2

λx11

λy111

@1111

x11111 y11112

y12

Figure 2.1: G((λxy.x y) y x) visualized.
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Definition 2.32. A path σ = [(p1, q1), (p2, q2), . . . , (pn, qn)] in a λ-term M is a se-
quence of edges in G(M), where n ≥ 1 and qi = pi+1 (adjacent). We abbreviate
[(p1, p2), (p2, p3), . . . , (pn−1, pn)] as [p1, p2, . . . , pn].

Example 2.33. σ = [ε, 1, 11, 111, 1111, 11112] is a path in the term shown in Figure 2.1.
More precisely, it is the path @ε → @1 → λx11 → λy111 → @1111 → y11112.

A path does not necessarily have to start at the root (position ε).

Definition 2.34. The length of a path σ, written as |σ|, is defined to be the number of
edges in it.

Example 2.35. Let σ be the path from Example 2.33. Then |σ| = 5.

Definition 2.36. The subpath of a path σ in a λ-term M starting with the edge at index
i and ending with the edge at index |σ| − 1 is written as σxi.

Example 2.37. Let σ be the path from Example 2.33, then σx3= λy111 → @1111 →
y11112.

Definition 2.38. The subpath of a path σ in a λ-term M starting with the edge at index
0 and ending with the edge at index |σ| − i− 1 is written as σyi.

Example 2.39. Let σ be the path from Example 2.33, then σy3 = @ε → @1 → λx11.

2.3 Occurrences, scopes and bindings

Definition 2.40. Let M be a λ-term. If M(p) = s for some symbol s, then p is an
occurrence of s.

Definition 2.41. Let M be a λ-term. If a λx occurs at position p in M , then the
subterm M |p is called the scope of the λx.

We can have nesting of scopes. The nesting of scopes is visualized in Figure 2.2.

Definition 2.42. An occurrence of a variable x in a λ-term M is said to be a bound
occurrence (bound for short), if it is in the scope of a λx. The innermost such λx is said
to be the binder of x.

Example 2.43. Let M = λx.λx.x. The λ-node x at position 1 is the binder of the
bound variable x. Let N = λx.(λx.y)x. The λ-node x at position ε is the binder of the
bound variable x.

Definition 2.44. An occurrence of a variable x in a λ-term M is said to be a free
occurrence (free for short), if it is not a bound occurrence.

12
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@ε

@1

λx11

λy111

@1111

x11111 y11112

y12

x2

Figure 2.2: Scopes and bindings

Definition 2.45. (Free variables) The set of free variables FV (M) of a term M is the
set of variables with a free occurrence in M .

Example 2.46. FV (λxx.x) = {},FV (λxz.x y) = {y},FV (λx.z y) = {y, z}

The variable y in the term M represented in Figure 2.2 at position 11112 is bound,
and the one at position 12 is free. The variable x at position 11111 is bound in M , but
free in M |111. The blue and green arrows highlight the binding connection between the
λ-nodes and the v-nodes.

A λ-term with no free variables is called closed or a combinator .

Definition 2.47. A context is a λ-term in Λ� (having some occurrences of the constant
�, also called hole) and is denoted by C. If C is a context and M a λ-term, then C[M ]
denotes the result of the replacing the holes in C by M [30, Section 10.1].

Example 2.48. Let C = λx.(λz.z)�, then C[λy.x y] = λx.(λz.z)λy.x y. This example
shows that variables may become bound (we apply näıve substitution).

2.4 Substitution and α-conversion

Definition 2.49. Let M and N be terms, x and y variables. The näıve substitution
M [x\N ] is defined as:

13



2 Preliminaries

x[x\N ] := N

y[x\N ] := y

(M1M2)[x\N ] := M1[x\N ]M2[x\N ]
(λx.M ′)[x\N ] := λx.M ′

(λy.M ′)[x\N ] := λy.M ′[x\N ]

where we may have a so-called capture of a variable if in the last rule we have that
x ∈ FV (M ′) and y ∈ FV (N). This substitution is therefore also called capture-permitting
substitution.

We don’t want variables to get captured in the substitution process as this would
make the whole calculus inconsistent (in Example 2.55 we will see the undesired effect
of a variable capture). A variable capture has therefore to be avoided. This can be
done via ad-hoc renaming bound variables. Next we will see how this renaming, called
α-conversion, is defined. For that we first need the notion of fresh variables.

Definition 2.50. Let M be a λ-term. A variable x having no free or bound occurrence
and not abstracted in M is called fresh for M .

Example 2.51. x is fresh for y and λz.z y but not for λx.y and λy.x.

Definition 2.52. The single α-step, performing the renaming of a bound variable in
some context C, is defined as follows:

C[λx.M ]→α C[λy.M [x\y]], where y is fresh for M

(refl)
M ≡α N

(cong)
M ≡α M ′ N ≡α N ′

M N ≡α M ′N ′
(symm)

M ≡α N
N ≡α M

(ξ)
M ≡α M ′

λx.M ≡α λx.M ′
(trans)

M ≡α N N ≡α P
M ≡α P

(α)
y 6∈ Var(M)

λx.M ≡α λy.M [x\y]

Table 2.1: The rules for α-equivalence [28].

Definition 2.53. M is α-convertible to N , M ≡α N , if N results from M by a series
of back- or forward α-steps (Definition 2.52) performed in an arbitrary context (not
necessarily at the root of a λ-term).

α-convertibility can be characterized by the six rules listed in Table 2.1 [18].

Example 2.54. The λ-terms M = λxy.x y and N = λyx.y x are α-equivalent as M →α

λxz.x z →α λyz.y z →α N .
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let succ x = x + 1 let succ y = y + 1

Figure 2.3: Different implementations of the successor function.

From a simplistic point of view, α-equivalent expressions are the same [14]. It doesn’t
matter whether we call the argument of the successor function x or y (see Figure 2.3). We
therefore want α-equivalent terms to be interchangeable. More precisely, if we substitute
a free variable x in a λ-term M or in an α-equivalent one M ′, by a λ-term N , then
we want the following property to be true: M [x\N ] ≡α M ′[x\N ]. Unfortunately this
property is not true for the capture-permitting substitution as shown in Example 2.55.

Example 2.55. Consider the λ-terms M = λy.x and M ′ = λz.x. We have M ≡α M ′,
but M [x\N ] 6≡α M ′[x\N ] for N = y, as M [x\N ] = λy.y and M [x\N ′] = λz.y.

What happened in Example 2.55 is what we call a variable capture. This is the reason
why the variable y in Definition 2.52 is required to be fresh. To avoid such variable
capture, we may have to apply α-conversion before applying the actual substitution. We
therefore define a capture-avoiding substitution next.

Definition 2.56. Let M and N be terms, x and y variables. The capture-avoiding
substitution MJx/NK (”safely substitute N for x in M”) is defined as:

xJx\NK := N

yJx\NK := y

(M1M2)Jx\NK := M1Jx\NKM2Jx\NK
(λx.M ′)Jx\NK := λx.M ′

(λy.M ′)Jx\NK := λy.M ′Jx/NK

if y 6∈ FV (N)
(λy.M ′)Jx\NK := λz.M ′Jy\zKJx\NK

if y ∈ FV (N), where z is fresh for M ′ and N

In contrast to Example 2.55 where we observed a variable capture when applying
capture-permitting substitution, we have no variable capture when applying capture-
avoiding substitution, as shown in Example 2.57.

Example 2.57. The terms M = λy.x and M ′ = λz.x. We have M ≡α M ′, and
MJx\NK ≡α M ′Jx\NK for N = y. MJx\NK ≡α λy′.y and MJx\N ′K = λz.y.

Lemma 2.58. If MJx\NK ≡α M [x\N ], then there is no variable capture in M [x\N ].

Proof. Assume, for the sake of contradiction, that there is a variable capture in M [x\N ].
This is the case, if we have a subterm λy.M ′ in M , where x ∈ FV (M ′) and y ∈
FV (N) (Definition 2.49). In this case we have (λy.M ′)[x\N ] = λy.M ′[x\N ] and
(λy.M ′)Jx\NK = λz.M ′Jy\zKJx\NK. However, λz.M ′Jy\zKJx\NK 6≡α λy.M ′[x\N ] as
y ∈ FV ((λy.M ′)Jx\NK) but y 6∈ FV ((λy.M ′)[x\N ]). It follows from Definition 2.53 that
such terms are not α-convertible, giving the contradiction.
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Definition 2.59. The substitution Jx\NK is said to be α-free for M , if MJx\NK satisfies
the condition of Lemma 2.58.

Remark 2.60. Being α-free for a substitution means that we can apply it näıvely (there
is no variable capture in M [x\N ] that would break the equivalence MJx\NK ≡α M [x\N ]).
It does not mean that no α-renaming is applied in MJx\NK. In the MJx\NK, we might
apply α-renaming even when not needed, in the sense that not doing it will not cause
a variable capture. So changing the condition in Lemma 2.58 to MJx\NK = M [x\N ]
would result in a statement that, in general, is not true. Consider the term M = λy.y.
Then MJx\yK = λz.z and M [x\y] = λy.y. In this example, we α-renamed in MJx\yK,
even if, according to Definition 2.49, do not have a variable capture as x 6∈ FV (M).
Whenever we say α is needed or refer to the need for α-conversion in this thesis, we
intend α-conversions that avoid variable captures.

There are some hidden complexity aspects for α-conversion. We must be able to check
for α-equivalence, but what is the most efficient way to do that? What’s the smallest
number of distinct variables we need to represent a specific λ-term. How many fresh
variables do we need to α-convert a λ-term M to a λ-term N? The adbmal-paper by
Hendriks and van Oostrom [18] discusses three distinct definitions of α-conversion and
their complexity aspects. In this paper they show that one fresh variable is enough to
α-convert a λ-term M to a λ-term N (if they are α-convertible). It is not immediately
clear that replacing a variable x by a fresh variable v across a whole term M preserves
α-equivalence. A proof to it is given in Appendix A.2. α-conversion corresponds to the
graph recoloring problem [29], Figure 2.4 gives an intuition for this correspondence.

λz

@

y@

λyλx

4x @

zy

≡α?

λz

@

y@

λyλx

4x @

zy

Figure 2.4: α-conversion and the graph-recoloring problem.
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2.5 β-reduction

2.5 β-reduction
Definition 2.61. A term of shape (λx.M)N is called a reducible expression or redex.

Example 2.62. (λx.x) y is a redex, λx.x y is not a redex.

Definition 2.63. The single-step β-reduction →β, contracting a redex (λx.M)N in
some context C, is defined as follows:

C[(λx.M)N ] →β C[MJx\NK]

MJx\NK denotes the capture-avoiding substitution. We write →βp to indicate the
position p of the redex that is contracted. We call C[(λx.M)N ] the source and C[MJx\NK
the target of →β. The näıve single-step β-reduction →β̈ı can be defined analogously,
except that we apply the capture-permitting substitution M [x\N ].

Convention 2.64. (Variable convention [3, 2.1.13]) If M1, . . . ,Mm occur in a certain
mathematical context (e.g. definition, proof) then in these terms all bound variables are
chosen to be different from the free variables.

A redex that satisfies Convention 2.64 can be contracted by näıve single-step β-
reduction [3].

Definition 2.65. A β-reduction step C[(λx.M)N ]→β C[MJx\NK] is said to be α-free,
if the applied substitution Jx\NK is α-free for M (Definiton 2.59). In such a case, we
have M→β̈ı N

′ and N ≡α N ′.

Next, we will define the static trace relation that allows relating positions in the source
and the target of a →β-step. Later on, we will see that when reasoning with paths, this
relation is essential for showing that α can be avoided. For more details on tracing, the
reader is referred to [30, Section 8.6].

Definition 2.66. Assume M →βo N where we contract a redex in M at position o. We
can trace the positions of the source term M to positions in the target term N and
vice-versa with the static trace relation, denoted by I [30, Section 8.6.1]. We distinguish
three components:

• (context) p I p if o is not prefix of p

• (body) o11p I op if p 6= ε and p 6= q

• (arg) o2p I oqp for all positions q, such that o11q is bound by o1.

If p I q, then we say p is an origin of q, and q is a copy of p. Positions which do not
have copies in N are said to be erased [30, Notation 8.6.9].

Proposition 2.67. Let M ∈ Λ and M →β N . If a variable at position p is bound in
M then the copies of p in N are also bound. In other words, bound variables are not
released.
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@o

λxo1

M

N

xo11p

o11p

o2

→o
β M

N

o

op

Figure 2.5: β-step a position o

Proof. This can be shown via the trace relation mapping positions in the source term M
to the target term N where the contracted redex is at position o in M (Definition 2.66).
Assume we have a bound variable occurrence at position v and its binder at position b
with b ≺ v in M . Then we have the following cases:

i) v in the context: then we have v . v. Its binder is also in the context so b . b and the
assumption holds.

ii) v is in the body: then we have v = o11v′ . ov′. Its binder can be either (a) in the
context or (b) in the body. (a) if b is in the context, then it follows that b ≺ o11v′ (as
it binds the variable) and b ≺ o (because it is in the context) which implies b ≺ ov′.
(b) If the binder is in the body, then b = o11b′ . ob′ and since we know that b ≺ v we
have b′ ≺ v′ and therefore also ob′ ≺ ov′.

iii) v is in the argument: then we have v = o2v′ . oqv′ for all q such that o11q is bound
by the abstraction at position o1. Its binder can be either (a) in the context or (b)
in the argument. (a) if b is in the context, then we have b ≺ o2v′ (as it binds the
variable) and b ≺ o (because it is in the context) which implies b ≺ oqv′. (b) If the
binder is in the argument, then b = o2b′ . oqb′ and since we know that b ≺ v we have
b′ ≺ v′ and therefore also oqb′ ≺ oqv′.

Definition 2.68. Assume M →β N . A redex in N at position q is called a residual of a
redex in M if p I q and M |p is a redex.

Example 2.69. Let M = (λx.x) ((λxy.x) z). Then M →β (λxy.x) z. The underlined
redex is a residual of a redex at position 2 in M .

Example 2.70. Let M = ((λxy.x) z) y. Then M →β (λy.z) y. The underlined redex is
not a residual of a redex in M .

Definition 2.71. Assume M →β N . We call a redex in N at position q a created redex
if it is not a residual of M .
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Example 2.72. (λx.x y) (λz.z)→β (λz.z) y. The underlined λ-term is a created redex.

Proposition 2.73. Let M →βo N . A redex at position p′ in N is a created redex, iff
the origins p of p′ and q of p′1 are from a different component.

Proof. The if -direction follows from the fact that if we have p I p′ and q I p′1, then
this can only be if M(p1) is the variable that gets substituted in contraction of the redex
at position o. Therefore there is no redex at position p in M and consequently the redex
at position p′ in N is a created redex. For the only-if -direction we just have to look at
the trace relation (Definition 2.66) and we see that if two positions are from the same
component, then their are just transposed. This means that the redex at position p′ in
N is a residual of the redex at position p in M .

Definition 2.74. A λ-term M is in normal form if no →β-step is possible from it.

Definition 2.75. We write M →n
β N to denote that M reduces to N in n →β-steps.

We write M �β N if M can be transformed to N by zero or multiple →β-steps.

Example 2.76. (λx.x x) (λyz.y z)�β λzz
′.z z′ or, more precisely, (λx.x x) (λyz.y z)→3

β

λzz′.z z′

Example 2.77. x, λx.x and y (λx.x) are in normal form, λz.(λx.x) y is not.

A λ-term can have multiple redex-occurrences for which β-reduction can be applied.

Definition 2.78. A reduction strategy specifies which steps are allowed among the possi-
ble steps. A strategy for →β is a sub-relation of →β (of the rules given in Definition 2.63)
having the same objects and normal forms [30, Definition 9.1.1].

For example, the leftmost–outermost reduction and the rightmost–innermost reduction
are strategies. They only allow, as the name already suggests, respectively to contract
the leftmost, outermost and the rightmost, innermost redex in a λ-term M . In contrast,
call-by-value reduction is not a strategy as it reduces λ-terms only to weak head normal
form (defined in Chapter 6).

Theorem 2.79. �β satisfies the Church–Rosser property. Suppose M , N , and P are
λ-terms such that M �β N and M �β P . Then there exists a λ-term Z such that
N �β Z and P �β Z [28]. This property is also called confluence.

M

PN

Z

What follows from Theorem 2.79 is that a λ-term has at most one normal form.
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Definition 2.80. A reduction sequence with respect to→β is a finite or infinite sequence
M →β M1 →β M2 →β . . . . A reduction step is a specific occurrence of in a reduction
sequence [30, Definition 1.1.2].

Example 2.81. (λx.x x) (λyz.y z)→β (λyz.y z) (λyz.y z)→β (λz.(λyz.y z) z) is a reduc-
tion sequence.

Definition 2.82. We call a reduction sequence M →β M1 →β . . . a development of M ,
if in each β-step we only contract residuals of redexes in M .

Example 2.83. The reduction sequence of Example 2.81 is not a development in
(λx.x x) (λyz.y z). The one in Example 2.72 is a development of (λx.x y) (λz.z).

Definition 2.84. A reduction sequence is said to be α-free, if each reduction step is
α-free (Definition 2.65).

