
Coinductive Proof Nets

Doctoraalscriptie voor de studie Cognitieve Kunstmatige Intelligentie

L K
Laura.Korte@phil.uu.nl

Begeleider: Dr. V. van Oostrom

June 21, 2002

‘Ignorance of Axioms’, the Lecturer continued, ‘is a great
drawback in life. It wastes so much time to have to say
them over and over again. For instance, take the Axiom,
“Nothing is greater than itself”; that is, “Nothing can contain
itself”. How often do you hear people say “He was so
excited, he was quite unable to contain himself.” Why of
course he was unable! The excitement had nothing to do
with it!’

Sylvie and Bruno Concluded - Lewis Carroll

1

Contents

1 Introduction 4

2 Motivation 6
2.1 Theoretical Motivation . 6
2.2 Applications . 6

3 Preliminaries 8
3.1 Abstract Rewriting Systems . 8
3.2 Normalization . 8
3.3 Confluence . 9

3.3.1 Newman’s Lemma . 9
3.4 Linear Graph . 10
3.5 Graph Rewriting . 10

4 Proof Nets 12
4.1 Introduction . 12
4.2 Definition PN . 12
4.3 Confluence for Proof Nets . 15

4.3.1 Introduction . 15
4.3.2 Confluence for ⊕-Trees . 17
4.3.3 Confluence for DPN . 22

5 Coinductive Proof Nets 37
5.1 Coinduction . 37
5.2 Definition Coinductive Proof Nets 37
5.3 Confluence . 39

6 Typed Proof Nets 40
6.1 Introduction . 40
6.2 Linear Logic . 40

6.2.1 Sequent Calculus . 41
6.3 Definition TPN . 42
6.4 SN for Typed Proof Nets . 43

7 Typed Coinductive Proof Nets 62
7.1 Definition TCPN . 62
7.2 Properties of TCPN . 63

8 Conclusions 64

2

Acknowledgments

First of all, I would like to give a major thank you to my supervisor Vincent
van Oostrom, for making proof theory look like fun, for his seemingly infinite
knowledge about rewriting and for the time and effort he put into this project. I
would also like to thank Michael Moortgat, Michele Abrusci and Richard Moot
for reading my thesis and providing feedback. And last, but certainly not least,
my parents for their love and support. Many thanks for being there.

3

1 Introduction

Ever since the concept Artificial Intelligence was first introduced, logic has
played a major role in its research and is still one of the first courses to be
taught in every AI-study. The intuition that our thoughts can be formalized
using logic is as appealing as ever.

However, AI-research has made a lot of progress since the introduction
of Classical Logic. Many refinements have been proposed and many far more
expressive1 kinds of logic are now available: non-monotonic logic, modal logic,
linear logic, etc. They each try to fix one of the many deficiencies of Classical
Logic with regard to representing human reasoning. One of those deficiencies
is the inability to reason (or prove a formula) with limited resources. The logic
that offers a solution to this is Linear Logic. We will see more of this logic later
on.

Another striking deficiency of classical logic, when it comes to simulating
human reasoning, is the inability to represent infinite objects, whereas people
have the ability to reason about infinite objects like the set of all natural numbers.
For this purpose, we will in this thesis investigate the so-called Coinductive Proof
Nets, a coinductive version of the already well known Inductive Proof Nets.
The main difference between the two is that the former handles both finite and
infinite objects, while the latter is restricted to finite objects. Showing what
effect enriching Inductive Proof Nets with infinite objects has on the properties
of the system will be the main theme of this thesis.

But what about proof nets? What are they and why would one want to
use these nets? The answer to this question is proof identification2. In sequent
calculus, the proof system used to automatically prove CL-formulas, one often
gets several distinct proofs for one and the same formula. But are they really
distinct? It turns out that sometimes they are but quite often, they are not. Quite
often they are in fact the exact same proof modulo the order in which the rules
are applied. Proof nets offer an elegant way to identify these identical proofs:
each proof is mapped to a proof net and proofs that are identical (modulo rule
order) are mapped to the same net.

After the motivation in Section 2 and the preliminaries in Section 3, we will
give a short introduction to (type-free) inductive proof nets in Section 4 and
take a look at the properties of proof net reduction. A proof of confluence for
directed proof net reduction can also be found in this section.

In Section 5 we turn to (type-free) coinductive proof nets. We will give a
formal definition and take a look at the similarities and differences between
inductive and coinductive proof net reduction. The confluence proof from the
previous section will also be extended to coinductive proof net reduction.

In Section 6 we will investigate typed proof nets and typed proof net reduc-
tion, strong normalization in particular. In Section 7, the coinductive version
of these typed proof nets will be introduced and once again we will look at

1While they are not more expressive in the sense that they are more powerful than Classical
Logic, these logics do make expressing certain kinds of expressions a lot easier and more elegant.

2note that this identification only fully works for the multiplicative fragment of linear logic.

4

the similarities and differences between typed inductive and typed coinduc-
tive proof net reduction. Furthermore a proof of head normalization for typed
coinductive proof nets will be presented. Finally, in Section 8, the conclusions,
we will look back at what we have accomplished and at future work.

5

2 Motivation

2.1 Theoretical Motivation

The main reason for the introduction of the coinductive proof nets discussed
in this thesis, is the existence of the coinductive λ-calculus (see [Joa01]). From
[Dan90] [Reg92] we know that a correspondence between λ-calculus and proof
nets holds, so if there exists an infinite version of the λ-calculus, it is interesting
to ask ourselves the question whether or not there is a useful infinite version of
proof nets as well.

The relation between proof nets and λ-calculus is one of implementation:
an arbitrary λ-term can be implemented in a proof net. And the reason we
want λ-terms to be implemented in proof nets is a very simple one: it allows a
more efficient reduction of λ-terms, because in proof net reduction, duplication
is controled. While β-reduction of λ-calculus can create an arbitrary number of
copies of a term3, proof net reduction can create only one (per step).

2.2 Applications

This correspondence between proof nets and λ-terms also demonstrates the
connection between proof nets and artificial intelligence. Proof nets can be
used in every single one of the many applications within the field of artificial
intelligence that makes use of the λ-calculus. One example of such an applica-
tion is the use of λ-terms to represent semantics in natural language processing,
and if typed, proof nets are ideal for representing sentences in categorial gram-
mar. There is even some research which supports the claim that humans use
proof-net-like structures to process natural language! The reader is referred to
[Joh98] and [Mor00] for details of this research project. See also [Moo02] and
[GR96] for more information about the use of proof nets in natural language
analysis in general.

Furthermore, because of the correspondence between proof nets and λ-
terms, proof nets present an efficient tool to implement functional programming
languages like Haskell or Lisp [AG98]. They are after all just a fancy version of
λ-calculus. That is, every Haskell statement is in fact a λ-term, enriched with
some extra objects like Bool and Char. For example:

myfunction :: a -> b -> a

myfunction a b = a

This Haskell statement corresponds to the λ-term λa.λb.a.
Now in lazy languages like Haskell, one can also do computations with

infinite objects like the list of all natural numbers or the list of all strings that
can be generated using a DCG4 like:

S→ aSb | ε

3For example: β-reduction of the λ-term (λx.xxxxxxxxxxy) f creates 9 additional copies of f
4BNF in computer science

6

These examples justify our introduction of coinductive proof nets, which are
able to represent infinite objects (λ-terms) and computations over infinite ob-
jects very elegantly.

7

3 Preliminaries

In this section we will give an overview of the theory, lemma’s and definitions
used throughout this thesis. For a complete introduction to rewriting one can
refer to [Ter02].

3.1 Abstract Rewriting Systems

An abstract rewriting system (ARS) is a quadruple 〈A,Φ, src, tgt〉 with A a set of
objects, Φ a set of steps and src, tgt : Φ → A the source and target functions,
respectively.

3.2 Normalization

We will now define the notion of normalization and a few other notions closely
related to normalization (from [Ter02]). Throughout this text and also in the
other sections of this thesis, we will use� for the transitive, reflexive closure
of→.

Normal Form a ∈ A is in normal form if there exists no b such that a→ b.

Weakly Normalizing a ∈ A is weakly normalizing if a� b for some normal form
b ∈ A. The rewrite relation→ is weakly normalizing (WN) if every a ∈ A is
weakly normalizing.

Strongly Normalizing a ∈ A is strongly normalizing if every reduction sequence
starting from a is finite. The rewrite relation→ is strongly normalizing (SN)
if every a ∈ A is strongly normalizing.

Terminating See Strongly Normalizing.

Furthermore, we sometimes want to infer from SN or WN for one ARS, SN or
WN for another ARS. This can be done by two lemma’s called the Projection
Lemma and the Lifting Lemma.

Lemma 3.1 (Projection) If you have an ARS M = 〈M,→M, srcM, tgtM〉, another
ARS N , 〈N,→N, srcM, tgtM〉 for which →N is SN, a mapping MAP which maps
every m ∈M to a certain n ∈ N and the following scheme:

MAP

m m′

n′n

MAP

The first ARS (M), can be mapped onto the second (N).

Corollary 3.1 As a corollary of Lemma 3.1, SN for →M may be concluded, because
if there would be an infinite sequence of →M-steps, there would also be an infinite
sequence of→N-steps, which contracticts our assumption that→N is SN.

8

Lemma 3.2 (Lifting) If you have an ARSM = 〈M,→M, srcM, tgtM〉, another ARS
N , 〈N,→N, srcN, tgtN〉 for which →N in WN, a mapping MAP which maps every
n ∈ N to a certain m ∈M and the following scheme:

MAP

n n′

m′m

MAP

The second ARS (N), can be lifted to the second (M).

Corollary 3.2 As a corollary of Lemma 3.2, WN for→M may be concluded, but only
if it can be proven that if there is a step from a certain m ∈M and m can be mapped to
a certain n ∈ N, there is a step from n as well.

Now if there is a sequence of →N-steps leading to normal form (which there is
because of WN), there is also a sequence of→M-steps leading to normal form.

3.3 Confluence

We will now define the notion of confluence and a few other notions closely
related to confluence (from [Ter02]):

Diamond Property a ∈ A has the diamond property if ∀b, c ∈ A((c ← a → b) ⇒
∃d ∈ A(c→ d← b)). The rewrite relation→ has the diamond property (DP)
if every a ∈ A has the diamond property.

Local Confluence a ∈ A is locally confluent if ∀b, c ∈ A((c ← a → b) ⇒ ∃d ∈
A(c� d� b)). The rewrite relation→ is locally confluent if every a ∈ A is
locally confluent.

Weak Church-Rosser See Local Confluence. Weak Church-Rosser is abbreviated
as WCR.

Confluence a ∈ A is confluent if ∀b, c ∈ A((c � a � b) ⇒ ∃d ∈ A(c � d � b)).
The rewrite relation→ is confluent if every a ∈ A is confluent.

Church-Rosser See Confluence. Church-Rosser is abbreviated as CR.

3.3.1 Newman’s Lemma

A counter example against the proposition that local confluence implies con-
fluence is shown in the following figure:

9

∞d

cba

We see that an infinite reduction may be possible in which case d and c will
never reduce to the same reduct. However, if we can somehow prove that such
an infinite reduction does not exist (strong normalization) we also know that
the steps in the figure above cannot decrease infinitely, which would give us
confluence! This proposition is called Newman’s Lemma and states that if an
ARS is both SN and WCR, it is also CR.

Lemma 3.3 (Newman) SN and WCR⇒ CR

For a proof of Newman’s Lemma one can refer to [Ter02].

3.4 Linear Graph

Since proof nets are a special kind of linear graphs, we will first give a definition
of a linear graph as can be found in [Oos01].

Definition 3.1 (Linear Graph) A linear graph signature is a set of symbols σ such
that every symbol has a source and a target arity. Both these arities are natural numbers.
A linear graph over σ is a pair G = 〈V,E〉 such that:

• V is a set of nodes such that with every node v ∈ V a symbol in σ is associated.
This symbol is denoted by G(v). The arity of a node is the arity of its symbol. If
the node v has arity n, m then we say that v has n source and m target ports.

• E is a set of edges ((v1, i), (v2, j)), such that i an j are source and target ports of
respectively v1 ∈ V and v2 ∈ V

The arity of a linear graph is the pair 〈n,m〉, such that n is the number of unconnected
source ports and m is the number of unconnected target ports. A linear graph is closed
if the arity is 〈0, 0〉.

3.5 Graph Rewriting

Since this thesis is concerned not with term rewriting systems, but with graph
rewriting systems (GRS’s), we will give a (very) short introduction to graph
rewriting. See [Plu98] for more information about (term) graph rewriting sys-
tems.

10

Definition 3.2 (Graph Rewriting Rule) A graph rewriting rule L→ R consists of
a graph L, a graph R and a mapping from the vertices of L to the vertices of R.

Now in applying a rewrite rule R to a graph G, a subgraph matching the
left-hand side of R will be replaced by the left-hand side of R resulting in a
graph G′.

Definition 3.3 (Graph Rewriting System (GRS)) A graph rewriting system is a
finite set of graph rewriting rules.