It may be, that a term has an infinite reduction sequence. The illustration in Exam-
ple 2.85 shows the reduction graph (see [30, Definition 1.1.7]) of the λ-term M = I (F Ω).
Depending on which redex of M is contracted, we reduce to different λ-terms. By
Theorem 2.79, from any of these terms we can evaluate to the normal form y, but if we,
for example, always reduce the rightmost–innermost redex, then we will get an infinite
reduction sequence and never evaluate to the normal form (because Ω has no normal
form).

Example 2.85. Let I = λx.x, F = λx.y, and Ω = (λx.x x) (λx.x x).

I (F Ω)

F Ω I y

y

Definition 2.86. A λ-term M is said to be weakly normalizing if it has a reduction
sequence ending at a term N , where N is in normal form.

Example 2.87. I (F Ω) is weakly normalizing, Ω is not weakly normalizing.

Definition 2.88. A λ-term M is said to be strongly normalizing if it has no infinite
reduction sequence.

Definition 2.89. A reduction strategy is said to be α-free, if each reduction sequence
in this strategy (where each β-step is allowed by the strategy) is α-free.
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In ordinary β-reduction, we α-rename ad hoc on the fly (Figure 2.6 (1)). We could,
however, also first α-convert a term to comply with Convention 2.64 and then apply näıve
β-reduction (Figure 2.6 (2)), as described in [3]. From this definition, it follows that an
ordinary β-step corresponds to a näıve β-step which is preceded by some α-renaming
steps. In this thesis, we investigate under which circumstances we can α-convert M to a
λ-term M ′′, such that we can näıvely reduce M ′′ to normal form (Figure 2.6 (3)).

(1) M →β N1 →β . . .→β Nk

(2) M →α . . .→α M
′→β̈ı N1 →α . . .→α N

′
j−1 →α . . .→α N

′′
j−1 →β Nj

(3) M →α M
′ →α . . .→α M

′′→β̈ı N1→β̈ı . . .→β̈ı Nl

Nk ≡α Nl ≡α Nj? (α-avoidance problem)

Figure 2.6: The α-avoidance problem.

Definition 2.90. We say that a λ-term M avoids α, if every reduction sequence from it
is α-free (Definition 2.84).

Example 2.91. Ω avoids α, (λx.y) ((λxz.x) z) does not.

Definition 2.92. A λ-term M has α-free simulations, if there exists a λ-term N such
that M ≡α N and N avoids α.

We say that α can be avoided for a specific λ-term M if it has α-free simulations.

Example 2.93. Ω and (λx.y) ((λxz.x) z) have α-free simulations, (λx.x x) (λyz.y y) does
not.

Definition 2.94. We say that we can avoid α (or the need of α-conversion) in a λ-calculus,
if every λ-term in this calculus has α-free simulations (for its specific β-conversion rule).

We have just defined what it means to avoid α. Definition 2.94 is the main definition
in this thesis. In the rest of it, we investigate for which calculi this definition applies (and
for which ones not). We want to understand which restrictions of the untyped λ-calculus
allow this property to hold. We do it via the so-called α-paths that are introduced in
the next chapter. These paths characterize the need for α-conversion and thus give a
different perspective on α.
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3 The need for α-conversion characterized
by α-paths

In this chapter, we introduce what we consider the major contribution of this thesis:
α-paths. α-paths predict a potential variable capture and thus the need for α-conversion.
Potential because it depends on the reduction whether the name collision indicated by an
α-path will appear or not. Moreover, these paths also indicate the variables and binders
that must be named distinctly to prevent the predicted variable capture from occurring
in any reduction sequence. α-paths are a generalization of the self-capturing chains
introduced by Vincent van Oostrom in [17] for the µ-calculus (Appendix A.1). They
rely on a notion of legal paths due to Asperti and Guerrini [2]. We will use some basic
concepts of Graph Theory taught in the Diskrete Mathematik bachelor course. Please
refer to the lecture notes [23] for thing that are not defined here.

3.1 Intuition

We start by giving an intuition for how the need for α-conversion can be characterized by
paths. To do that, let’s enumerate the conditions that have to be true to make a variable
capture occur (here we assume that x 6= y) in a β-step from some λ-term:

1. näıve contraction of a redex (λx.M) N at position p

2. y ∈ FV (N) at position p2q

3. x ∈ FV (M) at position p1s1r (bound by the abstraction in the redex)

4. the x at position p1s1r is captured by a λ-node λy at position p1s.

The above described situation is illustrated in Figure 3.1 on the left. Each of the four
conditions enumerated above can be expressed via an edge.

Definition 3.1. We introduce four additional types of edges for a λ-term M :

• (a-edge ) An application-edge (p, q) connects a variable at position p that is
free in the argument of an application to the corresponding application node at
position q.

• (r-edge ) A redex-edge (p, p1) connects the application node at position p to
its left son at position p1, if that is a λ-node (so we have a redex).
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Figure 3.1: Constellation leading to a variable capture.

• (b-edge ) A binding-edge (p, q) connects a binder at position p to a variable
it binds within its body at position q.

• (c-edge ) A capturing-edge (p, q) connects a variable at position p to a λ-node
at position q, if the variable at position p occurs free in the subterm at position q
(so, in particular, is distinct from the binder).

The illustration on the right in Figure 3.1 shows how these edges can be drawn. We
have an a-edge (p2q, p), an r-edge (p, p1), a b-edge (p1, p1s1t) and a c-edge (p1s1t, p1s).
We will add the a-, r-, b- and c-edges as actual edges to the graph of a λ-term. We call
such a graph the α-graph of a λ-term M .

Corollary 3.2. Let M be a λ-term and (p, p1) an r-edge in Gα(M). Then M |p is a
redex.

Proof. Follows from the definition of an r-edge (Definition 3.1).

Definition 3.3. An α-graph Gα(M) of a λ-term M is defined as:

Gα(M) = (LS(M), Eα(M), l)

where Eα(M) = E(M) ∪ Ea(M) ∪ Eb(M) ∪ Ec(M) ∪ Er(M) and where Ea(M) is the
set of the a-edges, Eb(M) is the set of the b-edges, Ec(M) is the set of the c-edges and
Er(M) is the set of the r-edges in M . l is a mapping describing the labeling of the edges
in Eα(M) as follows:

label set edge
0 E(M)
1 Ea(M)
2 Eb(M)
3 Ec(M)
4 Er(M)
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3 The need for α-conversion characterized by α-paths

We can have parallel edges (with a different label) between two vertices, so formally,
an α-graph is a directed multigraph with labeled edges [23]. For simplicity, we will use
different colors and arrows to distinguish between edges with different labels, as shown
in the table above.

M
N

@ε

λx1

λy11

@111

x1111 y1112

y2 1. the @-node at position p = 1 forms a redex-
pattern with the λx-node at position 11

2. N := y and y ∈ FV (N) at position 12 (q = ε)

3. M := λy.x y, x ∈ FV (M) and occurs at position
11111 (s = 1, r = ε)

4. there is a λy-node at position 111

Figure 3.2: Gα((λx.λy.x y) y).

When contracting the redex in (λx.λy.x y) y, α-renaming is needed to avoid that the y
occurring free gets captured. The α-graph of this term is illustrated in Figure 3.2 (edges
irrelevant for this example were omitted in the figure). We have designed edges such that
capturing is captured by a path in the α-graph of a λ-term comprising the four types of
edges. In Figure 3.2 it would be the path [2, ε, 1, 1111, 11]. This is a special instance of a
basic arbic-path we will define down below, where the variable at position 2 is abstracted
in the λ-node at position 111.

We can also have λ-terms where α, depending on the reduction, is needed only after
multiple β-steps. This is, for example, the case for the λ-term illustrated in Figure 3.3. It
depends on the reduction order whether α-conversion is needed for the λ-term depicted
in Figure 3.3. In this example, an outermost reduction will require one α-conversion,
whereas an innermost reduction is α-free.

Definition 3.4. Let M be λ-term. We call a path σarb = a · r · b an arb-path of M , if a
is an a-edge, r an r-edge and b a b-edge in Gα(M).

x

a

@p @p

r

λyp1 λyp1

b

y

Proposition 3.5. Let p be the position of the starting v-node y and q the position of
the ending v-node of an arb-path. Then q ‖l p.

1we will call such paths α-paths
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3.1 Intuition
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Figure 3.3: An outermost reduction needs α-conversion.

Proof. Let a = (p, a2) be the a-edge. a2 is the position of the @-node of the redex,
therefore we know that p = a2 · 2 · q. The λ-node of the succeeding r-edge is at position
a2 ·1 and can only bind a variable in its scope at position a2 ·1 · q′ = q. By Definition 2.17
we have q ‖l p.

The example term from Figure 3.3 illustrates why we have to combine multiple arb-
paths to check whether or not α-conversion is needed after multiple reduction steps.
To characterize also the need for α-conversions that require the contraction of one or
multiple redexes of a λ-term M , the so-called arbic-paths are introduced next.

Definition 3.6. The set of arbic-paths of a λ-term M is inductively defined as:

• (base case) Let σarb be an arb-path of M and c a c-edge in Gα(M). Then the path
σarb · c is an arbic-path of M .

x

a

@p @p

r

λyp1 λyp1

b

ys ys

c

λz

• (arb-composition) let σarb be an arb-path and ψ an arbic-path of M . Then the
path σarb · ψ is an arbic-path of M .

From Definition 3.6 we see that arbic-paths are nonempty sequences of arb-paths
followed by a c-edge (σ+

arb · c). By Proposition 3.5 we know that we cannot form cycles
with the arb-composition rule. Therefore, the set of arbic-paths of a λ-term M is finite.

Example 3.7. The paths σ0 = 112→ 11→ 111→ 111111→ 11111, and σ1 = 2→ ε→
1→ σ0 are arbic-paths for the λ-term illustrated in Figure 3.3.
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3 The need for α-conversion characterized by α-paths

Lemma 3.8. Let p be the position of the starting v-node y and q the position of the
ending λ-node of an arbic-path ψ. Then q ‖l p.

Proof. We have ψ = σ+
arb · c, where σ+

arb is a non-empty sequence of arb-paths, from p to a
position t, and c a c-edge from t to q (Definition 3.6). By Proposition 2.19 (transitivity of
‖l) and Proposition 3.5 it immediately follows that t ‖l p. In the proof of Proposition 3.5
we can see that this property also holds for the λ-node binding the v-node at position t.
Since the λ-node at position q must be in the scope of that binder, we have q ‖l p.

Above, we have seen that the path [2, ε, 1, 1111, 11] in the α-graph of the term illustrated
in Figure 3.2 was a special instance of an arbic-path. It was ”special” because the variable
at position 2 is also abstracted in the λ-node at position 11. Such paths characterize the
need for α-conversion, precisely because of that condition. We, therefore, call such paths
arbic α-paths.

Definition 3.9. (arbic α-path) Let M be a λ-term and ψ an arbic-path of M . If ψ
starts with a variable x and ends with a λ-node λy where x = y, then ψ is called a arbic
α-path.

x

a r b

(
a r b

)∗

c

λx

Example 3.10. The path σ2 as defined in Example 3.7 is an arbic α-path for the λ-term
illustrated in Figure 3.3.

Proposition 3.11. Let Gα((λx.M) N) contain no arbic α-path of length 4. If M
contains an x occurring free in the scope of some λy (with x 6= y), then y is not free in
N .

Proof. Otherwise there is an arbic α-path y → @ → λx → x → λy of length 4 in
Gα((λx.M) N), contradicting the assumption.

Redexes that fulfill Proposition 3.11 can be contracted by means of capture-permitting
substitution.

Lemma 3.12. (α-free). Suppose that there is no arbic α-path in Gα((λx.M)N) of
length 4 starting at a free variable in N and ending in M . Then MJx\NK ≡α M [x\N ].

Proof. By induction and cases on M , the only interesting case being when the term is
an abstraction λy.M ′ with x 6= y. Then either x is not free in M ′ and N gets erased or
else by the assumption, y is not free in N (shown in Proposition 3.11), hence

(λy.M)Jx\NK = λy.MJx\NK as y 6∈ FV (N)
≡α λy.M [x\N ] I.H.
= (λy.M)[x\N ]
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3.1 Intuition

In Lemma 3.12 we only claimed α-equivalence, and not the syntactic equivalence (=)
of MJx\NK and M [x\N ]. Example 3.13 illustrates why (for the same reasons given in
Remark 2.60).

Example 3.13. Let (λx.M)N be a redex with M = λy.y and N = y. Then MJx\NK =
λz.z and MJx\NK = λy.y. We have MJx\NK ≡α M [x\N ], but MJx\NK 6= M [x\N ].

Definition 3.14. Let M →β N . An r-edge (p, p1) in Gα(N) denotes a residual of a
redex in M , if, according to Definition 2.68, N |p is a residual of a redex in M .

Lemma 3.15. Let s →βo t. If Gα(s) contains no arbic α-path, then the sub-graph of
Gα(t), where we restrict the set of r-edges only to those denoting residuals of redexes in
s, also does not.

Proof. We write 〈Gα(t)〉 for the described sub-graph of Gα(t). Assume there are no
arbic α-paths in Gα(s). By Lemma 3.12 we have no variable capture if we contract a
redex in s by means of capture-permitting substitution. We have s = C[(λx.M)N ] and
t ≡α C[M [x\N ]] for some context C, body M and argument N , with (λx.M)N being
the contracted redex at position o. We prove the lemma by relating the edges in 〈Gα(t)〉
to edges and paths in Gα(s). As done in [17], we use primed variables (e.g. p′) to range
over positions in the target term t, indicating the positions they trace back to in the
source term s, by unpriming (e.g. p). Let’s recall the trace relation from Definition 2.66
for the contraction of a redex at position o where we do case distinction on the following
three components:

• (context) p I p if o is not prefix of p

• (body) o11p I op if p 6= ε and p 6= q

• (arg) o2p I oqp for all positions q, such that o11q is bound by o1.

@

λx

CM’
N

x

→β

C
M’

N

Given an a- or a c-edge from p′ to q′ in 〈Gα(t)〉. p′ denotes the position of a variable y,
q′ the position of an application (in the case of an a-edge) or an absraction (in the case of
a c-edge). We have q′ ≺ p′ and the variable y at t(p′) occurs free in t|q′ . We distinguish
following cases:
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3 The need for α-conversion characterized by α-paths

• p′, q′ are both in the same component: then s(p) occurs free in s|q and therefore
we have the same edge from p to q in Gα(s).

• q′ is in the context and p′ in the body: then x 6= y (otherwise the y would have
been replaced by N) and we have the same edge in Gα(s) with 11 inserted at o.

• q′ is in the context and p′ in the argument: there is no variable capture so s(p)
must occur free in s|q. Therefore we have the same edge from p to q in Gα(s).

• q′ is in the body and p′ in the argument:
– a-edge: the origin of such a-edge is an arb-path from p to qq′, for some q′,

followed by an a-edge from qq′ to q in Gα(s).
– c-edge: the origin of such c-edge is an arb-path from p to qq′, for some q′,

followed by a c-edge from qq′ to q in Gα(s).

Given a b-edge from q′ to p′ in 〈Gα(t)〉. p′ denotes the position of the bound variable
y, q′ the position of the binder λy. We have q′ ≺ p′ and distinguish following cases:

• p′, q′ are both in the same component: then we have the a b-edge from q to p in
Gα(s).

• q′ is in the context and p′ in the body: we have x 6= y and a b-edge in Gα(s) with
11 inserted at o.

• q′ is in the context and p′ in the argument: there is no variable capture so s(p)
must occur free in s|q. Therefore, we have a b-edge from q to p in Gα(s).

• q′ is in the body and p′ in the argument: such a b-edge would map back to an
arbic α-path from p to q in Gα(s), which is excluded by the assumption (Figure 3.4
illustrates an example).

For the r-edges (p′, p′1) in 〈Gα(t)〉 we make the following case distinction:

• p′ and q′ are in the same component: then we have an r-edge from p to q in Gα(s).

• in all other cases: by Proposition 2.73 such a r-edge would denote a created redex
in t. We have no such r-edge in 〈Gα(t)〉.

We have seen that an r-edge and a b-edge in 〈Gα(t)〉 maps back to an edge of the
same type in Gα(s). a-edges and c-edges map back to a path of shape σ∗arb · e, where
e denotes an edge of the same type and σarb an arb-path in Gα(s). An arbic α-path
in Gα(t) has the following shape (a1, r1, b1, . . . , an, rn, bn, c), where xi denotes an x-
edge (pi, qi). If we replace a-edges and c-edges by the path the map back to we get
(σ∗arb1

· e1, r1, b1, . . . , σ
∗
arbn · en, rn, bn, σ

∗
arbc · ec), where σ∗arbi

· ei in Gα(s) connects the same
positions as the corresponding x-edge in 〈Gα(t)〉. It follows that if we have an arbic
α-path in 〈Gα(t)〉, then we have an arbic α-path Gα(s).
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3.1 Intuition
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Figure 3.4: A body–argument b-edge maps to an arbic α-path.

Lemma 3.16. Let M be a λ-term. If M contains no arbic α-path, then every development
from M is α-free.

Proof. Suppose for a proof by contradiction, some development from M is not α-free.
Then it would contain a first non-α-free step. That step would contain an arbic α-path.
Then by induction and Lemma 3.15, M would contain an arbic α-path which gives the
contradiction.