11

4 Proof Nets

4.1 Introduction

In this first section, we will give a formal definition of proof nets and proof net
reduction. Furthermore, we will prove CR for type-free proof nets and give a
counterexample against SN of proof net reduction.

4.2 Definition PN

Definition 4.1 (Inductive Proof Net) If A and B are inductive proof nets, then so
are:

A

b1 bn

A

aka1

ba

B

aka1

a b

c

A A

a1 ak bnb1

B

a b

c

a1 ak

A

c

ba

aka1

A

b

a b

a1 ak

A

c

a
bn

bnb1a

b1a

From left to right, the connectives are called axiom, par, tensor, cut and on the second
row dereliction, weakening, fan (which is also called contraction) and box (which
is also called promotion).

The first row is called the multiplicative fragment and the second the expo-
nential fragment.

Inductive proof nets are only a means to define the objects we are truly
interested in: proof nets. Proof nets are the graphs associated with inductive
proof nets. Typically, one proof net can be associated with several inductive
proof nets.

Definition 4.2 (Proof Net) The proof net associated with an inductive proof net P is
the graph G(P). The signature of this graph consists of the symbols H : 2, 1 ;

�
: 1, 1 ;

• : 0, 1 ; O : 2, 1 ; ∨ : 2, 1 ; ∩ : 0, 2 ; ∪ : 2, 0 and �(Q) : 0, n, where n is the number of
ports of Q.

fan: If the proof net N is associated with the inductive proof net A, then the proof net
associated with its par-disjunction is N to which a H-node and two edges, both
going from (a different) a port of N to H, have been added.

box: If the proof net N is associated with the inductive proof net A, then the proof net
associated with its box is a �(N)-node with the ports of N.

12

dereliction: If the proof net N is associated with the inductive proof net A, then the
proof net associated with its dereliction is N to which a � -node and one edge,
going from a port of N to � , has been added.

weakening: If the proof net N is associated with the inductive proof net A, then the
proof net associated with its weakening is N to which a •-node has been added.

par: If the proof net N is associated with the inductive proof net A, then the proof net
associated with its par-disjunction is N to which a O-node and two edges, both
going from (a different) a port of N to O, have been added.

tensor: If the proof nets N and M are associated with the inductive proof nets A and
B, then the proof net associated with their tensor-union is the (disjunct) union of
N and M to which a ∨-node and two edges, one going from a port of N to ∨ and
one going from a port of M to ∨, have been added.

axiom: With an axiom we associate the node ∩

cut: If the proof nets N and M are associated with the inductive proof nets A and B,
then the proof net associated with their cut is the (disjunct) union of N and M
to which a ∪-node and two edges, one going from a port of N to ∪ and one going
from a port of M to ∪, have been added.

Apart from the inductive definition we have just seen, proof nets are also
frequently defined as geometrical objects. In this case, the so-called switching
criterion serves as a correctness criterion. That is, if every switching of a proof
net P is a connected, acyclic graph (a tree) P is well-formed. The word switching
comes from the idea to use par-nodes as if they were switches:

par-node switching 2switching 1

Note that this correctness criterion can only be used for the multiplicative
fragment of proof nets. It is obvious that rules like weakening and addition
interfere with the restriction that every switching has to be connected. See
[DR89] for more information about correctness criteria. Throughout the rest of
this thesis we will only use the inductive definition.

Definition 4.3 (Proof Net Reduction −→π)

13

π

A

A

AA

BA

A B

AA

π

π

π

ππ

π

where Arhs and Brhs are descendents of respectively Alhs and Blhs. The rules are called
(in the order they are presented above): box–box, box–dereliction, box–weakening,
box–fan, tensor–par, axiom–cut and cut–axiom.

Of course we would like the result of applying a −→π-rule to be a proof net
again, therefore we will prove the subject reduction property (SR) for −→π.

Lemma 4.1 (SR for −→π) We need show for every left-hand-side of a −→π-rule, that
if it is a well-formed proof net, its right-hand-side is too. Since this is rather obvious,

14

we will only show this for the box–fan rule:

A

π

AB

B

A

Green boxes indicate well-formed components of the proof net. There is only one
problem we might encounter in constructing a scheme such as the one shown above: we
might have associated the wrong inductive structure with the proof net shown on the
left-hand side of the −→π-rule, for we know that more than one inductive proof net can
be associated with a proof net. However, if a fan-node is indeed connected to a box, one
can always re-arrange the green boxes to fit the left-hand side of the −→π-rule shown
above, using rules like the following:

A A

The same goes for the rest of the −→π-rules.

�

4.3 Confluence for Proof Nets

4.3.1 Introduction

For every ARS, there are two important properties one would like the system
to possess: strong normalization and confluence. So naturally, these will be the

15

properties we will try to establish for our proof net reduction5. However, not
every ARS has both or even one these properties and unfortunately, proof net
reduction is one those systems that lack stong normalization. Which is by the
way a result we could have expected, considering the fact that the λ-calculus,
an ARS without strong normalization, can be simulated using proof nets (see
[Oos01] for the correspondence between proof nets and λ-terms). We can
therefore use a λ-term with an infinite rewriting sequence ((λx.xx)(λx.xx)) as a
counterexample against strong normalization for proof net reduction:

5Note that for the multiplicative fragment, it is extremely easy to prove CR and SN: the ARS for
the multiplicative fragment is weakly orthogonal and the number of nodes of the proof net reduces
with every rewrite step.

16

Confluence on the other hand looks promising. Even though we do not have
the diamond property a priori, it can be proven using so called developments
[Mel02] [Ter02]. To show how these developments work and what our proof
strategy will be, we will first present a proof of confluence for ⊕-trees after
which we will give a similar proof of confluence for proof net reduction.

4.3.2 Confluence for ⊕-Trees

This proof deals with the so-called ‘⊕-trees’. These trees can be seen as graphical
representations of the ordinary +-operator. Our goal will be to prove associa-

17

tivity of ⊕-trees to be confluent. First we will give a formal definition of ⊕-trees
and the associativity rewrite rule.

Definition 4.4 (⊕-Tree) P ::= Int |

PP

Definition 4.5 (Rewrite Relation→R)

R

Q R

P

P Q

R

Here, the red and blue ⊕’s on the right-hand-side are descendants of (respectively) the
red and blue ⊕’s on the left-hand-side. Furthermore Prhs, Qrhs and Rrhs are descendants
of respectively Plhs, Qlhs and Rlhs.

First we always try if a rewrite relation has the diamond property, because
it is so easy to derive CR from DP. Unfortunately, our rewrite relation does not
have this diamond property, as can be illustrated by the following figure:

b

a

d

c

b

ba

d

c
dcba

c d

a

R

R

R

R

Since we do not have the diamond property a priori, we will need to find a
notion of parallel step, which contracts several redexes at once. This notion
will be the development of a cluster. Intuitively, one marks an arbitrary number
of redexes, the union of which will be called the cluster, and then contracts all of
the redexes in this cluster. So a development can be seen as the concatenation
of a number of steps modulo the order in which they are applied. However,
there is still some work that needs to be done if the redexes in the cluster
overlap. For this purpose, a definition of the residue of a cluster will be given
after which the development of a cluster C can be defined as the concatenation
of the contraction of a redex in C and the development of the residue of C.

Definition 4.6 (Cluster) A cluster is a connected component of ⊕’s. In figures a set
of ⊕’s encircled with a green line will denote a cluster.

18

By ‘connected’ we mean the transitive, reflexive, symmetric closure of ‘directly
below’:

TSRQ

Both the yellow and the red ⊕ are directly below the blue one. In the pictures
we will use, the ⊕’s inside an area encircled by a green line denote a cluster. A
line consisting of green dots denotes a possible extension of the cluster.

Definition 4.7 (Residue) The residue of a cluster C after a rewrite-step ψ:

1. No overlap: C − ψ = desc(C)
where desc(C) is the descendant of C.

2. (a) subsumption : C − ψ :

R

(b) partial overlap:
if C is a cluster and ψ is a step then (C ∪ ψ) is a cluster again:
C − ψ = (C ∪ ψ) − ψ (like (2a))

Definition 4.8 (Development) A development of a cluster C is defined as a step
ψ ∈ C followed by the development of C − ψ

Notation: a
C
◦−→ b denotes the development of the cluster C in a, b being the result of

a after the development.

To establish confluence for developments we will first prove strong normal-
ization and weak Church-Rosser, after which we will combine the two, to form
a confluence proof by Newman’s Lemma.

Lemma 4.2 (Developments are Strongly Normalizing) In order to prove that de-
velopments are strongly normalizing, we will first define a notion of weight for a cluster,
after which we will proceed by showing that this weight decreases with every rewrite
step.

Definition 4.9 (Weight of a Cluster) The weight G of a cluster C is defined as the
sum of the weight of every ⊕-symbol in the cluster.

Definition 4.10 (Weight of a ⊕-symbol) The weight g of a ⊕-symbol in a cluster C
is the number of left-branches in the cluster C it is embedded in.

Rule 1

19

P RQ

PR

Q

Γ Γ

R

G(LHS) = G(Γ) +

G(P) + (2 +n) ∗ Pl(P) +

G(Q) + (1 + n) ∗ Pl(Q) +

G(R) + n ∗ Pl(R) +

1 +n + n

>

G(RHS) = G(Γ) +

G(P) + (1 + n) ∗ Pl(P) +

G(Q) + (1 + n) ∗ Pl(Q) +

G(R) + n ∗ Pl(R) +

n + n

Where n = the number of left branches in Γ the top ⊕ is embedded in, and Pl(P)
is the number of ⊕’s in P.

�

Note that→R itself is also SN, for we could extend our notion of ‘weight of a
cluster’ to ‘weight of a ⊕-tree’ and then give a proof like the one for Lemma 4.2
(Developments are Strongly Normalizing).

Lemma 4.3 (Developments have the Weak Church-Rosser property)

1. No overlap:
ψ

ψφ

φ

if there is no overlap, (the descendant of) the redex set ψ still exists after con-
tracting the redex set φ and the other way around.

2. (a) ψ = φ :
ψ

0 0

φ

if the redex sets are the same, we don’t have to do any steps
to arrive at a similar reduct.

(b) Critical pair:

20

ψ

φ

�

Lemma 4.4 (Developments have the Church-Rosser property)
By Newman’s lemma: SN and WCR⇒ CR. We proved the first condition (Strongly
Normalizing) in Lemma 4.2 and the second in Lemma 4.3, so we may conclude that
developments have in fact the Church-Rosser property.

�

A similar proof can be found in [Mel02]. See also [Mac71]. Now that we
have finally shown that developments have the Church-Rosser property (or are
confluent), it remains to be proven that these developments are indeed an apt
notion of parallel→R-step, for the goal we set ourselves was not to prove that
developments are confluent, but to prove confluence for associativity of ⊕!

Lemma 4.5 (→R ⊆ ◦−→ ⊆ →
∗
R

) Since every single→R-step can be defined as the de-
velopment of a cluster containing exactly one redex, the first subsumption is a fact. The
second subsumption is true by the definition of the development of a cluster, for ◦−→
is in fact nothing more than the concatenation of a finite number of→R-steps. Finite,
because→R is SN.

�

Proof 4.1 (Associativity of ⊕ has the Church-Rosser property)
We have already proven that developments have the Church-Rosser property in Lemma
4.4 and since →R ⊆ ◦−→ ⊆ →∗

R
by Lemma 4.5, we may conclude that the transitive

reflexive closure of ◦−→ is equal to the transitive reflexive closure of→R: ◦−→∗ = →R.
We may now also derive Church-Rosser for →R from the proof of Church-Rosser for
◦−→.

21

�

It is a fact that there are more ways to prove CR for associativity of ⊕ and that
we did not choose the easiest one. We could have left out the entire concept
of developments and instead prove that the associativity rule itself is strongly
normalizing! This would have saved us a lot of time, but then again, we only
included this proof to demonstrate how we are going to prove CR for proof net
reduction in the next section, which justifies our somewhat inefficient proof of
CR for associativity of ⊕.

4.3.3 Confluence for DPN

For reasons that will become clear later on, we will prove confluence for directed
proof nets instead of for ordinary proof nets.

Definition 4.11 (Directed Proof Net) A directed proofnet is an inductive proofnet
of which exactly one port is labelled output port. All other ports are labelled input
ports:

BA

A A A

A

A

B A

Ports with an arrow going into the proof nets A or B are input ports, and the ones with
an arrow going out of the proof nets A or B are the output ports.

In the previous proof we have already encountered the strategy we will be
using for the proof of confluence for proof net reduction. In this proof too,
clusters and developments of clusters will be used to define an apt notion of
parallel reduction step. However, an important difference between ⊕-clusters
and proof net clusters is that while the former have to be connected, the latter
do not have such a restriction. Furthermore, whereas in the case of ⊕-trees
developments took care of the entire rewrite relation→R, this is not possible for
proof net reduction −→π, because we would lack the essential property of SN
(see the introduction of Section 4.3.1). What we will do instead, is partition the
proof net reduction relation −→π into the sub-relations −→$ and −→(ψ,∼). The
former will be a strongly normalizing subset containing box–dereliction, box–
fan, box–weakening and box–box in which we will define developments. The

22

latter will contain the remaining rules: tensor–par, cut–axiom and axiom–cut.
From now on the tensor–par rule will be called the ψ-rule and the cut–axiom
and axiom–cut rules will be called the ∼-rules.