Note that with these arbic α-paths we do not characterize variable captures that result
from the contraction of created redexes (discussed in the next section). For example, the
λ-term M = (λz.z y) (λx.λy.x) in Figure 3.5 reduces in one β-step to N = (λx.λy.x) y
for which we need α to reduce it further. However, we do not have any arbic α-path in
Gα(M) predicting this name-collision.

Lemma 3.17. For every λ-term M there exists a λ-term N where M ≡α N , such that
N does not contain any arbic α-paths.

Proof. Assume we α-convert M to N such that all binders are named distinctly and
distinct from the free variables. By Lemma 3.8 we have q ‖l p, for p being the position of
the first v-node and q the position of the last λ-node in an arbic-path. By construction
of N , we know that for the variable x at position p and the binder λy we have x 6= y, if
q ‖l p.

Arbic α-paths can also characterize the need for α-conversion in such terms as the
one shown in Figure 3.3, where α-conversion is needed after multiple reduction steps.
However, we also saw that arbic α-paths only work for calculi that do not allow redex
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3 The need for α-conversion characterized by α-paths

@ε
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Figure 3.5: Gα((λz.z y) (λx.λy.x)).

creation (Figure 3.5). In calculi that allow redex creation, a more sophisticated approach
is needed to characterize also the need for α-conversion for created redexes. This can be
done by using the so-called legal paths we will introduce next.

3.2 Legal paths

A configuration inside a term, which is not a redex yet, but might become one along
reduction, is called a virtual redex [2]. The legal paths due to Asperti and Guerrini
allow characterizing virtual redexes. They can answer the following question: ”Can a
given application node ever be involved in a reduction?” [2]. For a better understanding,
look at the left term in Figure 3.6. The application at position 11 has a variable as left
son, so it is not a redex. However, since the variable is not free, it might become one,
if a λ-node will substitute it. To determine whether this can happen, we have to check
if the binder of x, which in this case is the λ-node at position 1, will ever be involved
in a β-reduction. To answer that, we have to travel towards the root and search for a
matching application, which we immediately find at position ε. We also know that the
term that will be substituted for x is the subterm at position 2 (λzy.z). Since this term
starts with a λ-node it will form a redex with the application at 11. We, therefore, can
answer the initial question positively. While trying to find the answer, we created the
following path 11→ 111→ 1→ ε→ 2, as drawn in Figure 3.6. This is an example of a
legal path.

This example was just meant to give an idea of how a path can characterize a virtual
redex. A similar example, where the whole process of finding a redex is explained in
more detail can be found in [2, Section 6.2].

Legal paths are defined via the so-called well-balanced paths. Their generation idea
corresponds to the approach of nesting questions about nodes as described in the example
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Figure 3.6: A legal path characterizing a virtual redex.

above. As this naive procedure does not consider any context (the path we came from) but
only ensures that the endpoints match, we may construct paths that do not correspond
to a virtual redex2. Therefore, the set of well-balanced paths gives raise to a set of paths
wider than the ones corresponding to virtual redexes [2, Section 6.2.4]. These paths are
sorted out by the legality constraint that checks if the call- and the return-path of the
”nested questions” coincide.

Definition 3.18. A path starting at an application node @ is of type

• @-v, if it ends with a v-node.

• @-λ, if it ends with a λ-node.

• @-@, if it ends with an @-node.

Definition 3.19. The set of well-balanced paths (abbreviated as wbp) of a term M is
inductively defined as follows [2]:

(a) Base case (b) @-composition (c) λ-composition

Figure 3.7: Well-balanced paths [2].

2We will see an example later on (Figure 3.8)
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3 The need for α-conversion characterized by α-paths

• (base case) The function edge of any application of M is a wbp. In Figure 3.7a
denoted by the edge u.

• (@-composition) Let ψ be a wbp of type @-@ and ϕ a wbp of type @-λ be two
composable paths. Then ψ · ϕ · u is a wbp, where u outgoes the final abstraction of
ϕ to the root of the body.

• (λ-composition) Let ψ be a wbp of type @-v whose ending variable is bound by the
ending abstraction of a wbp ϕ of type @-λ. Then ψ · (ϕ)r · u is a wbp, where u is
the argument edge of the initial application of ϕ.

From Definition 3.19 we can see why these paths are called well-balanced – in well-
balanced paths of type @-λ, the number of @-nodes and λ-nodes is balanced. We can
perceive well-balanced paths of type @-@ and @-v as ”prefixes” of balanced paths (closing
λ-nodes missing). The construction of well-balanced paths corresponds to the procedure
described before. The goal was to determine whether the application at position 11
(Figure 3.6) will ever have a matching λ-node at its function port. In fact, in the definition
of wbp’s when reaching a variable, we continue with the term the variable will potentially
be substituted for. When reaching an application node, we have to find out what is inside
its matching λ-node, because that is what remains when that redex is reduced. Following
this logic, wbp’s of type @-λ should all characterize a virtual redex that is created at
some point along β-reduction, but, as already mentioned, this is not the case. That is
because composition rules of wbp’s do not take into account the history of a path which
could lead to illegal paths of type @-λ. Illegal in the sense that they do not correspond
to a virtual redex.

Figure 3.8 illustrates for the λ-term (λx.(x (λz.z)) (x (λz.z))) (λy.y) the iterative com-
putation of the wbp’s to give an example where the composition of wbp’s leads to an
illegal path. The first tree in Figure 3.8 (labeled by 1) illustrates the base case: each
function edge of an application is a wbp, as denoted by the red arrows. In the second
tree, the wbp’s (highlighted in blue) are created by λ-composition. In the third iteration
step, a new wbp (highlighted in green) can be created by @-composition. This wbp of
type @-v ending at the variable y at position 21 enables additional λ-compositions with
the paths created in the second iteration step. These new well-balanced paths, visualized
respectively in tree 4.1 and 4.2 are both of type @-λ, but only the one in 4.1 characterizes
a virtual redex, whereas the one in 4.2 is illegal. The application node at position 11
will never interact with the λ-node at position 1122. The reason why such illegal paths
may arise is the occurrence of cycles. In the example above this is the case in 4.2, where
we jump back to the wrong x. A legal path must follow back the same path traversed
to access N before the cycle [2] (N is, in our case, the subterm at position 2). Cycles,
like the one in Figure 3.8, that are internal to the argument and start and end with an
application’s argument edge are called elementary.

Definition 3.20. Let ϕ be a wbp. A subpath ψ of ϕ is an elementary @-cycle of ψ (over
an @-node) when:

• starts and ends with the argument edge of the @-node;
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Figure 3.8: Well-balanced paths in (λx.(x (λz.z)) (x (λz.z))) (λy.y)

• is internal to the argument N of the application corresponding to the @-node (i.e.,
does not traverse any variable that occurs free in N ).

Figure 3.9: An elementary cycle.

Unfortunately, the cycles that may occur are not always elementary. In particular,
@-cycles may contain occurrences of other cycles and pairing the last point in which a
path entered an argument of an application to the first point in which it exited from the
argument is generally incorrect [2]. This leads to the following definition of @-cycles:
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3 The need for α-conversion characterized by α-paths

Definition 3.21. Let ζ be a wbp. The set of the @-cycles of ζ (over an @-node) and of
the v-cycles of ζ (over the occurrence v of a variable) is inductively defined as follows:

• Elementary: Every elementary @-cycle of ζ is an @-cycle.

• v-cycle : Every cyclic subpath of ζ of the form v λ (φ)r @ ψ @ φ λ v, where φ is a
wbp, is an @-cycle and v is a binding edge, is a v-cycle (over v).

• @-cycle : Every subpath ψ of ζ that starts and ends with the argument edge of
a given @-node, and that is composed of subpaths internal to the argument N of
@and v-cycles over free variables of N is an @-cycle (over the @-node).

@-cycles are always surrounded by two wbp’s of type @-λ as following lemma states:

Lemma 3.22. Let ψ be an @-cycle of φ over an @-node. The wbp φ can be uniquely
decomposed as

φ = ζ1 λ (ζ2)r @ ψ @ ζ3 λ ζ4

where ζ2 ( call-path) and ζ3 ( return-path) are wbp’s of type @− λ. The last label of ζ1
and the first label of ζ4 are the discriminants.

Definition 3.23. A wbp is a legal path if and only if the call and return paths of any
@-cycle are one the reverse of the other and their discriminants are equal.

Lemma 3.24. All (virtual) redexes of a λ-term M are characterized by some legal path
in M of type @-λ.

Proof. This was proven by Asperti in [2, Section 6.2.5] by showing a bijective correspon-
dence between legal paths and paths yielded by degrees (see [2, Theorem 6.2.42] and [2,
Fact 6.2.3]).

Corollary 3.25. M is a strongly normalizing term iff the set of legal paths of type @-λ
in M is finite [1, Lemma 38].

Proof. Immediately follows from Lemma 3.24.

Example 3.26. The following well-balanced paths were created in the last iteration step
for the term illustrated in Figure 3.8:

@-cycleζ1 ζ2 ζ3 ζ44 legal

4.1 : @11 → @111 → x1111 → λx1 → @ε → λy2 → y21 → λy2 → @ε → λx1 → x1111 → @111 → λz1112

@-cycleζ
′
1 ζ

′
2 ζ

′
3 ζ

′
4

8 legal

4.2 : @11 → @111 → x1111 → λx1 → @ε → λy2 → y21 → λy2 → @ε → λx1 → x1121 → @112 → λz1122

The path 4.1 is legal, because (ζ2)r = ζ3 and ζ1 = ζ4 whereas the path 4.2 is not, because
ζ
′
1 6= ζ

′
4.

Figure 3.10 illustrates the legal paths in the λ-term (λx.x x) (λyz.y z).
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3.3 α-paths

@ε

λx1

@11

x111 x112

λy2

λz21

@211

y2111 z2112

@ε

λx1

@11

x111 x112

λy2

λz21

@211

y2111 z2112

@ε

λx1

@11

x111 x112

λy2

λz21

@211

y2111 z2112

Figure 3.10: Legal paths of type @-λ in (λx.x x) (λyz.y z)

3.3 α-paths

We have already seen arbic α-paths that predict the need for α-conversion for λ-calculi
without redex creation. The α-paths presented in this section are an extension of them
and allow to predict the need for α-conversion in λ-calculi with redex creation. α-paths
are defined on the so-called albic-paths that rely on legal paths.

Definition 3.27. Let M be a λ-term. We call a non-empty path σalb = a · l ·b an alb-path
of M , if a is an a-edge starting at position p′, l a legal path of type @-λ and b a b-link
ending at position q′ in Gα(M), where p′ 6= q′.

yp
′

a

@p @p

l

λxq λxq

b

xq
′

A legal path may potentially connect any @-node to any λ-node in a λ-term M . This
may lead to a setting like the one shown in Figure 3.11 where an alb-path starts and
ends at the same v-node. Such alb-paths are not valid and therefore excluded by the
side-condition p′ 6= q′.

λx

@

. . . x

Figure 3.11: An alb-path cannot start and end at the same v-node.
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3 The need for α-conversion characterized by α-paths

Example 3.28. The following example shows that without side-condition in Defini-
tion 3.27 it would be possible to create infinite compositions of links in (λx.x x) (λyz.y y).

@ε

λx1

@11

x111 x112

λy2

λz21

@211

y2111 y2112

Definition 3.29. The set of albic-paths of a λ-term M is inductively defined as:

• (base case) Let σalb be an alb-path and c a c-edge in M . Then the path σalb· is an
albic-path of M .

• (alb-composition) let σalb be an alb-path of M starting at position p and ψ an
albic-path of M starting at position q. Then the path σalb · ψ an albic-path of M .

xp

a l b

· yq

a l b

. . .

c

λx

Proposition 3.30. Let M be a λ-term. Then each arbic-path of M is also an albic-path
of M .

Proof. Follows from the fact that each r-edge is a legal path (base case, see Definition 3.19).

Definition 3.31. (α-path) Let M be a λ-term and ψ an albic-path of M . If ψ starts
at a variable x and ends at a λ-node λy where x = y and the binder of x is not in ψy1,
then ψ is called an α-path.

x

a l b

(
a l b

)∗ . . .
c

λx

Not every albic-path starting with a variable x and ending at its binder λx is problematic
(variable capture). It could be that free variables in the argument of a virtual redex are
substituted before that redex exists. For example, this is the case in the term shown in
Figure 3.12.
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3.3 α-paths

@ε

λx1

@11

x111 x112

λy2

λx21

@211

y2111 z2112

Figure 3.12: Harmless albic-path.

The albic-path 112→ 11→ 2→ 2111→ 21 is harmless, as the variable x is substituted
by λy.λx.y z before reducing the redex at 11. That is why we have the side-condition
that ”the binder of x is not in ψy1” in Definition 3.31.

Lemma 3.32. A arbic α-path is an instance of an α-path.

Proof. Follows from Proposition 3.30.

Proposition 3.33. Let Gα((λx.M) N) contain no α-path. Suppose a free occurrence of
x in M is connected to a binder λy through a c-edge. Then y is not free in N .

Proof. Otherwise there is an α-path y → @ → λx → x → λy, contradicting the
assumption.

Redexes that fulfill Proposition 3.33 can be contracted by means of capture-permitting
substitution.

Lemma 3.34. (α-free). Suppose that there is no α-path in Gα((λx.M)N) starting at a
free variable in N and ending in M . Then MJx\NK ≡α M [x\N ].

Proof. By induction and cases on the formation of the term substituted in (which is M),
the only interesting case being when the term is an abstraction λy.M ′ with x 6= y. Then
either x is not free in M ′ and N gets erased or else by the assumption, y is not free in N
(shown in Proposition 3.33), hence

(λy.M)Jx\NK = λy.MJx\NK as y 6∈ FV (N)
≡α λy.M [x\N ] I.H.
= (λy.M)[x\N ]

Lemma 3.35. →β preserves α-path-freeness.
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3 The need for α-conversion characterized by α-paths

Proof. Let s →β t. By assumption, if s contains no α-path, then also t doesn’t. This
proof works precisely as the proof of Lemma 3.15. The only difference is that we can
also relate r-edges of created redexes and legal paths to the source term s. Therefore, we
only consider r-edges and legal paths in this proof. We use primed variables (e.g. p′) to
range over positions in the target term t, indicating the positions they trace back to in
the source term s, by unpriming (e.g. p). Let (p′, p′1) be an r-edge in Gα(t). There is
an r-edge from p to p1 in Gα(s), if p′ and q′ are in the same component. Otherwise, by
Lemma 3.24, there is a legal path connecting their origins p and q. Moreover, if we have
a legal path in N from p′ to q′, we also have a legal path in M between the origins p, q.

Since we can relate every type of edge and every legal path from p′ to q′ in Gα(t) to an
edge or path from p and q in Gα(s) and via the same final reasoning done in the proof of
Lemma 3.15 (legal paths in t just map to legal paths in s), it follows that if we have an
arbic α-path in Gα(t), then we have an arbic α-path in Gα(s).

Lemma 3.36. Let M be a λ-term. If M contains no α-path, then M avoids α.

Proof. By Lemma 3.35 we know that α-path-freeness is preserved by β-reduction. Since
by Lemma 3.34 we know that we can contract such terms by means of capture-permitting
substitution, no α is needed in the whole reduction sequence.

We have already seen that we can get rid of arbic α-paths by naming all binders
distinctly and distinct from free variables. This was possible because the starting and
the ending position of these paths are always parallel. For α-paths this is not always
the case anymore, as the Figure 3.13a and Figure 3.13b show. The α-paths in these
graphs both start at variable z and end at the binder λz (Irrelevant edges were omitted
in the illustrations. In Figure 3.13b also the legal paths were simplified to a single edge).
Such paths are unremovable since we cannot since we cannot α-rename only the λ-node
(without renaming the variable).

Definition 3.37. An α-path is called unremovable, if it starts at variable occurrence at
position p1q and ends at its binder at position p (p ≺ p1q).

λxq

alb+ · c

xp

Figure 3.14: Illustration of an unremovable α-path.

The example term in Figure 3.13b illustrates that an unremovable α-path does not
necessarily have to contain albic-paths or legal paths from a position p to a position q
with q ≺ p.
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3.3 α-paths

@ε

λx1

@11

x111 x112

λy2

λz21

@211

y2111 z2112

(a) Gα((λx.x x) (λyz.y z)).

@ε

λx1

@11

x111 λy112

@1121

x11211 y11212

λf2

λz21

@211

f2111 z2112

(b) Gα((λx.x (λy.x y)) (λfz.f z)).

Figure 3.13: Examples of λ-terms with unremovable α-paths.

Lemma 3.38. For every λ-term M containing no unremovable α-paths, there exists a
λ-term N where M ≡α N , such that N does not contain any α-paths.

Proof. Assume we α-convert M to N such that all binders are named distinctly and
distinct from the free variables. Since we exclude unremovable α-paths, we know that for
any other albic-path in M we have q 6≺ p, for p being the position of the first v-node and
q the position of the last λ-node in an albic-path. By construction of N , we know that
for the variable x at position p and the binder λy we have x 6= y, if q 6≺ p.