Now to prove that −→π is confluent, we will first prove that developments
defined on −→$ and a certain notion of parallel (ψ,∼)-step are both confluent
independently of each other, after which we will combine these two proofs into
a proof of confluence for −→π.

But according to the proof idea just defined, we first need a proof that
developments defined on−→$ have the CR property. Such a proof will be given
below and will closely resemble the proof of CR for developments defined on
⊕-trees (Lemma 4.4).

Definition 4.12 (Inductive Cluster) An inductive cluster is a subgraph, containing
only box, fan, dereliction, weakening and cut nodes, of the graph of a proofnet. In figures,
if a node is green, it is part of a cluster. If it is blue, whether it is part of a cluster
depends on whether or not the node is the descendant of a green node.

Definition 4.13 (Residue) The residue of a cluster C after a rewrite-step ψ:

1. No overlap: C − ψ = desc(C)
where desc(C) is the descendant of C.

2. (a) subsumption : C − ψ :

23

BA

A B

A A

A

A

AA

(b) partial overlap:
if C is a cluster and ψ is a step then (C ∪ ψ) is a cluster again:
C − ψ = (C ∪ ψ) − ψ (like (2a))

Definition 4.14 (Development) A development of a cluster C is defined as a step
ψ ∈ C followed by the development of C − ψ

Notation: a
C
◦−→ b denotes the development of the cluster C in a, b being the result of

a after the development.

As we already saw in Proof 4.1, we will eventually have to prove SN for
our inductive developments. Proving SN always involves defining a measure
which decreases with every rewrite step. Our measure will be an ordered triple
〈fd, bd, n〉, which we will explained in detail later on. We chose to use a triple,
because it allows one to reason about several measures instead of one. Now to
prove that 〈fd, bd, n〉 decreases, we have to prove one of the following for every
rewrite step:

24

• fdlhs > fdrhs

• fdlhs = fdrhs and bdlhs > bdrhs

• fdlhs = fdrhs and bdlhs = bdrhs and nlhs > nrhs

where lhs stands for ‘left-hand-side’ and rhs stands for ‘right-hand-side’. The
idea behind the first measure fd, which stands for fan depth, is that in applying
box–fan, the fans are being pushed through the box. It remains to be proven
that this can only be done finitely many times.

This is where the arrows of a directed proof net come in handy! Our aim
will be to show that the arrows define some sort of ordering (behind) of the
nodes which decides whether or not a certain node can interact with another
one. But first we will have to show that inductive clusters do not contain or
produce cycles, or such an ordering would be useless.

The idea behind the first lemma (Lemma 4.6) is that directed inductive
clusters do not contain cycles, because they have no ceiling. By ceiling, we mean
a link in the proofnet where an upward arrow turns to go downwards. Now
as long as a directed inductive cluster does not contain such links, a cycle can
never be formed, because in trying to form one, you always need at least one
‘ceiling link’. An axiom link is the only link that would qualify as a ceiling in
our definition of proof nets, and since directed inductive cluster do not contain
axiom links, they don’t have a ceiling either. Hence, they do not contain cycles.
A formal proof of this idea can be found below:

Lemma 4.6 (A directed inductive cluster does not contain cycles)
Obviously, if there is no connected subset of the cluster C, which contains a cycle, then
C itself does not contain a cycle. It remains to be proven that there can be no such
connected subset. We will prove this by induction on the construction of a connected
subset:

• The box, fan, dereliction, weakening and cut nodes do not contain a cycle.

• If A and B are directed inductive clusters, which do not contain a cycle, then
neither do the following inductive clusters:

B

A

A

AA

A

�

25

Lemma 4.7 (Inductive clusters without cycles have the Subject Reduction property)
We will show that an inductive cluster without cycles, still does not contain such a
cycle after a reduction step.

box–dereliction: Trivial, the paths do not change.

box–fan: The fan is merely being ‘pushed through’ the box (as shown in the picture
below) which explains why no new cycles can be formed.

A

B

B

AB

box–box: Trivial, the paths do not change.

box–weakening: Trivial, the paths are cut off.

�

Now using the arrows of a directed proof net and the fact that inductive clusters
neither contain nor produce any cycles, we are ready to define an ordering on
boxes:

Definition 4.15 (behind in PN) A box B1 is behind a node N if:

• one can reach the node N by following the arrows going out of the output port of
the box B1 and passing only fan-, dereliction-, cut- and weakening nodes.

• the box B1 is inside a box B2 which is behind the node N

• the box B1 is behind a box B2 which is behind the node N (transitivity).

Note that one can not go through tensor-, par- or axiom nodes, because they
are not part of the cluster.

Now since the fans are being pushed further and further along a path (i.e.
behind more boxes) each time we apply a box–fan rule, and since there are no
infinite paths because of the lack of cycles, this process will eventually halt.

The idea behind the second measure of our triple 〈fd, bd, n〉, which stands
for box depth, is that the box–box rule pushes boxes into one another and that
this too, can only be done finitely many times. For this purpose, we define the
level of a node:

Definition 4.16 (Level of Node)
The level of a node N is recursively defined as:

• bl(N) = 1
if N is not inside a(nother) box

26

• bl(N) = bl(B) + 1
if N is inside box B

Now for a proof net containing n boxes, this measure can never be more than
∑n

i=1 i. A decreasing measure can therefore be defined on a proof net as the
maximum of bd minus the level of every box in the proof net. The third
and final measure of our triple 〈fd, bd, n〉 is the number of boxes n in a proof
net. The rewrite rules box–weakening and box–dereliction both remove a box-
node, which decreases this n. We will now formalize this proof of SN for
developments.

Lemma 4.8 (Developments are Strongly Normalizing) In order to prove that de-
velopments are strongly normalizing, we will first define a notion of weight for an
inductive cluster, after which we can proceed by showing that this weight decreases
with every rewrite step.

Definition 4.17 The weightG of a cluster C is a triple 〈fd, bd, n〉, where fd is the multi-
set
⊎n

i=1 fn(i), fn(x) is the number of fan-nodes box x is behind, bd is
∑n

i=1 i −
∑n

i=1 lv(i),
lv(x) is the level of box x and n is the number of boxes in the cluster.

Case 1

A

A B

B

fdlhs =

m
⊎

i=1

fn(i)

bdlhs =

m
∑

i=1

i −

m
∑

i=1

lv(i)

fdrhs =

m
⊎

i=1

fn(i) =

m
⊎

i=1

fn(i) = fdlhs ⇒ fdrhs = fdrlhs

bdrhs =

m
∑

i=1

i − ((

m
∑

i=1

lv(i)) + 1) <

m
∑

i=1

i −

m
∑

i=1

lv(i) = bdlhs ⇒ bdrhs < bdlhs

fdlhs = fdrhs

bdlhs > bdrhs

}

⇒ 〈fdlhs, bdlhs, nlhs〉 > 〈fdrhs, bdrhs, nrhs〉

Case 2

27

AA fdlhs =

m+1
⊎

i=1

fn(i)

bdlhs =

m+1
∑

i=1

i −

m+1
∑

i=1

lv(i)

nlhs = m + 1

fdrhs =

m
⊎

i=1

fn(i) ≤

m+1
⊎

i=1

fn(i) = fdlhs ⇒ fdrhs ≤ fdrlhs

bdrhs =

m
∑

i=1

i −

m
∑

i=1

lv(i) ≤

m+1
∑

i=1

i −

m+1
∑

i=1

lv(i) = bdlhs ⇒ bdrhs ≤ bdlhs

nrhs = m < m + 1 = nlhs ⇒ nrhs < nlhs

fdlhs ≥ fdrhs

bdlhs ≥ bdrhs

nlhs > nrhs



















⇒ 〈fdlhs, bdlhs, nlhs〉 > 〈fdrhs, bdrhs, nrhs〉

Case 3

A fdlhs =

m+1
⊎

i=1

fn(i)

bdlhs =

m+1
∑

i=1

i −

m+1
∑

i=1

lv(i)

nlhs = m + 1

fdrhs =

m
⊎

i=1

fn(i) ≤

m+1
⊎

i=1

fn(i) = fdlhs ⇒ fdrhs ≤ fdrlhs

bdrhs =

m
∑

i=1

i −

m
∑

i=1

lv(i) ≤

m+1
∑

i=1

i −

m+1
∑

i=1

lv(i) = bdlhs ⇒ bdrhs ≤ bdlhs

nrhs = m < m + 1 = nlhs ⇒ nrhs < nlhs

fdlhs ≥ fdrhs

bdlhs ≥ bdrhs

nlhs > nrhs



















⇒ 〈fdlhs, bdlhs, nlhs〉 > 〈fdrhs, bdrhs, nrhs〉

Case 4

28

A A

A

fdlhs =

min
⊎

i=1

fn(i)]

mout
⊎

i=1

fn(i)] fn(b)

fdrhs =

min
⊎

i=1

(fn(i) − 1)]

min
⊎

i=1

(fn(i) − 1)]

mout
⊎

i=1

fn(i)] (fn(b) − 1)] (fn(b) − 1) <

min
⊎

i=1

fn(i)]

mout
⊎

i=1

fn(i)] fn(b) ⇒ fdrhs < fdrlhs

fdlhs > fdrhs

}

⇒ 〈fdlhs, bdlhs, nlhs〉 > 〈fdrhs, bdrhs, nrhs〉

�

In Proof 4.1 we had to prove, besides strong normalization, that develop-
ments are WCR to be able to use Newman’s Lemma. That is exactly what we
have to do next for the purpose of establishing CR for developments.

Lemma 4.9 (Developments have the Weak Church-Rosser property)

1. No overlap:

ψ

ψ φ

φ

or worst case (if the redex of ψ is duplicated by φ):

ψ

ψφ

φψ

If there is no overlap, (the descendant of) the redex set ψ still exists after con-
tracting the redex set φ and the other way around. However, ψ may have been
duplicated by φ, in which case we need to contract both descendants.

2. (a) ψ = φ
φ

0 0

ψ

if the redex sets are the same, we don’t have to do any steps to arrive at a
similar reduct.

29

(b) Critical pairs:

Case 1

A B

A B

A B

BA

Case 2

30

A B

B A B

Case 3

31

A A

B

A B

BA

A BA B

A BBA

32

Case 4

A CB

A CB

A B C

BA CB CA

Case 5

33

CBA

BA C

C

A B C

C

A

�

Lemma 4.10 (Developments have the Church-Rosser property) By Newman’s
lemma: SN and WCR⇒ CR. We proved the first condition (Strongly Normalizing) in
Lemma 4.8 and the second in Lemma 4.9, so we may conclude that developments have
in fact the Church-Rosser property.

�

We have now established that developments are CR, but since developments
deal with only a few of the proof net reduction rules, we are still far from our
initial goal: CR for proof net reduction. Therefore, we will proceed by defining
a notion of parallel proof step (•−→) for the rest of the rules.

Definition 4.18 (Parallel (ψ,∼)-step: •−→) Since ψ-steps are orthogonal and do not
overlap with ∼-steps, one can contract an arbitrary number of ψ-redexes at the same
time. ∼-steps however are not orthogonal, they are weakly orthogonal: ∼-steps overlap
with other ∼-steps, but contraction of either one of the redexes of their critical pairs,
results in the exact same contractum:

34

So even though ∼-steps are not orthogonal, we can still contract an arbitary number
of ∼-steps at the same time. These observations result in the following definition of a
parallel (ψ,∼)-step (•−→):

a •−→ b
iff

the reduction of an arbitrary number of
(ψ,∼)-redexes in a at the same time,

results in b.

In general the union of two rewrite systems that are CR, is not CR. Take for
example the two abstract rewriting systems R1 and R2 and their union R1 ∪R2:

R1 a→ b CR
R2 a→ c CR

R1 ∪ R2
a→ b
a→ c

×

So we will explicitly have to prove that the union of our two notions of parallel
steps (◦−→ ∪ •−→) is indeed CR.

Lemma 4.11 ((◦−→∪ •−→) represented by ∗−→ has the Diamond Property) Cases:

1. Two parallel (ψ,∼)-steps:

Ψ − ΦΦ −Ψ

ΦΨ

because •−→ is weakly orthogonal.

2. One development and one parallel (ψ,∼)-step:

35

Ψ

C

C

Ψ

because parallel (ψ,∼)-steps do not overlap with developments. The only thing
that might go wrong is when a (ψ,∼)-redex in Ψ is being duplicated by a box–
fan redex in C. But by definition of a parallel (ψ,∼)-step, one can contract an
arbitrary number of (ψ,∼)-redexes at the same time, in particular both instances
of the duplicated (ψ,∼)-redex inΨ.

3. Two developments:
C1

C1 − C2C2 − C1

C2

by Lemma 4.10.

�

Lemma 4.12 ((◦−→∪ •−→) represented by ∗−→ is CR) We proved that ∗−→ has the
diamond property in Lemma 4.11 and since DP ⇒ CR, ∗−→ has the Church-Rosser
property.