Since we can only guarantee α-free reductions when we have no α-paths in a λ-term,
it is interesting to analyze in which λ-calculi they can occur and in which ones not. If
we can prove that unremovable α-paths cannot exist in a specific λ-calculus, then we
know that we can always avoid α. We will see in the subsequent chapters that we can
indeed exclude their existence in the underlined λ-calculus (Chapter 4) and the affine
λ-calculus (Chapter 5). For the weak λ-calculus (Chapter 6) and the safe λ-calculus
(Chapter 7) we show that unremovable α-paths characterize redexes that will not be
contracted or only simultaneously with other redexes (such that α-conversion can be
avoided). In the simply-typed λ-calculus (Chapter 8) and in the untyped λ-calculus
(Chapter 9) unremovable α-paths can occur. We will give examples of simply typed
λ-terms and untyped λ-terms that have no α-free simulations.

Remark 3.39. In some cases, we could ignore unremovable α-paths, in the sense that we
can still allow näıve substitutions. For example, when we know that the result will not be
affected by a potential name collision. Consider the term (λx.y) ((λx.x x) (λyz.y z)). As
we just saw in Figure 3.13, we have an unremovable α-path in (λx.x x) (λyz.y z). However,
we can reduce to the normal form y independently of whether we apply α-conversion
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3 The need for α-conversion characterized by α-paths

when needed or not. That is because the subterm λx.y erases its argument (we call such
terms erasing terms). When asking the question about α-avoidance, we could therefore
allow the näıve substitution in this case. That would require the capability of deriving a
safe reduction sequence. This, however, is a different problem not covered in this thesis.
Still, it is an interesting problem to investigate in future work.
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4 Finite Developments

Reductions of residuals, also known as developments, are finite. This was proved already
in 1936 by Church–Rosser for the λI-calculus [11] and then generalized to the full λ-
calculus by Schroer [27] and independently by Hindley [19]. In developments, there is no
redex-creation. We can impose this restriction by underlining initial redexes and allowing
only the contraction of labeled redexes. This chapter discusses the underlined λ-calculus
and shows that we can always avoid the need for α-conversion can always in this calculus.

Definition 4.1. The set Λ of underlined λ-terms is inductively defined as follows [32]:

(var) x ∈ Λ, for all variables x

(app) M,N ∈ Λ =⇒M N ∈ Λ

(abs) M ∈ Λ =⇒ λx.M ∈ Λ

(beta) M,N ∈ Λ =⇒ (λx.M)N ∈ Λ

Example 4.2. (λx.x) y ∈ Λ, (λx.x) y ∈ Λ and (λx.x) 6∈ Λ

Definition 4.3. The underlined β-reduction (β) contracts only underlined redexes:

(λx.M)N →β MJx\NK

where MJx\NK denotes the capture-avoiding substitution.

According to Definition 4.3 terms with no underlined lambdas are in β-normal form.

Example 4.4. (λx.x x) (λx.x x) →β (λx.x x) (λx.x x) and (λx.x x) (λx.x x) is in β-
normal form

Example 4.5. (λxλy.x y) y →α (λxλz.x z) y →β λz.yz

Proposition 4.6. We have no redex creation in the underlined λ-calculus.

Proof. Assume M →β N and that we have a created redex in N . From Proposition 2.73
we know that a redex at position p′ in N is a created redex, iff the origins p of p′ and q
of p′1 in M are from a different component. This however would imply that we must
have a subterm of shape λx.M ′ in M . From Definition 4.1 we know that λx.M ′ 6∈ Λ and
therefore we have M 6∈ Λ giving the contradition.

Corollary 4.7. A reduction sequence of underlined β-steps M →β M1 →β M2 →β . . .
is a development of M .
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4 Finite Developments

Proof. Since by Proposition 4.6 we know that →β does not create redex, in M →β

M1 →β M2 →β . . . in every reduction step we only contract residuals of redexes in M .
By Definition 2.82 such a reduction sequence is a development.

We use the arbic α-paths (Definition 3.9) to characterize the need for α-conversion in
finite developments.

Definition 4.8. The mapping Tλ(M) of an underlined λ-term M to an ordinary λ-term
N is the obvious homomorphic mapping forgetting the underlining.

Definition 4.9. The set of r-edges Er(M) of an underlined λ-term M is inductively
defined as:

Er(M,p) =


{} if M = x

Er(N, p · 1) if M = λx.N

Er(N1, p · 1) ∪ Er(N2, p · 2) if M = N1N2

{[p, p1]} ∪ Er(N1, p · 11) ∪ Er(N2, p · 2) if M = (λx.N1)N2

where p serves as accumulator. We write Er(M) as abbreviation for Er(M, ε).

Definition 4.10. The α-graph of an underlined λ-term M is the α-graph of Tλ(M),
Gα(Tλ(M)), where we restrict the set of r-edges Er(M).

Proposition 4.11. Let Gα((λx.M)N) contain no arbic α-path. Suppose a free occur-
rence of x in M is connected to a binder λy either through a c-edge or through an
arbic-path. Then y is not free in N .

Proof. Otherwise there is a arbic α-path y → @→ λx→ x→ · · · → λy, contradicting
the assumption.

Redexes that fulfill Proposition 4.11 can be contracted by means of capture-permitting
substitution.

Lemma 4.12. (α-free). Suppose that if in Gα((λx.M)N) there is an arbic α-path
from a free occurrence of x in M to a binder λy, then y is not free in N . Then
MJx\NK = M [x\N ].

Proof. By induction and cases on the formation of the term substituted in (which is M),
the only interesting case being when the term is an abstraction λy.M ′ with x 6= y. Then
either x is not free in M ′ or else by the assumption, y is not free in N , hence

(λy.M)Jx\NK = λy.MJx\NK as y 6∈ FV (N)
= λy.M [x\N ] I.H.
= (λy.M)[x\N ]

Lemma 4.13. Arbic α-path-freeness is preserved by β-reduction.
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Proof. We have already shown in Lemma 3.16 that this property holds for developments.
Assume M →β N and Tλ(M) →β N

′ for an arbitrary underlined λ-term M . The set
of r-edges Er(N) exactly correspond to the set of r-edges Er(N ′) restricted only to
those denoting residuals of redexes in Tλ(M). In particular, 〈Gα(N)〉 = Gα(N). The
argumentation of Lemma 3.15 therefore also applies for →β.

Lemma 4.14. Let M be an arbitrary underlined λ-term. If M contains no α-path, then
every reduction sequence from M is α-free.

Proof. By Lemma 4.13 we know that arbic α-path-freeness is preserved by β-reduction.
Since by Lemma 4.12 we know that we can contract such terms by means of capture-
permitting substitution, no α is needed in the whole reduction sequence.

Lemma 4.15. For every underlined λ-term M there exists an underlined λ-term N such
that M ≡α N and N avoids α.

Proof. By naming the λ-nodes at the end of arbic α-paths distinctly and distinct from
any variable occurring free in some argument, we can get rid of any arbic α-path.

Corollary 4.16. In the underlined λ-calculus we can avoid α (Definition 2.94).
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5 The affine λ-calculus

In an affine λ-term M , in each subterm each variable has at most one free occurrence.

Definition 5.1. The set ΛAFF of affine λ-terms is a subset of Λ and inductively defined
as follows:

(var) x ∈ Λ =⇒ x ∈ ΛAFF , for all variables x

(app) M N ∈ Λ =⇒ M N ∈ ΛAFF , if M,N ∈ ΛAFF and FV (M) ∩ FV (N) = ∅

(abs) λx.M ∈ Λ =⇒ λx.M ∈ ΛAFF , if M ∈ ΛAFF

Example 5.2. λx.(λy.y) x ∈ ΛAFF , λx.(λy.x y) x and x x 6∈ ΛAFF

Proposition 5.3. (→β preserves affinity) Let M ∈ ΛAFF . If M →β N , then N ∈ ΛAFF .

Proof. Assume N 6∈ ΛAFF . Then there must exist multiple free occurrences of a variable
y in the scope of a binder λy in N . Since M = C[(λx.M ′) M ′′] (with (λx.M ′) M ′′ being
the contracted redex in the context C) is affine, by Definition 5.1 also each subterm of
M is affine and we can only form N , if one free occurrence is duplicated by the β-step.
But that would imply that M 6∈ ΛAFF as x would have multiple occurrences in M ′.

Definition 5.4. The size of a λ-term M is defined recursively as:

size(x) = 1
size(λx.M) = 1 + size(M)
size(M N) = 1 + size(M) + size(N)

Proposition 5.5. Let M,N be λ-terms. Then size(MJx\NK) = size(M)+k · (size(N)−
1), where k is the number of free occurrences of x in M .

Proof. We prove it by induction on M .

• M = x. Then xJx\NK = N and size(xJx\NK) = size(x) + 1 · (size(N) − 1) =
1 + size(N)− 1 = size(N).

• M = y. Then yJx\NK = y and size(yJx\NK) = size(y) + 0 · (size(N)− 1) = size(y).

• M = λx.M1. ThenMJx\NK = M and size(MJx\NK) = size(M)+0·(size(N)−1) =
size(M).

• M = λy.M1. Then MJx\NK = λy.M1Jx\NK and size((λy.M1)Jx\NK) = 1 +
size(M1Jx\NK) = 1 + size(M1) + k · (size(N)− 1) = size(λy.M1Jx\NK).
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• M = M1 M2. Then MJx\NK = M1Jx\NK M2Jx\NK and size(MJx\NK) =
size(M1 M2) + k · (size(N)− 1) = 1 + size(M1) + size(M2) + k · (size(N)− 1) = 1 +
size(M1)+size(M2)+(kM1 +kM2)·(size(N)−1) = size(M1Jx\NK)+size(M2Jx\NK)+
1 = size(M1Jx\NKM2Jx\NK)

Proposition 5.6. Let M ∈ ΛAFF . If M →β N , then size(N) < size(M).

Proof. If M →β N , then M contains a redex in some context C, therefore we can write
M as C[(λx.M1) M2] and N as C[M1Jx\M2K]. x occurs at most once free in M1, so
we have size(M) = size(C[(λx.M1) M2]) = size(C) + 1 + size(λx.M1) + size(M2) >
size(C) + size(M1) + k · (size(M2)− 1) = size(C[M1Jx\M2K]) = size(N), where k is 0 if
x does not occur free in M1 and 1 otherwise.

Proposition 5.7. Affine λ-terms are strongly normalizing.

Proof. Trivially follows from Proposition 5.6. We can only apply finitely many β-steps,
as the size continuously decreases.

Proposition 5.8. Let M ∈ ΛAFF and M →β N . If in M all binders are named distinctly
and distinct from the free variables, then this name property also holds for N .

Proof. Trivially follows by the fact that λ-nodes cannot be duplicated in a β-step. The
number of λ-nodes even decreases by one.

Lemma 5.9. Let M ∈ ΛAFF , M →β N and q ≺ p for some positions p, q in M . If
p I p′ and q I q′, then q′ ≺ p′.

Proof. Since we have no duplication, each symbol has at most one copy in N . Let’s recall
the trace relation for the contracted redex (λx.M1) M2 at position o in M , where the
abstraction λx binds (at most) one variable x in M1 at position o11t:

• (context) p I p if o is not prefix of p

• (body) o11p I op if p 6= ε and p 6= q

• (arg) o2p I otp for some t such that o11t is bound by o1.

We distinguish the following cases where we have p ≺ q, with p I p′ and q I q′:

1. p, q both in the context: Then as p′ = p and q′ = q so by assumption we have
p′ ≺ q′.

2. p = o11s1 and q = o11s2 both in the body: Then from p ≺ q we know that s1 ≺ s2
and we have os1 = p′ ≺ q′ = os2.

3. p = o2s1 and q = o2s2 both in the argument: Then from p ≺ q we know that
s1 ≺ s2 and we have ots1 = p′ ≺ q′ = ots2.
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5 The affine λ-calculus

4. p is in the context and q = o11s in the body. Then p′ = p and q′ = os and since
p ≺ q we also have p′ ≺ q′.

5. p is in the context and q = o2s in the argument. Then p′ = p and q′ = oqs. Since
we know that p ≺ o (because it is in the context), we also have p′ ≺ q′.

The other cases can be omitted because they violate the assumption that p ≺ q.

In the affine λ-calculus, there are no unremovable α-paths. α can therefore always be
avoided by choosing appropriate variable names, as proven next.

Lemma 5.10. Let M be an arbitrary term in ΛAFF . There are no unremovable α-paths
in Gα(M).

Proof. Since each β-step preserves the property proven in Lemma 5.9, we cannot have
a reduct of M where for the copy of p (the position of a variable), p′, and the copy q
(the position of an abstraction), q′, we have p′ ‖ q′, if for the origins we have q ≺ p.
This would temporarily be needed to form a redex whose contraction causes a variable
capture. Moreover, by Lemma 3.35 we know that we could map back such a situation to
an (unremovable) α-path in Gα(M). We conclude that no such path can exist in M .

Lemma 5.11. For every affine λ-term M there exists an affine λ-term N such that
M ≡α N and N avoids α.

Proof. By Lemma 5.10 we know that no unremovable α-paths can exist so it follows by
Lemma 3.38.

Corollary 5.12. In the affine λ-calculus we can avoid α (Definition 2.94).
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6 The weak λ-calculus

In the weak lambda calculus, the λ-terms are only reduced to weak head normal form
(via the weak β-reduction). In this chapter, we show that also in the weak λ-calculus, we
can allow α-free computations if we choose appropriate variable names.

Definition 6.1. A λ-term is in weak head normal form (WHNF), if and only if it is of
the form

M N1 . . . Nk

where k ≥ 0 and M either is a variable or an abstraction if k = 0 and a variable
otherwise [24].

Example 6.2. λx.(λy.y) x is in WHNF , z ((λy.y) x) is in WHNF , (λy.y) x is not in
WHNF

What follows from Definition 6.1 is that we do not reduce inside abstractions. The
weak β-reduction therefore restricts the ordinary β-reduction:

Definition 6.3. The weak β-reduction is the smallest relation →βl on λ-terms satisfying
the following rules:

(βw)
(λx.M)N1N2 . . . Nk →β MJx\N1KN2 . . . Nk

(λx.M)N1N2 . . . Nk →βw MJx\N1KN2 . . . Nk
for k ≥ 1

The näıve single-step →βw-reduction denoted as →βl̈ı is defined identically, except for
the →βl-rule that uses capture-permitting substitution.

To show that we can always avoid α-conversion, we rely on the fact that bound variables
are never released, as shown in Proposition 2.67. This property also holds for the weak
β-reduction.

Lemma 6.4. For every λ-term M there exists a λ-term N such that M ≡α N and any
→βw-reduction from N is α-free.

Proof. We prove it by showing that the name-collision characterized by an unremovable
α-paths will not arise. Suppose we have an unremovable α-path in a λ-term M . From
Definition 3.37 it follows that such a path has the shape σ+

alb ·c, as illustrated in Figure 3.14.
Assume, that at some point along the reduction sequence of M we reach a λ-term N ,
containing a redex whose contraction lead to the predicted name-collision. Let q be the
position of the variable y occurring free in the argument of that redex in N . Since the
position q originates from position p in M (p I p′ I . . . I q) and the variable occurrence
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6 The weak λ-calculus

at position p in M was bound, by Proposition 2.67 we know that also the variable y at
position q in N is bound. This redex, therefore, occurs in the scope of the binder of y
and will not be contracted. Any other α-path can be removed by naming each binder
distinctly and distinct from the free variables, as proven in Lemma 3.38.

Corollary 6.5. In the weak λ-calculus we can avoid α (Definition 2.94).

In [24, Section 11.3.2], Peyton Jones stated that the name-capture problem can never
arise when reducing a valid functional program to weak head normal form. This is
because a valid functional program has no free variables. Therefore, the argument of the
top-level redex has no free variables either. We will use this result later on when proving
the undecidability of α-avoidance for the leftmost–outermost reduction strategy in the
untyped λ-calculus (Chapter 9).

Remark 6.6. We have shown that we can avoid α in the weak λ-calculus. However, we
had to argue why a name-collision predicted by an unremovable α-path will not occur.
It follows that α-paths only overapproximate the need for α-conversion in the weak
λ-calculus. For example, consider the term in Figure 6.1. The α-path depicted in that
figure predicts a variable capture that will never occur with a näıve weak β-reduction
→βl̈ı . This is because the legal paths were developed for ordinary β-reduction. The weak
β-reduction, however, does not contract redexes in the scope of abstractions. It remains
an open question whether we could compute a set of weak legal paths that characterize
only the redexes contracted in a weak β-reduction sequence. This could allow proving
Peyton Jones’ result via weak α-paths 1.

@ε

λx1

@11

x111 y112

λz2

λy21

z211

Figure 6.1: α-paths overapproximate the need for α-conversion for weak β-reduction.

1only a name suggestion
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7 The safe λ-calculus

This chapter is about α-avoidance in the safe λ-calculus as developed by Blum and
Ong [9]. In this calculus, a variable capture can never occur. The fundamental concept
allowing α-free computations is known as the safety restriction. This syntactic restriction
restricts the free occurrences of variables according to their type-theoretic order1. It was
initially introduced for higher-order grammars, first implicitly by Damm [12] and then
reformulated by Knapik [20]. Knapik showed that no fresh variables are needed when
computing the value tree of a safe recursion scheme. This nice algorithmic property was
then transposed to a homogeneous safe λ-calculus by Miranda, Ong and Aehlig [15] and
then further simplified by Blum [9] (in this thesis, Miranda only gave the idea, Blum
then formulated it in detail). Moreover, Blum showed that the restriction of types being
homogeneous is not needed.

Definition 7.1. The set of simple types over the atomic type o is generated from following
grammar:

T ::= o | T → T .

By convention, → associates to the right and A1 → · · · → An → o is abbreviated as
(A1, . . . , An, o) and (o) as o.

Definition 7.2. (type order [5, p. 11]) The order of a type is given by

ord o = 0
ord (A→ B) = max(1 + ordA, ordB)

The order of a typed term or symbol is defined to be the order of its type. ord Γ, with Γ
being a set of type assignments, denotes the lowest value in the set {ordA | x : A ∈ Γ}.

Example 7.3. o has order 0, (o, o, o) has order 1, ((o, o), o) has order 2

Example 7.4. λx(o,o).x : ((o, o), o, o) has order 2, x : o has order 0.

Example 7.5. ord {x : (o, o), y : ((o, o), o)} = 1.

Figure 7.1 shows the system of rules of the safe λ-calculus by Blum [9]. This calculus
is a sub-calculus of the simply-typed calculus à la Church. The conditions on the context
in the app and abs cases ensure that the variables occurring free have order at least the
order of the term they occur in. This is what is known as the safety restriction. The asa
stands for almost-safe (application). The idea of an almost safe term is that it can be

1it also works with other rank functions [5, 3.1.5]
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7 The safe λ-calculus

turned into a safe term via further applications or further abstractions2. For example,
the application (λxoyo.x) z (with z of type o) is not safe but almost it is almost safe. As
part of the application (λxoyo.x) z f (with f, z of type o) it forms a safe application.

(var) x : A `s x : A (const)
`s f : A f : A ∈ Ξ (wk)

Γ `s M : A
∆ `s M : A Γ ⊂ ∆

(appas)
Γ `asa M : A→ B Γ `s N : A

Γ `asa M N : B (δ)
Γ `s M : A

Γ `asa M : A

(app)
Γ `asa M : A→ B Γ `s N : A

Γ `s M N : B ord B ≤ ord Γ

(abs)
Γ, x1 : A1, . . . , xn : An `asa M : B

Γ `s λxA1
1 . . . xAnn .M : (A1, . . . , An, B)

ord (A1, . . . , An, B) ≤ ord Γ

Figure 7.1: The safe λ-calculus by Blum [5]

In the safe λ-calculus we have combined abstractions. This means that we can abstract
a list of variables λx1 . . . xn.M , provided that they are distinct (abs-rule).

Example 7.6. λ.x and λxo.λxo.x are valid λ-terms of the safe λ-calculus, λxoxo.x is
not.

Definition 7.7. A term M of type A is said to be safe, if the following statement is
derivable with the inference rules of the safe λ-calculus listed in Figure 7.1:

FV (M) `s M : A

Example 7.8. The statement `s λf ((o,o),o).f (λxo.f (λyo.y)) : (((o, o), o), o) can be
derived with the rules of the safe λ-calculus, as shown in derivation tree of Figure 7.2.
This term is therefore safe.

Example 7.9. The statement `s λf ((o,o),o).f (λxo.f (λyo.x)) : (((o, o), o), o) cannot be
derived with the rules of the safe λ-calculus, as shown in Figure 7.3. The variable x has
order 0 which is smaller than the order of the subterm λyo.x (order 1) it occurs free in.
This subterm, and consequently the whole term, are therefore unsafe.

A term M = λx.M ′ is safe if M ′ is safe and for each variable y free in M we have
ord xi < ord y for all xi ∈ x (the abstracted variable must all have order smaller than
ord y).

The safety restriction was, as already mentioned, initially introduced for higher-order
grammars. In higher-order grammars, we have simultaneous contraction of nested redex,

2We will see later on, that allowing the derivation almost safe terms allows to derive safe terms that get
stuck (they would be further reducible in the simply-typed λ-calculus)
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var

f : ((o, o), o) `s f : ((o, o), o)
δ

f : ((o, o), o) `asa f : ((o, o), o)

var

f : ((o, o), o) `s f : ((o, o), o)
wk

f : ((o, o), o), x : o `s f : ((o, o), o)
δ

f : ((o, o), o), x : o `asa f : ((o, o), o)

var
y : o `s y : o

wk
f : ((o, o), o), y : o `s y : o

δ
f : ((o, o), o), y : o `asa y : o

abs
f : ((o, o), o) `s λyo.y : (o, o)

wk
f : ((o, o), o), x : o `s λyo.y : (o, o)

appas
f : ((o, o), o), x : o `asa f (λyo.y) : o

abs
f : ((o, o), o) `s λxo.f (λyo.y) : (o, o)

appas
f : ((o, o), o) `asa f (λxo.f (λyo.y)) : o

abs

`s λf ((o,o),o).f (λxo.f (λyo.y)) : (((o, o), o), o)

Figure 7.2: The derivation tree of a safe, simply-typed λ-term.

var

f : ((o, o), o) `s f : ((o, o), o)
δ

f : ((o, o), o) `asa f : ((o, o), o)

var

f : ((o, o), o) `s f : ((o, o), o)
wk

f : ((o, o), o), x : o `s f : ((o, o), o)
δ

f : ((o, o), o), x : o `asa f : ((o, o), o)

 

`s x : o
wk

f : ((o, o), o), y : o `s x : o
δ

f : ((o, o), o), y : o `asa x : o
abs

f : ((o, o), o) `s λyo.x : (o, o)
wk

f : ((o, o), o), x : o `s λyo.x : (o, o)
appas

f : ((o, o), o), x : o `asa f (λyo.x) : o
abs

f : ((o, o), o) `s λxo.f (λyo.x) : (o, o)
appas

f : ((o, o), o) `asa f (λxo.f (λyo.x)) : o
abs

`s λf ((o,o),o).f (λxo.f (λyo.x)) : (((o, o), o), o)

Figure 7.3: Example of an unsafe, simply typed λ-term.
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7 The safe λ-calculus

whereas in the ordinary λ-calculus we contract them one by one. Ordinary β-reduction
however does not preserve safety, as shown in Example 7.10.

Example 7.10. Let Γ = {f : (o, o, o), v : o, w : o} and M = (λxoyo.f x y) v w. We
have Γ `s M : ((o, o, o), o, o, o), but (λxoyo.f x y) v w →β (λyo.f v y)w which is unsafe as
λyo.f v y is unsafe. With an additional β-step we get f v w which is safe again [5].

As Example 7.10 suggests, we may have to contract nested redexes simultaneously if
we want to preserve safety. This requires a notion for simultaneous substitution. The
following definitions of simultaneous substitution were taken from [5, Definition 2.6
and 2.7] and adapted to deal with combined abstractions. In the case of a singleton
substitution and ordinary abstractions (a single variable) these definitions simplify to the
definitions of the substitutions we already know (Definition 2.56 and 2.49, respectively).

Definition 7.11. (simultaneous capture-avoiding substitution) The simultaneous capture-
avoiding substitution of N1, . . . , Nn for the (distinct) variables x1, . . . , xn in M , written
M{x1\N1, . . . , xn\Nn} and abbreviated as M{x\N} is inductively defined as follows:

M{∅\∅} = M

xi{x\N} = Ni

y{x\N} = y

M1M2{x\N} = M1{x\N}M2{x\N}
(λy.M){x\N} = (λy.M){x1\N1, . . . , xi−1\Ni−1, xi+1\Ni+1, . . . , xn\Nn}

if xi ∈ y
(λy.M){x\N} = λy.M{x\N}

where y ∩ FV (N ′i) = ∅ for all N ′i ∈ N ′.
(λy.M){x\N} = λy′.M{y\y′}{x\N}

where y′i = yi if ∃i.yi 6∈ FV (Ni)
otherwise yi is fresh for λy.M and N.

In contrast to the simultaneous capture-avoiding substitution we have the simultaneous
capture-permitting substitution.

Definition 7.12. (simultaneous capture-permitting substitution) The simultaneous
capture-permitting substitution is inductively defined as follows:

M [∅\∅] = M

xi[x\N ] = Ni

y[x\N ] = y

M1M2[x\N ] = M1[x\N ]M2[x\N ]
(λy.M)[x\N ] = λy.M [x′\N ′]

where x′i 6∈ y for all x′i ∈ x′.
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Remark 7.13. Note that the statement M [x1\N1][x2\N2] = M [x1x2\N1N2] is not true
in general, as x2 may be free in N1. For example, consider the λ-term M = x. Then
M [x\y][y\z] = z and M [xy\yz] = y.

Definition 7.14. (almost safe application [5]) A term is an almost safe application if it
is safe or if it is of the form N1 . . . Nm for some m ≥ 1 where N1 is not an application
and for every 1 ≤ i ≤ m,Ni is safe.

Definition 7.15. (safe redex [5, Definition 3.21]) In the safe lambda calculus, since we
have simultaneous substitution, a redex is a succession of several standard redexes. An un-
typed safe redex is an untyped almost safe application of the form (λx1 . . . xn.M)N1 . . . Nl

for some l, n ≥ 1 such that M is an almost safe application.
Consequently λx1 . . . xn.M is safe and each Ni is safe for 1 ≤ i ≤ n. Additionally

following property is satisfied for all xi ∈ FV (N1) ∪ · · · ∪ FV (Nl):

ordA ≤ ord xi

where M : A, λx1 . . . xn.M : and (λx1 . . . xn.M)N1 . . . Nm.

Definition 7.16. (safe redex contraction) The relation βs is defined on the set of safe
redexes as follows:

(λxA1
1 . . . xAnn .M)N1 . . . Nl βs (λxk+1 . . . xn.M)〈x1\N1, . . . , xk\Nk〉

where λ.M = M and M〈x\N〉 denotes the simultaneous capture-permitting substitution,
provided that λxk+1 . . . xn.M is safe.

Definition 7.17. The safe β-reduction, written as →βs , is the compatible closure of the
relation βs with respect to the formation rules of the safe lambda calculus.

Blum proved that →βs preserves safety [5, Lemma 3.24]. From Definition 7.16 it
follows that a safe redex can only be contracted if enough arguments are provided. More
precisely, if an argument of order k is provided, all arguments of order k and higher must
be provided. Moreover, we have to apply simultaneous substitution. This is highlighted
in Example 7.18.

Example 7.18. Let M = λyo.(λxoyo.x) y. M is safe and the subterm (λxoyo.x) y is a
safe redex however by Definition 7.16 it cannot be contracted because λyo.x is not safe.
The variables in the abstraction λxoyo have equal order and therefore we need to supply
an argument for both. This would allow to contract them simultaneously.

As we can see in Example 7.18, even though the term λyo.(λxoyo.x) y is safe, it cannot
be further reduced to reach a normal form. Safe terms derivable in the safe λ-calculus by
Blum may therefore get stuck. Stuck in the sense that in the simply-typed λ-calculus we
could further reduce the term. Consequently, we may have different normal forms. In
the final part of this chapter, we will come back to this problem.

Example 7.19 shows that the safety restriction and the safe β-reduction are not enough
to avoid variable capture.
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7 The safe λ-calculus

Example 7.19. Let A = ((o, o), o), B = (A, (o, o), o, A), Γ = {y : (((o, o), o), o), z :
((o, o), o)} and M = (λxAy(o,o)zo.x) (λq(o,o).y z). M is safe and we have Γ, x : A `s
λy(o,o)zo.x : ((o, o), o, A), but safe β-reduction still would require α-conversion, as
M βs λy

(o,o)zoq(o,o).y z where the y got captured.

One additional constraint is therefore needed to ensure that α-conversion is never
needed – it’s the order consistency restriction discussed next.

Definition 7.20. (order consistency [5, p. 53]) We say that a set Γ of typing assumptions
of the form x : A, for some variable x and simple type T , is order-consistent if all the
types assigned to a given variable are of the same order

x : A1 ∈ Γ ∧ x : A2 ∈ Γ =⇒ ordA1 = ordA2

Example 7.21. The set {x : o, y : (o, o)} is order-consistent, the set {x : o, x : (o, o)} is
not order-consistent.

Definition 7.22. Let M ∈ ΛT be an annotated term. We define the set Ass(M) as the
set of type-assignments induced by the type annotations in M :

Ass(x) = ∅
Ass(M N) = Ass(M) ∪Ass(N)

Ass(λxT .M) = {x : T} ∪Ass(M)
Ass(Γ `Ch M : T ) = Γ ∪Ass(M).

A type-annotated term M is said to be order-consistent just if the set Ass(M) is [5,
p. 53].

The term shown in Example 7.19 is not order-consistent as the set of type-assignments
is {y : (((o, o), o), o), z : ((o, o), o), x : ((o, o), o), y : (o, o), z : o, q : (o, o)} where y has two
types of different order. To make the term of Example 7.19 order-consistent, we need to
rename the λy.

Definition 7.23. (safe variable typing convention [5]) In any definition, theorem or
proof involving countably many terms, it is assumed that the set of terms involved is
order-consistent.

Lemma 7.24. (No-variable-capture lemma [5, Lemma 3.15]) In the safe lambda calculus
à la Church, there is no variable capture when performing simultaneous capture-permitting
substitution provided that we adopt the safe variable typing convention: If Γ, x : B `s M :
A, Γ `s N1 : B1, . . . ,Γ `s: Nn : Bn, where |x| = n then

M{N\x} = M [N\x]

Proof. This was proven by Blum in [5]. Suppose we have y ∈ FV (N1) as visualized in
the figure below. Because N1 is safe we know that ord y ≥ ordN1. We would have a
variable capture if x1 occurs free in M in the scope of a λy. In that case, the subterm
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λy.M ′ must be safe, therefore ord x1 ≥ ord (λy.M ′) > ord y. Because we substitute N1
for x1 we also know that ordN1 = ord x1. This leads to a contradiction. The same
argumentation works for the other arguments Ni. We can therefore exclude variable
capture.

M : A

λxB1
1 . . . xBnn

x1 . . . xk

λyC1
N1 : B1
y : D1

Nn : Bn

@
@

In [5], Blum also proposed an alternative to Lemma 7.24 that does not rely on
Convention 7.23, which we recall next.

Lemma 7.25. (No-variable-capture lemma 2 [5, Lemma 3.17]) Let Γ, x : B `s M : A,
Γ `s N1 : B1, . . . ,Γ `s Nn : Bn, with |x| = n, be valid judgments of the safe lambda
calculus à la Church. Then if further Γ `Ch M{N/x} : A is a valid Church simply-typed
term-in-context (not-necessarily safe) then:

MJx\NK ≡M [x\N ]

Counterexample 7.26. Consider the following safe λ-term:

{y : (((o, o), o), o), z : ((o, o), o)} `s (λx((o,o),o)y(o,o)zo.x) (λq(o,o).y z)

There is a variable capture when βs reducing the underlined safe redex. Moreover, we
have for Γ = {y : (((o, o), o), o), z : ((o, o), o)}:

• Γ, x : ((o, o), o) `s λy(o,o)zo.x

• Γ `s λq(o,o).y z

• Γ `Ch λy(o,o)zo.λq(o,o).y z
This is a valid judgment in the simply-typed lambda calculus à la Church.

This is, therefore, a counterexample to Lemma 7.25.

Counterexample 7.26 shows that the alternative proposed in Lemma 7.25 does not
work. This was also confirmed by Blum [6]. It leaves open whether or not there are
alternatives that do work. However, we assume and rely on the safe variable typing
convention in the following Lemma 7.27, where we show that the safe λ-calculus avoids
α by reasoning with α-paths.
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7 The safe λ-calculus

Lemma 7.27. In the safe λ-calculus no variable capture can occur, provided that the
safe variable typing convention is adopted.

Proof. Suppose we have an α-path in a safe λ-term. Then this path would start at a
variable y occurring free in the argument N of some application, which is connected via
legal path to an abstraction λx binding a variable x in the scope of a λy, as illustrated
below.

M
N

@

λx

λy

@

x y

y

x

y

λy

Figure 7.4: Simultaneous contraction can avoid the need for α-conversion.

In such case, by definition of safe terms, we know that λx.M and N are both safe.
Moreover, we know that ord y ≥ N and ordN = ord x. We can therefore have the
following two cases: (i) ord y > ord x or (ii) ord y = ord x.

In any case, as the subterm λy.M ′ would be unsafe in isolation, we conclude that the
λy must occur combined with the λx. By definition of safe β-reduction, we know that
combined abstractions of same order are contracted simultaneously. Therefore we cannot
have a variable capture.

As we have seen, the safety restriction allows avoiding a potential variable capture by
reasoning with types. Types are preserved under β-reduction, which is the key property
enabling this reasoning.

However, as we can see in Example 7.18, we may not be allowed to evaluate safe
terms to a normal form. Consider (again) the following terms: M = λyo.(λxoyo.x) y and
N = λzo.(λxoyo.x) z. Both M and N cannot be further reduced in the safe λ-calculus
because contracting the redex they contain would break the safety of the whole term.

We expect safe terms to evaluate to normal form, so we need to forbid such constructs.
Miranda did this in the first version of the safe λ-calculus he formulated jointly with
Ong and Aehlig and presented in [15]. In his calculus, he assumes homogeneous types, as
Knapik did for higher-order grammars [20].

Definition 7.28. A type (τ1, τ2, . . . , τn, o) with n ≥ 0 is said to be homogeneous if each
τi is homogeneous and ord τ1 ≥ ord τ2 ≥ · · · ≥ ord τn [20]3.