�

Lemma 4.13 (−→π ⊆ ∗−→ ⊆ −→
∗
π) A single −→π-step is either the development of a

cluster containing exactly one redex, or a parallel (ψ,∼)-step contracting exactly one
redex, and since ∗−→ is defined as the union of all developments and all parallel (ψ,∼)-
steps, the first subsumption (−→π ⊆ ∗−→) is a fact. Now for the second subsumption: a
∗−→-step s1 is either the development of a cluster C, or a parallel (ψ,∼)-step contracting

a set of redexes R:

• if s1 is the development of a cluster C, then s1 is by definition a −→∗π-step, for
developments are defined as the concatenation of a (finite) number of −→π-steps.

• if s1 is a parallel (ψ,∼)-step contracting a set of redexes R, s1 can be simulated by
a −→∗π-step: since none of the redexes in R overlap, one is not obliged to contract
them at the same time, but could also choose to contract them one by one in which
case the concatenation of all these steps would be a −→∗π-step.

�

Lemma 4.14 (DPN-reduction (−→π) has the Church-Rosser property) We have
already proven that ∗−→ (or ◦−→ ∪ •−→) has the Church-Rosser property in Lemma 4.12
and since −→π ⊆ ∗−→ ⊆ −→∗π by Lemma 4.13, we may conclude that the transitive
reflexive closure of ∗−→ is equal to the transitive reflexive closure of −→π: ∗−→∗ = −→∗π.
We may now also derive Church-Rosser for −→π from the proof of Church-Rosser for
∗−→.

�

36

5 Coinductive Proof Nets

5.1 Coinduction

Coinduction is a relatively new research area, which was introduced to allow
reasoning not only about finite, but also about infinite objects such as infinite
lists. For an introduction to coinduction and coalgebras one is refered to [Jac97].

Definition 5.1 (Coinduction) Coinduction is the use of finality for coalgebras.

5.2 Definition Coinductive Proof Nets

Definition 5.2 (Coinductive Proof Net) If C is a coinductive proof net, then it is of
one of the following forms:

bnaka1

a

c

A

ba

a1 ak b

A

aka1

a b

c

A

b1 bnaka1

A

c

ba

B

a1 ak

A

c

ba

a1 ak

A

a b

bnb1

B

bn

A

a b1

a b1

where A or A and B are coinductive proof nets again with their sets of port defined as:

axiom: prt(C) = {a, b} for some a and b

par: prt(C) ∪ {a, b} = prt(A) ∪ {c}

tensor prt(C) ∪ {a, b} = prt(A) ∪ prt(B) ∪ {c}

cut: prt(C) ∪ {a, b} = prt(A) ∪ prt(B)

dereliction: prt(C) ∪ {a} = prt(A) ∪ {c}

weakening: prt(C) = prt(A) ∪ {b}

fan: prt(C) ∪ {a, b} = prt(A) ∪ {c}

box: prt(C) = prt(A)

where prt(x) is a function from proof nets to sets of ports.

Definition 5.3 (Proof Net) The proof net associated with a coinductive proof net P
is the graph G(P). The signature of this graph consists of the symbols H : 2, 1 ; � : 1, 1
; • : 0, 1 ; O : 2, 1 ; ∨ : 2, 1 ; ∩ : 0, 2 ; ∪ : 2, 0 and �(Q) : 0, n, where n is the number of
ports of Q.

37

fan: If the proof net 〈V∪vi,E∪{((v j, n), (vi, 1)), ((vk,m), (vi, 2))}〉whereG(vi) = H, is
associated with the coinductive proof net fanvi

(A), then the proof net associated
with A is 〈V,E〉.

box: If the proof net 〈{vi}, ∅〉 where G(vi) = �(Q), is associated with the coinductive
proof net boxvi

(A), then the proof net associated with A is Q.

dereliction: If the proof net 〈V∪vi,E∪{((v j, n), (vi, 1))}〉whereG(vi) = � , is associated
with the coinductive proof net dervi

(A), then the proof net associated with A is
〈V,E〉.

weakening: If the proof net 〈V ∪ vi,E〉 where G(vi) = � , is associated with the
coinductive proof net weakvi

(A), then the proof net associated with A is 〈V,E〉.

par: If the proof net 〈V∪vi,E∪{((v j, n), (vi, 1)), ((vk,m), (vi, 2))}〉whereG(vi) = O, is
associated with the coinductive proof net parvi

(A), then the proof net associated
with A is 〈V,E〉.

tensor: If the proof net 〈V ∪ vi,E ∪ {〈0, ((v j, n), (vi, 1))〉, 〈1, ((vk,m), (vi, 2))〉}〉 where
G(vi) = ∨, is associated with the coinductive proof net tensorvi

(A,B), then the
proof net associated with A is 〈πAV, πAE〉 and B is 〈πBV, πBE〉.

axiom: The proof net 〈{vi}, ∅〉,where G(vi) = O, is associated with the coinductive
proof net axiom

cut: If the proof net 〈V ∪ vi,E ∪ {〈0, ((v j, n), (vi, 1))〉, 〈1, ((vk,m), (vi, 2))〉}〉 where
G(vi) = ∪, is associated with the coinductive proof net cutvi

(A,B), then the
proof net associated with A is 〈πAV, πAE〉 and B is 〈πBV, πBE〉.

where fanvi
(A) is the coinductive destruction step which removes a fan with label vi.

The other functions work in a similar way. Furthermore, πA(C) = {a | 〈0, a〉 ∈ C} and
πB(C) = {b | 〈1, b〉 ∈ C}.

In Section 4 we saw that that there was an alternative way to define proof
nets: the geometrical way. The main difference being that instead of an in-
ductive well-formedness criterion, a switching criterion was used. However,
this switching criterion could only be used for the multiplicative fragment of
proof nets, because rules like weakening and addition would interfere with
connectedness.

Now of course we would like to have a switching criterion for coinductive
proof nets as well, but is there such a criterion? It is easy to see that (at least
a priori) this is not the case. Just like the rules weakening and addition, the
infinite objects of the set of coinductive proof nets, clash with connectedness:

38

∞

The infiniteλ-term corresponding to this infinite proofnet is: λ f1.λ f2.λ f3. . . . f1(f2(f3(. . .)))
We will now turn to the coinductive version of proof net reduction:

Definition 5.4 (Coinductive Proof Net Reduction −→co
π) See Definition 4.3: −→co

π =

−→π

5.3 Confluence

Just like we did for inductive proof nets, we will try to prove the two important
properties one would like every ARS to have: SN and CR. The first one, strong
normalization, did not hold for inductive proof nets and since PN ⊆ CPN it will
not hold for coinductive proof nets either. However, the question whether or
not coinductive proof net reduction has the CR property can not be answered
positively just by the fact that inductive proof nets have that property. Take for
instance this example from the infinitary λ-calculus:

[λ f . f f f f f . . .]([λx.x]g) → [λ f . f f f f f . . .]g
↓ ↓

([λx.x]g)([λx.x]g)([λx.x]g)([λx.x]g)([λx.x]g) . . .
∞
→ ggggg . . .