3Knapik used a different terminology and called what we presented as order of a type, the level of a type
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Example 7.29. (o → o) → o and o → o are homogeneous, o → (o → o) is not
homogeneous.

Miranda used for homogeneous types A = (A11, . . . , A1l1 , . . . , Ar1, . . . , Arlr , o) the
following abbreviation:

A = (A1 | . . . | Ar | o)

to mean that all types in each partition Ai = Ai1, . . . , Ail1 have the same level and
∀i, j.i < j ⇐⇒ ordAia > ordAib.

We adopt the same notation for the order restriction on the set of types variables as
done in [15]: Let Γ be a set of typed variables, then ΓP denotes the restriction of Γ to
those elements satisfying predicate P . We write Γ≥k, for the restriction of Γ to variables
of order k and above. Γ>k is the restriction of Γ to the variable with orders strictly
greater than k and Γ=k is the restriction of Γ to only the variables of order k.

Example 7.30. Let Γ = {A : ((o, o), o, o), B : (o, o, o), x : o, y : o}, then Γ≥1 = {A,B},
Γ>1 = {A} and Γ=1 = {B}

Figure 7.5 lists the rules of the first version of the safe λ-calculus (∆ is a set of constants)
due to Miranda, Ong and Aehlig [15].

(var)
{x : A} ` x : A (const)

` f : A f ∈ ∆ (wk)
Γ′ ` M : A
Γ ` M : A Γ′ ⊂ Γ

(app)
Γ `M : (B11, . . . , B1n | B2 | . . . | Bn | o) Γ ` N1 : B11 . . . Γ ` Nn : B1n

Γ `M N1 . . . Nn : (B2 | . . . | Bn | o)

(app+)
Γ `M : (B11, . . . , B1j , B | B2 | . . . | Bn | o) Γ≥m ` N1 : B11 . . . Γ≥m ` Nj : B1j

Γ `M N1 . . . Nj : (B | B2 | . . . | Bn | o)
m = ord (B | B2 | . . . | Bn | o)

(abs)
Γ `M : A Γ=k = {x1 : B11, . . . , xn : B1n}

Γ>k ` λx1 . . . xn.M : (B11, . . . , B1n | A) k = ordA

Figure 7.5: The first version of the safe λ-calculus [15].

In this system, we can only build abstractions with variables of equal order (homoge-
neous). For example, the term λf (o,o)xo.f x is not derivable in Miranda’s system. This
term can only be derived if we split the combined abstraction as follows λf (o,o).λxo.f x.
Moreover, we can see that we can only derive applications if we either provide all argu-
ments of a partition (app-rule) or in case we do not provide all arguments of a partition
(we have a term s of order m and want to create an applicative term s t1 . . . tj of order
m), then the free variables in the applied arguments must all have at least the order of
the resulting term. With these restrictions, statements such as {y : o} ` (λxoyo.x) y are
not derivable and, in contrast to the safe λ-calculus by Blum and Ong, safe redexes can
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7 The safe λ-calculus

always be contracted. This is the crucial observation for solving the problem of terms
getting stuck.

In [5, Lemma 3.26 (iii)] it was wrongly assumed that →βs has the unique normal form
property. After reporting this problem to Blum [7], he immediately worked on it, and
we independently came up with the same solution. As solution, we propose the system
shown in Figure 7.6 (∆ is a set of constants).

(var)
{x : A} ` x : A (const)

` f : A f : A ∈ ∆ (wk)
Γ′ ` M : A
Γ ` M : A Γ′ ⊂ Γ

(app)
Γ `M : (A1, . . . , An, B) Γ≥m ` N1 : A1 . . . Γ≥m ` Nj : Bj

Γ `M N1 . . . Nj : B m = ordB

(abs)
Γ≥m ∪ {x1 : A1, . . . , xn : An} `M : B

Γ `s λx1 . . . xn.M : (A1, . . . , An, B) m = ord (A1, . . . , An, B)

Figure 7.6: A strongly normalizing safe λ-calculus.

It turned out that these rules exactly correspond to the rules of the safe λ-calculus
published in [8] and to the typing rules for long-safe terms (without constants) listed
in [5, Table 3.2]. This system can be seen as a mix of the two systems by Blum and
Miranda (Figure 7.1 and 7.5). It does not make assumptions on types and forbids the
construction of safe redexes that cannot be contracted. The system is, therefore, less
restrictive than Miranda’s system (types not homogeneous) but more restrictive than
Blum’s one (app-rule).

Example 7.31. The simply-typed term (λf (o,o,o)yo.f y) (λxoyo.x) is derivable in the safe
λ-calculus by Blum, but not in our system (and in Miranda’s) because of the application
f y. As shown below, we could not evaluate this term to normal form without breaking
the safety and also would need to apply α-conversion.

(λf (o,o,o)yo.f y) (λxoyo.x)
−→
β

λyo.(λxoyo.x) y
−→
α

λyo.(λxozo.x) y
−→
β

λyo.(λzo.y)

Example 7.32. The simply-typed term (λxoy(o,o).y) is derivable in our system (and in
Blum’s), but not in Miranda’s system because it is not homogeneously typed.

Lemma 7.33. Given a simply typed lambda term M of type B. If in each subterm M ′

every free variable x has order at least the order M ′, then M is safe according to the
inference rules of Figure 7.6.
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Proof. By well-founded induction on the structure of M . In the following proof P (M)
is used to denote that in each safe subterm M ′ of M every free variable x has order at
least order M ′.

1. M = x. Trivial.

2. M = λxA1
1 . . . xAnn .N : (A1 → · · · → An → B).

(abs)
Γ≥m ∪ {x1 : A1, . . . , xn : An} `M : B

Γ `s λx1 . . . xn.M : (A1, . . . , An, B) m = ord (A1, . . . , An, B)

• N = y. To prove the statement for M we assume P (M). Trivially we have
P (y) so by the induction hypothesis we have that y is safe.

– y ∈ {x1, . . . , xn}. Then Γ = ∅ and by applying the wk rule followed by
the abs-rule we can conclude that M is safe.

var
y : Ak `s y : Ak

wk
x1 : A1, . . . , y : Ak, . . . , xn : An `s y : Ak

abs
λxA1

1 . . . yAk . . . xAnn .y : A1 → · · · → An → Ak

– y 6∈ {x1, . . . , xn}. Since we assumed that P (M), we know that ordM ≤
ord y and we can apply the abs-rule also in this case.

var
y : B `s y : B

wk
x1 : A1, . . . , xn : An, y : B `s y : B

abs
y : B `s λxA1

1 . . . xAnn .y : A1 → · · · → An → B

• N = λyB1
1 . . . yBnn .N ′. We assume P (M). Since N is a subterm of M , we also

have P (N). By induction hypothesis we have that N is safe. We can apply
the abs-rule and conclude that M is safe.

. . .
. . .

x1 : A1, . . . , xn : An,Γ `s λyB1
1 . . . yBnn .N ′ : B1 → · · · → Bn → C

abs
Γ `s λxA1

1 . . . xAnn .λyB1
1 . . . yBnn .N ′ : A1 → · · · → An → (B1 → · · · → Bn → C)

• N = N0N1 . . . Nm. We assume P (N). By induction hypothesis each Ni for
i ∈ {1, . . . ,m} is safe.

Γ′ `s N0 : B1 → · · · → Bm → C
∆ wk

x1 : A1, . . . , xn : An,Γ `s N0 : B1 → · · · → Bm → C

∆

Γ′′ `s N1 : B1 . . .
wk

x1 : A1, . . . , xn : An,Γ `s N1 : B1 . . .

Γ′′′ `s Nm : Bm
wk

x1 : A1, . . . , xn : An,Γ `s Nm : Bm
app

x1 : A1, . . . , xn : An,Γ `s N0N1 . . . Nm : C
abs

Γ `s λxA1
1 . . . xAnn .N0N1 . . . Nm : A1 → · · · → An → C

By assumption we have that ord (A1 → · · · → An → C) ≤ ordΓ and we are
allowed to apply the abs-rule
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7 The safe λ-calculus

3. M = N0N1 . . . Nm : B. We assume that we have P (M). Therefore we also have
P (Ni) for each Ni and by induction hypothesis each Ni is safe. By assumption we
have that ordB ≤ ordΓ and we are allowed to apply the app-rule

(app)
Γ `M : (A1, . . . , An, B) Γ≥m ` N1 : A1 . . . Γ≥m ` Nj : Bj

Γ `M N1 . . . Nj : B
m = ordB

Lemma 7.33 from above gives a procedure for checking whether a term is safe or not.
If variables occurring free have order at least the order of the subterms they occur free
in, then the whole term is safe. To check it, we label each node at (any) position p with
the order of the subterm M |p. We then can verify whether a term is safe by checking
whether the order of the variables is the minimum value on their path towards the root.
For example, the term depicted in Figure 7.7 is unsafe because the subterm λf.f (f c) is
unsafe.

@ 1

λf 2

@ 1

f 2 @ 1

f 2 c 1

λgxy 2

@ 0

g 1 y 0 x 0

1 6≥ 2

Figure 7.7: Safety check.
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8 The simply typed λ-calculus

The simply typed λ-calculus (Λ→) is strongly normalizing. The need for α-conversion
can therefore always be predicted, however sometimes it may be unavoidable.

Definition 8.1. The set of simple types over the atomic type o is generated from following
grammar:

T ::= o | T → T .

By convention, → associates to the right and A1 → · · · → An → o is abbreviated as
(A1, . . . , An, o).

Definition 8.2. A typing context (or typing environment) Γ is a set of typing assumptions
of the form x : A where A is a (simple) type.

Definition 8.3. This is the system of rules for the Simply Typed λ-Calculus:

(var)
x : A ∈ Γ
Γ ` x : A (app)

Γ ` N1 : A→ B Γ ` N2 : A
Γ ` N1N2 : B (abs)

Γ, x : A `M : B
Γ ` λxA.M : A→ B

Terms derivable in the system of the simply typed λ-calculus are said to be well-typed.

Example 8.4. Let A = (o, o, o). The term (λfA→AcA.f (f c)) (λzAxoyo.z y x) is well-
typed, but still requires α-conversion is needed when reducing it to normal form. All
binders are already named distinct, α-conversion is therefore unavoidable.

(λfc.f (f c)) (λzxy.z y x)

−→
β

(λzxy.z y x) ((λzxy.z y x) c)
−→
β

(λzxy.z y x) (λxy.c y x)
−→
β

(λxy.(λxy.c y x) y x)
−→
α

λxy.(λxy′.c y′ x) y x
−→
β

λxy.(λy′.c y′ y)x
−→
β

λxy.c x y

We can use the α-paths to predict the need for α-conversion in the simply typed
λ-calculus. Since well-typed terms are strongly normalizing, also the set of α-paths in a
well-typed term is finite. In the term in Example 8.4 we have the following paths:
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8 The simply typed λ-calculus

@ε

λf1

λc11

@111

f1111 @1112

f11121 c11122

λx2

λy21

λz211

@21

@21112

x211121 z211122

y211

Figure 8.1: An unremovable α-path in (λfc.f (f c)) (λxyz.(x z) y).

Example 8.5 shows that simultaneous reduction is not enough to avoid the need for
α-renaming in the simply typed λ-calculus. Vincent found this term by relying on
Example 8.4 and applying the trick of temporarily blocking a redex (by inserting the
identity function) [33].

Example 8.5. Applying simultaneous β-reduction is not enough to allow α-avoidance
in the simply-typed λ-calculus.

(λfc.f (f c)) (λgx.(λi.i) (λy.g y x))

−−−→
βsim

λc.(λgx.(λi.i) (λy.g y x)) ((λgx.(λi.i) (λy.g y x)) c)
−−−→
βsim

λc.(λx.(λi.i) (λy.((λgx.(λi.i) (λy.g yx)) c) y x))
−−−→
βsim

λc.(λx.(λy.((λgx.(λi.i) (λy.g yx)) c) y x))
6−−−→
βsim

λc.(λx.(λy.((λi.i) (λy.y y x)) c))
−→
α

λc.(λx.(λy.((λgx.(λi.i) (λy′.g y′x)) c) y x))
−−−→
βsim

λc.(λx.(λy.((λi.i) (λy′.y y′ x)) c))
−−−→
βsim

λc.(λx.(λy.(λy′.y y′ x) c))
−−−→
βsim

λc.(λx.(λy.y c x))
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9 The untyped λ-calculus

In the untyped λ-calculus, also called the full λ-calculus, there are no restrictions. We have
seen that already that in the simply typed λ-calculus, α-renaming may be unavoidable.
The simply typed λ-calculus, however, is strongly normalizing. Untyped terms may
not have a normal form, the set of legal paths in an untyped λ-term can potentially
be infinitely large. For such terms, predicting the need for α-conversion via α-paths is
impossible since we rely on the legal paths (which is an infinite set for such terms). In
this chapter, we show that in the untyped λ-calculus, the question about α-avoidance is
undecidable for the leftmost–outermost reduction strategy by giving a reduction from
Post’s Correspondence Problem [26].

Definition 9.1. The set Λ of λ-terms is inductively defined as follows:

(var) x ∈ Λ, for all variables x

(app) M,N ∈ Λ =⇒M N ∈ Λ

(abs) M ∈ Λ =⇒ λx.M ∈ Λ

Example 9.2 gives an example for an untyped term where the need for α-conversion
cannot be avoided, no matter how variables are named initially. This term is interesting
because its reduction sequence combines all restrictions we analyzed so far. There is
a duplication (forbidden in the linear λ-calculus), a redex creation (restricted in the
underlined λ-calculus), and a redex contraction in the scope of a λ-node in the last β-step
(not allowed in the lazy λ-calculus). Moreover, this term is not typable and therefore
also not safe.

Example 9.2. An unavoidable α-conversion.

duplication

redex creation

contraction under lambda

(λx.x x) (λyλz.y z)
−→
β

(λyλz.yz) (λyλz.y z)
−→
β

λz.(λyλz.y z) z
−→
α

λz.(λy.λz′.y z′) z
−→
β

λzλz′.z z′

Even if the need for α-conversion in Example 9.2 was unavoidable, it still was predictable.
However, in the untyped λ-calculus terms may not be strongly normalizing (for example
(λx.y) Ω). In Remark 9.3 we explain the idea of how we could over-approximate the need
for α-conversion for such terms.
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9 The untyped λ-calculus

@ε

λx1

@11

x111 x112

λx2

@21

x211 x212

(a) Gα(Ω).

λf ε

@1

λx11

@111

f1111 @1112

x11121 x11122

λx12

@121

f1211 @1212

x12121 x12122

(b) Gα(Y ).

Figure 9.1: Overapproximation for non-normalizing -terms.

Remark 9.3. For λ-terms that are not strongly-normalizing we have an infinite set of legal
paths, all characterizing a different virtual redex. For such terms, a prediction about the
need for α-conversion via the α-paths is therefore impossible. Already for (λx.x x) (λx.x x),
the standard example of a non-normalizing λ-term (Ω→β Ω→β Ω→β . . . ), we will run
into that problem. However, for Ω we know that we cannot have any α-path, because
there is no c-edge in Gα(Ω) (see Figure 9.1a).

For the Y -combinator Y = λf.(λx.f (xx)) (λx.f (xx)), also non-normalizing, this
question is more difficult to answer (see Figure 9.1b). But, even if λ-terms are not
normalizing, we could try to overapproximate the need for α-conversion. An interesting
question, therefore, is whether such an overapproximation is possible in general. We
propose to compute only finitely many legal paths (would be an infinite set) and only
consider those legal paths, that build new connections between two nodes. For example,
suppose we already have a legal path from an @-node at position p and a λ-node at
position q, and we generate another legal path between these positions. In that case,
we discard it and do not add it to our set of legal paths. This way, we know that the
procedure terminates (we have only finitely many nodes in an α-graph), and can search
for α-paths. With this approach we only generate three legal paths for both Ω and the
Y -combinator as depicted in Figure 9.1 (we only illustrated the connection between the
starting and the ending node, not the whole legal path). We would conclude that in both
term there is no need for dynamic α-conversion as there are no α-paths. Since we do not
prove that this indeed corresponds to an overapproximation, this question remains open
and is part of future work.

When restricting →β to the leftmost–outermost reduction strategy, α-avoidance is, in
general, undecidable for the untyped λ-calculus. This can be shown via a reduction from
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Post’s correspondence problem (PCP) that is already known to be recursively unsolvable
i.e., undecidable [26].

The correspondence decision problem asks whether for an arbitrary finite set of string
pairs (s1, s

′
1), (s2, s

′
2), . . . , (sn, s′n) on the characters a and b, there is a solution to the

equation
si1si2 . . . sik = s′i1s

′
i2 . . . s

′
ik

k ≥ 1, ij ∈ {1, 2, . . . , n} (9.1)
Example 9.4. Let n = 2, (s1, s

′
1) = (a, abb) and (s2, s

′
2) = (bb, b). Then s1s2s2 =

abbbb = s′1s
′
2s
′
2 is a solution to the correspondence decision problem.

Example 9.4 shows an easy instance of PCP and its solution, for n = 2 PCP is
decidable [16]. However, as already mentioned above, it is undecidable in general. Next,
we will show how we can encode an algorithm for the PCP-problem in the λ-calculus and
that α-conversion can indeed be avoided in the evaluation of PCP PAIRS , with PAIRS
being an arbitrary list of pairs of strings if we adopt a weak β-reduction.

Boolean Logic We start by showing how boolean logic can be encoded in the λ-caclulus.

TRUE =λxy.x
FALSE =λxy.y

ITE =λcab.c a b
AND =λab.a bFALSE

OR =λab.aTRUE b

CT =λx.TRUE
CF =λx.FALSE

Example 9.5. AND TRUE FALSE �β TRUE FALSE FALSE �β FALSE

Pairs Next we define the encoding of pairs.

PAIR =λabc.c a b
FST =λp.pTRUE
SND =λp.pFALSE

Example 9.6. FST (PAIR TRUE FALSE)→β (PAIR TRUE FALSE) TRUE �β TRUE
TRUE FALSE �β TRUE

Recursion The Y -combinator allows to define recursive functions in the λ-calculus:

Y = λf.(λx.f (xx)) (λx.f (xx))

Example 9.7. Y f →β (λx.f (xx)) (λx.f (xx)) →β f ((λx.f (xx)) (λx.f (xx))) ≡
f (Y f)
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9 The untyped λ-calculus

Strings We define strings over the alphabet Σ = {a, b}.

EMPTY =λabx.x
ISEMPTY =λs.sCF CF TRUE
CONCAT =λyzabx.y a b (z a b x)

Example 9.8. The string aa can be defined as λabx.a (a x)

Example 9.9. The string bb can be defined as λabx.b (b x)

Example 9.10. ISEMPTY EMPTY →β EMPTY CF CF TRUE �β TRUE

Example 9.11. ISEMPTY λabx.a (b (b x))�β CF (CF (CF TRUE))�β FALSE

Next, we define functions that prepend a character to a string (PREP A,PREP B),
one to check whether the first character is an a (HD A) or a b (HD B) and one to check
whether the first character of two strings is equal (HD EQ).

PREP A =λsabx.a (s a b x)
PREP B =λsabx.b (s a b x)

HD A =λs.sCT CF FALSE
HD B =λs.sCF CT FALSE

HD EQ =λxy.OR (AND (HD Ax) (HD A y)) (AND (HD B x) (HD B y))

Defining the tail of a string in the λ-calculus is non-trivial. It can be implemented by
using pairs by implementing the idea visualized in Figure 9.2.

str fst snd
a ε ε

ab a ε

abb ba a

abba bba ba

abba bba

bba

Figure 9.2: How to compute the tail of string using pairs.

Let λabx.s be our string where s = a(s) | b(s) | x. If we, as illustrated above in
Figure 9.2, replace in s the characters a, b by a function that copies the first element
of a pair to the second element and prepends the corresponding character to the first
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element of the pair (NEXT A,NEXT B) and x by a pair of empty strings, then we can
just return the second element of the final pair, and we have the tail (TL STR).

NEXT A =λx.PAIR (PREP A (FIRST x)) (FIRST x)
NEXT B =λx.PAIR (PREP B (FIRST x)) (FIRST x)
TL STR =λs.SECOND (sNEXT ANEXT B (PAIR EMPTY EMPTY ))

EQ checks whether two strings are equal by checking whether the first characters are
equal and, if so, recursively whether the tails are equal. PREFIX checks whether a string
x is a prefix of another string y.

EQ =Y (λfxy.ITE (OR (IS EMPTY x) (IS EMPTY y))
(AND (IS EMPTY x) (IS EMPTY y))
(AND (HD EQxy) (f (TL x) (TL y))))

PREFIX =Y (λfxy.ITE (IS EMPTY x) TRUE
(AND (HD EQxy) (f (TL x) (TL y))))

Lists The last data structure we need to encode is a list. We only need basic functions
on lists: HD L extracts the head element of a list, TL L the tail of a list, and APPEND
appends a list y to another list x. The TL L function follows the same idea illustrated in
Figure 9.2. To make HD L typable, we return a pair of empty strings whenever we try
to extract the head element of an empty list1.

NIL =λcn.n
CONS =λht.λcn.c h (t c n)

IS NIL =λl.l (λht.FALSE) TRUE
HD L =λl.l (λht.h) (PAIR EMPTY EMPTY )

NEXT L =λxp.PAIR (CONS x (FIRST p)) (FIRST p)
TL L =λl.SECOND (lNEXT L (PAIR NIL NIL))

APPEND =λxy.λcn.x c (y c n)

PCP With booleans, pairs, lists, and strings we can finally implement the PCP algorithm.
The SIMP function simplifies a pair of strings by cutting off the first n characters
from both strings, where n is the length of the shorter string (e.g. simp(abba, bab) =
(a, ε)). P VALID is true, if in a pair of strings one string is a prefix of the other (e.g.
pvalid(abba, bab) = false). The FIND EQ function checks whether in a list of pairs of
strings, we have a pair with two equal strings (in case we have a solution).

1In our program we will always check if a list is empty or not before calling the HD L function.
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9 The untyped λ-calculus

SIMP =λp.Y (λfxy.ITE (OR (IS EMPTY x) (IS EMPTY y)) (PAIR x y)
(f (TL x) (TL y))) (FIRST p) (SECOND p)

P VALID =λp.OR (PREFIX (FIRST p) (SECOND p))
(PREFIX (SECOND p) (FIRST p))

FIND EQ =Y (λfx.ITE (IS NIL x) FALSE
(OR (EQ (FIRST (HD L x)) (SECOND (HD L x))) (f (TL L x))))

The CMB function, given two pairs (s1, t1) and (s2, t2), returns a pair with concatenated
elements (s1 · s2, t1 · t2). The MAP CMB function maps the CMB with a pair x over
each element of a list y. It also simplifies the resulting list of pairs and filters out invalid
ones. The CROSS CMB function combines each element in a list x with each element in
a list y.

CMB =λpq.PAIR (CONC (FIRST p) (FIRST q))
(CONC (SECOND p) (SECOND q))

MAP CMB =Y (λfxy.ITE (IS NIL y) NIL (ITE (PVALID (CMB x (HD L y)))
(CONS (SIMP (CMB x (HD L y))) (f x (TL L y))) (f x (TL L y))))

CROSS CMB =Y (λfxy.ITE (IS NIL x) NIL
(APPEND (MAP CMB (HD L x) y) (f (TL L x) y)))

Finally, we can define the PCP function that takes a list of pairs as input and recursively
combines them. PCP is semi-decidable. It only stops if a solution is found (created at
least one pair with equal strings) or if no new combination can be created (no solution).

PCP =λx.Y (λfxy.ITE (IS NIL x) FALSE
(ITE (FIND EQ x) TRUE (f (CROSS CMB x y) y)))xx

It remains to show how we can encode a specific problem. We chose the following PCP
problem [22, Problem 12]2:

T1 = λabx.b (a (a x)) B1 = λabx.b x

T2 = λabx.a x B2 = λabx.b (a (a x))
T3 = λabx.b x B3 = λabx.a x

P1 = PAIR T1B1 P2 = PAIR T2B2 P3 = PAIR T3B3

2we encode the 0 as a and the 1 as b
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PAIRS = CONS P1 (CONS P2 (CONS P3 NIL)) is the list containing the above defined
pairs of strings. Since this problem has a solution of length 75 [22, Problem 12], we
know that at some point, PCP PAIRS will stop and return true. However, as already
mentioned, in general, we do not know whether the PCP algorithm will stop at all. In
some instances, the algorithm will not terminate.

The encodings presented in this chapter were all implemented in Haskell. Everything
is typable, so we know that PCP will evaluate to either TRUE or FALSE (and nothing
else). The source code can be found in Appendix A.4. Since Haskell is lazy, it never
reduces under λ-abstractions. Moreover, there are no free variables in PCP PAIRS . We
have seen in Chapter 6, that α-conversion can be avoided for closed terms when we apply
weak β-reduction. So we can conclude that for PCP PAIRS the leftmost–outermost
reduction strategy is α-free (for any PAIRS instance).

Consider the following program:

(ITE (PCP PAIRS) AA BB) (λxyz.(x z) y)

where AA is the encoding of the string aa and BB the encoding of the string bb, accord-
ing to Example 9.8 and 9.9. If the problem has a solution, it will reduce to the λ-term
AA (λxyz.(x z) y), which is α-equivalent to the simply-typed λ-term from Example 8.1
(with α unavoidable). Otherwise, it will reduce to the λ-term BB (λxyz.(x z) y) from
which we get with one β-step to λbx.b (b x). Moreover, we know that if we always contract
the top-level redex (it is also the leftmost, outermost one), the reduction sequence to
these terms is α-free. In that case, if we further reduce these terms to normal form,
then we need α-conversion if and only if the PCP problem has a solution. It depends
on the result of PCP PAIRS whether the described reduction strategy is α-free or not.
Since we know that PCP is in general undecidable, we conclude that the question about
α-avoidance is, in general, undecidable for the leftmost–outermost reduction strategy.

Remark 9.12. We have proven the undecidability of α-avoidance for the leftmost–
outermost reduction strategy in the untyped λ-calculus. We restricted to this specific
strategy because there are many reduction sequences from the program PCP program
we encoded. However, we think that we could prove the general undecidability of α-
avoidance. The approach we propose is to translate the PCP program from above into
continuation-passing style [13]. This way, by definition of the program, we can make the
reduction deterministic and therefore enforce the reduction sequence we have shown to be
problematic. This would allow us to conclude the general undecidability of α-avoidance.
This question, however, remains open and is part of future work.
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10 Conclusion

In this thesis, we investigated what it means to avoid α or that α can be avoided.
We presented a general characterization for the need for α-conversion via the so-called
α-paths (Chapter 3). α-paths exploit the predictive power of the legal paths due to
Asperti and Guerrini [2]. These legal paths characterize virtual redexes, i.e. all redexes
occurring in some reduction sequence from a λ-term. By reasoning on the structure of
the initial term, we estimated whether α-conversion might be needed when contracting
these virtual redexes. The α-paths were instantiated to different λ-calculi: developments
(Chapter 4), the affine λ-calculus (Chapter 5), the weak λ-calculus (Chapter 6), the
safe λ-calculus (Chapter 7), the simply-typed λ-calculus, and finally for the untyped
λ-calculus (Chapter 9). We have proven that if a λ-term does not contain any α-path,
then any reduction sequence from it is α-free.

We have seen that forbidding redex creation, duplication, or the contraction of redexes
in the scope of abstractions is enough to allow α-avoidance. In the safe λ-calculus, we have
seen how α can be avoided by reasoning with types. In the calculus by Blum and Ong [9],
however, we have seen that terms may get stuck. We proposed an alternative system that
forbids the construction of ”unsafe” applications and therefore is strongly normalizing.
In the simply-typed λ-calculus, we have seen that α cannot always be avoided. However,
since this calculus is strongly normalizing, the problem is still decidable. The untyped
λ-calculus, however, is not strongly normalizing. For this unrestricted calculus, we showed
that the question about α-avoidance is undecidable for the leftmost–outermost reduction
strategy.

For all calculi where we can avoid α, we have seen that adopting the right naming
conventions enables α-free computations. In the end, this means moving a dynamic
problem to a static one. We motivated in the introduction (Chapter 1) why this shift can
be relevant for different aspects like efficiency (naive substitution), traceability (relation
input–output) and referential transparency (no supply of fresh variables needed).

There are still some open problems. It remains to show whether we can overapprox-
imate the need for α-conversion (Remark 9.3) and whether we can prove the general
undecidability of α-avoidance (Remark 9.12). We already know that we do not have any
name collision in valid functional programs if we apply lazy β-reduction [24]. However, it
would be interesting to know whether we can characterize this result via paths. This
would require the characterization of virtual redexes via paths for reduction rules that
differ from the ordinary β-reduction (Remark 6.6). Another open problem we described
is whether we can derive a safe reduction sequence, in which no α is needed, for an
arbitrary λ-term (Remark 3.39). These problems are left for future work.

70



Bibliography

[1] S. Alves and M. Florido. Weak linearization of the lambda calculus. Theor. Comput.
Sci., 342(1):79–103, Sept. 2005.

[2] A. Asperti and S. Guerrini. The Optimal Implementation of Functional Programming
Languages. Cambridge University Press, USA, 1999.

[3] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier, 1984.

[4] H. P. Barendregt, S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, and H. H.
Barendregt. Lambda calculi with types. 2000.

[5] W. Blum. The Safe Lambda Calculus. PhD thesis, Oxford University, UK, 2009.

[6] W. Blum. personal communication, May 2020.

[7] W. Blum. personal communication, August 2021.

[8] W. Blum and C. H. L. Ong. The Safe Lambda Calculus. In S. R. Della Rocca,
editor, Typed Lambda Calculi and Applications, pages 39–53, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg.

[9] W. Blum and C. H. L. Ong. The Safe Lambda Calculus. Logical Methods in
Computer Science, Volume 5, Issue 1, Feb. 2009.
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[16] A. Ehrenfeucht, J. Karhumäki, and G. Rozenberg. The (generalized) post correspon-
dence problem with lists consisting of two words is decidable. Theoretical Computer
Science, 21(2):119–144, 1982.

[17] J. Endrullis, C. Grabmayer, J. W. Klop, and V. van Oostrom. On equal µ-terms.
Theoretical Computer Science, 412(28):3175 – 3202, 2011. Festschrift in Honour of
Jan Bergstra.

[18] R. Hendriks and V. van Oostrom. adbmal. Lecture Notes in Computer Science,
2741:136–150, 2003. Proceedings title: Conference on Automated Deduction.

[19] J. Hindley. Reductions of residuals are finite. Transactions of The American
Mathematical Society - TRANS AMER MATH SOC, 240:345–361, 06 1978.
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A Appendix

A.1 Alpha avoidance in the µ-calculus
This section relies on the concepts and definitions introduced in [17]. The µ-calculus
is the calculus of recursive types [4]. As in untyped λ-calculus, terms are formed by
variables, applications and abstractions. In addition, also constants are allowed. There is
only one single rewrite rule called the µ-rule.

Definition A.1. The set of µ-terms Ter(µ) is inductively defined as:

(var) x, y, z, ... ∈ Ter(µ)

(con) c, d, ... ∈ Ter(µ)

(app) M,N ∈ Ter(µ) =⇒ M N ∈ Ter(µ)

(abs) M ∈ Ter(µ) and x a variable =⇒ µx.M ∈ Ter(µ)

where c, d, ... are constants. µ is interpreted as type constructor [4].

Example A.2. µx.x, µx.(µz.y), µx.x c are valid µ-terms, µc.(x c) is not a valid µ-term.

Definition A.3. (µ-rule) The only rewrite rule is the so called µ-rule.

µx.M
µ−→MJx := µx.MK

In Definition A.3 we see that the abstracted variable x is replaced in M by the whole
term again. This is what happens in a recursion step in the ordinary λ-calculus reducing
a fixed point combinator [3, Section 6.1]. The α-paths we would have in such a simulation,
therefore, correspond to the self-capturing chains presented in this section.

Example A.4. µx.x µ−→ µx.x
µ−→ µx.x

µ−→ . . .

Example A.5. µx.(y µy.x) α−→ µx.(y µz.x) µ−→ y µz.µx.(y µz.x) µ−→ . . . .

In this Example A.5 the last case of α-converting substitution applies in the first
reduction step, where the µy is renamed to µz to prevent the free variable y to be
captured. The need for this α-renaming can be predicted by the self-capturing chains
introduced by Vincent van Oostrom. These chains were also inspiration for the self-
capturing chains presented in this thesis for the λ-calculus. Next we will prove that
MJx/NK = M [x/N ] if there is no self-capturing chain in M .

Definition A.6. (Binding link) For a given term M a binder µx at position p binds a
variable y at position p1 if the occurrence of the variable y is free at position q in M |p1
and x = y. These positions are connected by a binding link (blue) starting at p.
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Definition A.7. (Converse-capturing link) For a given term M a binder µx at position
p captures a variable y at position p if the occurrence of the variable y is free at position
q in M |p1 and x 6= y. These positions are connected by a converse-capturing link (red)
starting at p.

M|1

µxε

@1

y11 µy12

x121

p

p1q

binding link

M|1

µxε

@1

y11 µy12

x121

p

p1q

converse capturing link

Figure A.1: Example of a binding link and a converse capturing link

Definition A.8. (Self-capturing chain) A chain is a series of alternating binding and
converse capturing links. A chain is said to be self-capturing if it starts with x and ends
with µx for some x.

Example A.9. The term µx.(y µy.x) contains a self-capturing chain y, µx, x, µy starting
at y and ending at µy.

µxε

@1

y11 µy12

x121

Lemma A.10. If a term M contains no self-capturing chain then α-renaming can be
avoided in a µ-reduction step.

Proof. Let µx.M contain no self-capturing chain (scc). If there is a chain from a free
occurrence of x in M to a µy, then y cannot occur free in M , otherwise there would be a
scc y, µx, x, . . . , µy. Since y is not free in M the last case in the definition of α-converting
substitution cannot apply and consequently MJx/NK = M [x/N ].

Having proved Lemma A.10 it remains to show that self-capture-freeness is preserved
by µ-reduction.

Lemma A.11. Self-capture-freeness is preserved by µ-reduction.
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Proof. This statement is proved by relating positions in the source term and the target
term of a reduction step contracting a redex µz.M at position o. This mapping is
visualized by the colored areas in Figure A.2.

(context) p . p if o is not prefix of p

(body) o1p . op if o1p not bound by o

(copy) op . oqp if o1q bound by o

µxε

@1

y11 µz12

@121

x1211 µy1212

z12121

µ−→

context

body

copy

µxε

@1

y11 @12

x121 µy122

µz1221

@12211

x122111 µy122112

z1221121

Figure A.2: Mapping back links to paths (Case 4).

The claim is that every chain in the target term maps back to a chain in the source
term. Let p′ denote the position of a binder µx and q′ denote the position of a variable y
in the target, where p′ is prefix of q′. Four cases have to be distinguished:

1. both p′ and q′ in same component: the path between them is in the same component
as well and the origin of this path is a path between their origins p, q in the source.

2. p′ in the context and q′ in the body: the origin of the path between them is a path
between their origins p and o1q in the source with side condition that y 6= z.

3. p′ in the context and q′ in a copy at o′: q′ has to be free in o′1 and the origin of
the path is a path from p to oq.
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4. p′ in the body and q′ in a copy at o′: q′ has to be free in o′1 which implies that p is
connected to q via the first binder corresponding to the copy (this case is visualized
in Figure A.2).

Lemma A.12. For every µ-term M there exists a µ-term N such that M ≡α N and
any µ-reduction from N is α-free

Proof. By naming the binders on each chain in M distinctly and distinct from the free
variables, we can conclude that the term is self-capture-free and therefore by Lemma
A.10 and Lemma A.11 also α-free [17]. It would be enough to rename only the binders
on self-capturing chains, but this would require more effort since the start end endpoints
have to be determined first. On a chain of length 11, there can be maximal 6 binders,
but there could be 22 self-capturing chains (1 of length 11, 2 of length 9, 5 of length 7, 6
of length 5 and 8 of length 3). Therefore it is cheaper to rename the binders on each
chain.

A.2 Naive replacement and α-equivalence

The α-conversion of a term M into a term N with M ≡α N can be done using at most one
extra variable, as shown in [18]. The procedure described there requires replacing across
a whole term M a variable x by another variable v fresh for M . This transformation has
the following properties: M →x\v M

′ where v 6∈ Var(M), x 6∈ Var(M ′) and M ≡α M ′.
Since it is not clear whether M ≡α M ′ holds if we näıvely replace every occurrence of
x by v, we will show that this can be simulated by α-conversions, where α-equivalence
holds by definition.

Definition A.13. Var(M), the set of all variables appearing in a term M (including the
ones in λ’s), can be defined inductively:

Var(t) =


{x} if t = x

Var(M) ∪ Var(N) if t = M N

{x} ∪ Var(M) if t = λx.M

Definition A.14. The function alpha step performs one α-step (Definition 2.52):

alpha step t x y =
{
λy.MJx\yK if t = λx.M

t else

Definition A.15. The following function replaces in a λ-term M all appearances of a

76



A.2 Naive replacement and α-equivalence

variable x by a variable y fresh for M via α-conversions.

M〈x\y〉 =



x if M = x

z if M = z

M1〈x\y〉M2〈x\y〉 if M = M1 M2

(alpha step M x y)〈x\y〉 if M = λx.M1

λz.M1〈x\y〉 if M = λz.M1

Definition A.16. The following function replaces in a λ-term M all appearances of a
variable x by a variable y fresh for M via näıve replacement.

MLx\yM =



y if M = x

z if M = z

M1Lx\yMM2Lx\yM if M = M1 M2

λy.M1Lx\yM if M = λx.M1

λz.M1Lx\yM if M = λz.M1

Theorem A.17. Let M be the term we want to convert and y fresh for M . We can
prove that MLx\yM ≡α MJx\yK〈x\y〉 i.e. the replacement of all appearances of x in M
by y, which is fresh for M , can be simulated by α-conversions. MJx\NK denotes the
capture-avoiding substitution (Definition 2.56).
Proof. We proceed by induction on M .

• For M = x

xJx\yK〈x\y〉 ≡α xLx\yM
y〈x\y〉 ≡α xLx\yM

y ≡α xLx\yM
y ≡α y

• For M = z where z 6= x we get
zJx\yK〈x\y〉 ≡α zLx\yM

z〈x\y〉 ≡α zLx\yM
z ≡α zLx\yM
z ≡α z

• For M = M1 M2 we get
(M1M2)Jx\yK〈x\y〉 ≡α (M1 M2)Lx\yM

(M1Jx\yK〈x\y〉) (M2Jx\yK〈x\y〉) ≡α (M1 M2)Lx\yM
(M1Jx\yK〈x\y〉) (M2Jx\yK〈x\y〉) ≡α M1 Lx\yMM2 Lx\yM

M1Jx\yK〈x\y〉 ≡α M1 Lx\yM ∧
M2Jx\yK〈x\y〉 ≡α M2 Lx\yM
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here we use the induction hypothesis.

• For M = λx.N1 we get

(λx.N1)Jx\yK〈x\y〉 ≡α (λx.N1)Lx\yM
(λx.N1)〈x\y〉 ≡α (λx.N1)Lx\yM

(alpha step (λx.N1) x y)〈x\y〉 ≡α (λx.N1)Lx\yM
λy.N1Jx\yK〈x\y〉 ≡α (λx.N1)Lx\yM
λy.N1Jx\yK〈x\y〉 ≡α λy.N1Lx\yM

here we use the induction hypothesis.

• M = λy.N1 is excluded, since by assumption we have that y is fresh.

• For M = λz.N1 we get

(λz.N1)Jx\yK〈x\y〉 ≡α (λz.N1)Lx\yM
λz.N1Jx\yK〈x\y〉 ≡α (λz.N1)Lx\yM
λz.N1Jx\yK〈x\y〉 ≡α λz.N1Lx\yM

here we use the induction hypothesis.

A.3 De Bruijn indices and α-avoidance
When talking about α-avoidance, one could ask: ”Why not simply use De Bruijn indices?”.
The name free calculus introduced by de Bruijn in 1972 [14] allows to represent λ-terms
without any variables, but rather indices that indicate the ”distance” to the binding
λ-node. In this representation, we cannot have name collisions. It seems, at first sight,
that this representation solves the problem of α-avoidance. In this section, we will take a
closer look at nameless terms to understand why they are not a proper solution to the
problem we aim to solve.

Nameless terms Bound variables are implicitly connected to the λ-node that binds
them. From a computational aspect, establishing and preserving this connection is
the only purpose variables have. These implicit pointers do not necessarily have to be
specified by variables; the de Bruijn indices offer an alternative way to do that. In
Figure A.3 the connections are made explicit by a binding edge from the variables/indices
to their binder.

The two examples of Figure A.3 semantically represent the same term. The connections
established by variables in the usual representation of terms (lhs) can also be described
by so-called de Bruijn indices (rhs), and in this case, they are identical. An expression in
de Bruijn notation is generated by following grammar:
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λx.(λy.x y) (λz.x z) λ.(λ.2 1) (λ.2 1)

Figure A.3: Variables vs. de Bruijn indices

t = n | λ.t | t t

with n a natural number > 0 that specifies which λ-occurrence is the binder occurrence
(replaces variables). It indicates the number of λ’s we encounter in the abstract syntax
tree on the way up to the root1 [14]. As we can see from the definition, there are no
variables involved.

This alternative representation has two advantages: i) no variable capture can occur
when applying β-reduction ii) α-equivalence can be determined by checking syntactic
equivalence, which allows simplifying many proofs. At first sight, it seems that this
representation even solves the problem of α-avoidance, but this is not the case as we will
see next.

Substitution and Shifting Obviously, we need a different notion of β-reduction for
nameless terms. Indices are not absolute references and have therefore to be adapted
continually. Even if we could apply näıve substitution when reducing terms in ordinary
notation (see above), we could break the semantics when applying it to the same term in
de Bruijn notation, as the following example shows.

λx.(λy.x (λz.y)) (λz.x z)
→β λx.x (λz.(λz.x z))

λ.(λ.2 λ.2) (λ.2 1)
6→β λ.2 λ.(λ.2 1)
→β λ.1 λ.(λ.3 1)

Figure A.4: de Bruijn notation does not allow naive substitution.

A more complex substitution method is needed to avoid dangling pointers or an ”index
capture”. These adaptations can thus be seen as a kind of α-renaming. This shows that
the problem of α-avoidance is not solved but simply manifests itself differently.

Same but different de Bruijn already stated in [14] that the nameless notation is not
easy to write and read for the human reader. Being easy to read is an important reason
why we want to avoid α-renaming at all. This, for example, includes the possibility to
relate input to output terms. Its importance was already motivated in Chapter 1. The
different notations are therefore used out of different motivations. From the perspective
of α-avoidance, we cannot claim that one is better than the other.

1free variables are mapped to indices that refer to some λ-node in the context (not part of the actual
term)
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A.4 PCP encoded in the λ-calculus

{-# LANGUAGE RankNTypes #-}
module Pcp where

-- BOOLEANS

type LCBoolT = forall a . a -> a -> a
newtype LCBool = LCBool { unBool :: LCBoolT }

true :: LCBool
true = LCBool $ \x y -> x

false :: LCBool
false = LCBool $ \x y -> y

-- if then else
ite :: LCBool -> a -> a -> a
ite = \c a b -> unBool c a b

-- returns constant true
ct :: forall b. b -> LCBool
ct = \x -> true

-- returns constant false
cf :: forall b. b -> LCBool
cf = \x -> false

-- logical and
land :: LCBool -> LCBool -> LCBool
land = \x y -> unBool x y false

-- logical or
lor :: LCBool -> LCBool -> LCBool
lor = \x y -> unBool x true y

-- PAIRS

type LCPair a = (a -> a -> a) -> a

pair :: a -> a -> LCPair a
pair = \a -> \b -> \c -> c a b

-- select first element in pair
first :: LCPair a -> a
first = \p -> p (\x y -> x)

-- select second element in pair
second :: LCPair a -> a
second = \p -> p (\x y -> y)

-- STRINGS

80



A.4 PCP encoded in the λ-calculus

type LCStrT = forall a . (a -> a) -> (a -> a) -> a -> a
newtype LCStr = LCStr { unString :: LCStrT }

empty :: LCStr
empty = LCStr $ \a b x -> x

-- check if a string is the empty string
isempty :: LCStr -> LCBool
isempty = \s -> unString s cf cf true

-- concateation of two strings y, z
conc :: LCStr -> LCStr -> LCStr
conc = \y z -> LCStr $ \a b x -> unString y a b (unString z a b x)

-- prepend an a to string s
prepa :: LCStr -> LCStr
prepa = \s -> LCStr $ \a b x -> a (unString s a b x)

-- prepend a b to string s
prepb :: LCStr -> LCStr
prepb = \s -> LCStr $ \a b x -> b (unString s a b x)

-- check if the string s starts with an a
hd_a :: LCStr -> LCBool
hd_a = \s -> unString s ct cf false

-- check if the string s starts with a b
hd_b :: LCStr -> LCBool
hd_b = \s -> unString s cf ct false

-- check if the inital character of the strings x, y are equal
hd_eq :: LCStr -> LCStr -> LCBool
hd_eq = \x y -> lor (land (hd_a x) (hd_a y)) (land (hd_b x) (hd_b y))

-- get a pair of strings (s1, s2) and return (a(s1), s1)
nexta :: LCPair LCStr -> LCPair LCStr
nexta = \x -> pair (prepa (first x)) (first x)

-- get a pair of strings (s1, s2) and return (b(s1), s1)
nextb :: LCPair LCStr -> LCPair LCStr
nextb = \x -> pair (prepb (first x)) (first x)

-- get the tail of a string
tl :: LCStr -> LCStr
tl = \s -> second (unString s nexta nextb (pair empty empty))

-- check if two strings are equal
eq :: LCStr -> LCStr -> LCBool
eq = ycomb (\f x y ->

ite (lor (isempty x) (isempty y))
(land (isempty x) (isempty y))
(land (hd_eq x y) (f (tl x) (tl y))))

-- check if a string x is prefix of another string y
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prefix :: LCStr -> LCStr -> LCBool
prefix = ycomb (\f x y ->

ite (isempty x) true
(land (hd_eq x y) (f (tl x) (tl y))))

-- SOME STRINGS

a :: LCStr
a = LCStr $ \a b x -> a x

b :: LCStr
b = LCStr $ \a b x -> b x

ab :: LCStr
ab = LCStr $ \a b x -> a (b x)

ba :: LCStr
ba = LCStr $ \a b x -> b (a x)

bb :: LCStr
bb = LCStr $ \a b x -> b (b x)

baa :: LCStr
baa = LCStr $ \a b x -> b (a (a x))

bba :: LCStr
bba = LCStr $ \a b x -> b (b (a x))

abbb :: LCStr
abbb = LCStr $ \a b x -> a (b (b (b x)))

-- RECURSION

newtype Mu a = Mu (Mu a -> a)

-- y combinator
ycomb :: (b -> b) -> b
ycomb f = (\h -> h $ Mu h) (\x -> f . (\(Mu g) -> g) x $ x)

-- LISTS

type LCListPairStrT = forall a . ((LCPair LCStr) -> a -> a) -> a -> a
newtype LCListPairStr = LCList { unList :: LCListPairStrT }

-- empty list
nil :: LCListPairStr
nil = LCList $ \c -> \n -> n

-- cons
cons :: LCPair LCStr -> LCListPairStr -> LCListPairStr
cons = \h t -> LCList $ \c n -> c h (unList t c n)

-- check if list is empty
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is_nil :: LCListPairStr -> LCBool
is_nil = \l -> unList l (\h t -> false) true

-- get head of a list
-- in case of empty list just return a constant pair
hd_l :: LCListPairStr -> LCPair LCStr
hd_l = \l -> unList l (\h t -> h) (pair empty empty)

-- get a list element x and a pair of lists (l1, l2) and return (x :: l1, l1)
next_l :: LCPair LCStr-> LCPair LCListPairStr -> LCPair LCListPairStr
next_l = \x p -> pair (cons x (first p)) (first p)

-- get the tail of a list
tl_l :: LCListPairStr -> LCListPairStr
tl_l = \l -> second (unList l next_l (pair nil nil))

-- append list y to list x
append :: LCListPairStr -> LCListPairStr -> LCListPairStr
append = \x y -> LCList $ \c n -> unList x c (unList y c n)

-- PCP Algorithm

-- get a pair of strings (a s1, a s2) and return (s1, s2)
simp :: LCPair LCStr -> LCPair LCStr
simp = \p -> ycomb (\f x y ->

ite (lor (isempty x) (isempty y)) (pair x y)
(f (tl x) (tl y))) (first p) (second p)

-- check if pair of strings is valid (at least one string prefix of the other)
pvalid :: LCPair LCStr -> LCBool
pvalid = \p -> lor (prefix (first p) (second p)) (prefix (second p) (first p))

-- check if there is a pair of two equal strings in a list of pair of strings
find_eq :: LCListPairStr -> LCBool
find_eq = ycomb (\f x ->

ite (is_nil x) false (lor (eq (first (hd_l x)) (second (hd_l x))) (f (tl_l x))))

-- combine two pairs of strings (a1, a2), (b1, b2) to (a1 b1, a2 b2)
cmb :: LCPair LCStr -> LCPair LCStr -> LCPair LCStr
cmb = \p s -> pair (conc (first p) (first s)) (conc (second p) (second s))

-- combine a pair x with every pair in a list of pairs y
map_cmb :: LCPair LCStr -> LCListPairStr -> LCListPairStr
map_cmb = ycomb (\f x y ->

ite (is_nil y) nil
(ite (pvalid (cmb x (hd_l y))) (cons (simp (cmb x (hd_l y))) (f x (tl_l y)))
(f x (tl_l y))))

-- combine two lists of pairs x,y with each other
cross_cmb :: LCListPairStr -> LCListPairStr -> LCListPairStr
cross_cmb = ycomb (\f x y ->

ite (is_nil x) nil (append (map_cmb (hd_l x) y) (f (tl_l x) y)))

-- combine lists of pairs of strings
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-- and check if any pair with equal strings is created
-- if yes return true otherwise reitercte
pcp :: LCListPairStr -> LCBool
pcp = \x -> ycomb (\f x y ->

ite (is_nil x) false (ite (find_eq x) true (f (cross_cmb x y) y))) x x

-- PCP Problems

-- [(a, ab), (bb, b)]
problem_1 :: LCListPairStr
problem_1 = cons (pair a ab) (cons (pair bb b) nil)

-- [(a, abbb), (bb, b)]
problem_2 :: LCListPairStr
problem_2 = cons (pair a abbb) (cons (pair bb b) nil)

-- [(bba, b), (b, ab), (a, bba)]
problem_3 :: LCListPairStr -- undecidable
problem_3 = cons (pair bba b) (cons (pair b ab) (cons (pair a bba) nil))

-- [(ab, a), (ab, bba), (a, baa), (baa, ba)]
problem_4 :: LCListPairStr -- has a solution of length 76
problem_4 = cons (pair ab a) (cons (pair ab bba) (cons (pair a baa) (cons (pair baa ba)

nil)))

-- PARSE LC ENCODINGS TO STRINGS

-- string encoding to String
lcstr_tostr :: LCStr -> String
lcstr_tostr = \s -> unString s (\a -> "a" ++ a) (\b -> "b" ++ b) ("")

-- bool encoding to String
lcbool_tostr :: LCBool -> String
lcbool_tostr = \b -> ite b "True" "False"
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