So even though we have already seen that inductive proof nets are confluent,
we still don’t know if their coinductive counterpart is CR too or if we lose
confluence in extending the set of finite proofnets with infinite ones. Luckily,
this is not the case. Since we have constructed the proof of CR for inductive
proof nets in such a way that it does not depend on the fact whether or not a
proof net is defined inductively or coinductively, the proof of CR for inductive
proof nets is also a valid proof of CR for coinductive proof nets!

39

6 Typed Proof Nets

6.1 Introduction

Just like there is a typed version of the type-free λ-calculus, there is also a typed
version of (type-free) proof nets. Linear Logic rather than Intuitionistic Logic
will be used to define these types for reasons that will become clear in the
following section.

6.2 Linear Logic

Linear Logic (LL) as first described by Girard [Gir87] [Gir95] is a refinement
of Classical Logic (CL) which distinguishes itself from other logics by resource
sensitivity. This means that provability in LL depends on the number of occur-
rences of each formula. The need for such a logic is illustrated by the following
example:

A = Lewis possessing a copy of Alice in Wonderland
B = Charles possessing a copy of Alice in Wonderland
C = Rev. Dodgson possessing a copy of Alice in Wonderland
D = Lewis wants to give Alice in Wonderland to Charles
E = Lewis wants to give Alice in Wonderland to Rev. Dodgson

Furthermore, the following propositions hold:

• A

• D

• E

• (A ∧D)→ B

• (A ∧ E)→ C

Now in the real world, Lewis would have a problem, because he has only
one copy of Alice in Wonderland and two people he wants to give it to. But
according to CL, Lewis is a happy man, for he can give both Charles and
Reverend Dodgson a copy of Alice in Wonderland: we just use the proposition
A twice. Once to infer B and once to infer C.

So maybe we did something wrong in defining the two implications. Could
we perhaps use (A ∧ D) → B ∧ ¬A instead of (A ∧ D) → B? While this new
implication does seem to grasp what happens, the meaning CL assigns to it is
far from the one we would expect. According to CL, from the new implication
combined with A∧ B (which holds because of our assumptions) we can derive
anything, since it is equivalent to ⊥.

Linear Logic offers an elegant solution to this problem, because using the
same proposition twice is not allowed.

40

As said before, LL is obtained by refining CL. Let us first take a look at
CL’s structural rules. It is obvious that two of these, namely weakening and
contraction, do not belong in a resource sensitive logic. Therefore, they will
be banished as structural rules (but will have to return later on in some other
form, since we don’t want to lose any of the expressive power of Classical Logic).
Furthermore, four new binary connectives, ‘⊗’ (tensor), ‘M’ (par), ‘⊕’ (plus), ‘&’
(with), will replace the two classical ones, two additional unary connectives,
‘!’ (of course) and it’s dual ‘?’ (why not), are introduced and classical negation
will be replaced by ‘⊥’ (nil).

Throughout the rest of the text par and it’s dual tensor will be refered to as
the multiplicatives or context-insensitive connectives, and plus and with will
be refered to as the additives or context-sensitive connectives. Of course and
why not will be called the exponentials. In this thesis we will only use the
multiplicatives and the exponentials.

Γ,A,A ` ∆
(LC)

Γ,A ` ∆

Γ ` A,A,∆
(RC)

Γ ` A,∆

Γ ` ∆
(LW)

Γ,A ` ∆

Γ ` ∆
(RW)

Γ ` A,∆

6.2.1 Sequent Calculus

`?Γ,A
(o f course)

`?Γ, !A

` Γ
(weakening)

` Γ, ?A

` Γ,A
(dereliction)

` Γ, ?A

` Γ, ?A, ?A
(contraction)

` Γ, ?A

` Γ,A ` B,∆
(times)

` Γ,A ⊗ B,∆

` Γ,A,B
(par)

` Γ,A M B

(identity)
` A,A⊥

` Γ,A ` A⊥,∆
(cut)

` Γ,∆

and for the additives:

` Γ,A ` Γ,B
(with)

` Γ,A&B

` Γ,A
(le f tplus)

` Γ,A ⊕ B

` Γ,B
(rightplus)

` Γ,A ⊕ B

Proof nets give us an elegant tool to identify multiplicative LL-proofs that
are essentially the same (modulo the order in which the rules are applied) by
mapping two identical LL-proofs to one and the same proof net. An example
of such an identification is given by the proof net of the sequent a, a, a(b, a(
c, (b ⊗ c)(d ` d. Both:

41

(Ax)
a ` a

(Ax)
a ` a

(Ax)
b ` b

(Ax)
c ` c

(⊗R)
b, c ` b ⊗ c

(Ax)
d ` d

((L)
b, c, (b ⊗ c)(d ` d

((L)
a, b, a(c, (b ⊗ c)(d ` d

((L)
a, a, a(b, a(c, (b ⊗ c)(d ` d

and:

(Ax)
a ` a

(Ax)
a ` a

(Ax)
b ` b

(Ax)
c ` c

(⊗R)
b, c ` b ⊗ c

(Ax)
d ` d

((L)
b, c, (b ⊗ c)(d ` d

((L)
a, a(b, c, (b ⊗ c)(d ` d

((L)
a, a, a(b, a(c, (b ⊗ c)(d ` d

will be mapped to the following proof net:

b⊥a⊥a b

a(b

a⊥ a

d⊥ a(cd

c

b(c⊥

(b ⊗ c)(d

c⊥

6.3 Definition TPN

Definition 6.1 (Typed Inductive Proof Net) A typed inductive proofnet is a di-
rected proofnet for which a type is assigned to every port of the net. C : σ means that
the typed proofnet C has a global output port labeled σ.

If A and B are typed inductive proof nets, then so are:

?τn

σkσ1

σ

?σ

A

σ1 σk σM τ

σ τ

A

σ σ⊥

B

σ τ

σ ⊗ τ

A

σ1 σk τnτ1

B

σ⊥σ

A

σkσ1 τ1 τn

A

?τσkσ1

A

?σ

?σ?σ

σ1 σk

A

σ ?τ1

!σ ?τ1 ?τn

42

Definition 6.2 (Typed Proof Nets) The typed proof net associated with an typed
inductive proof net P is the graph G(P). This graph is constructed in a way similar to
the one in Definition 4.2 only now every port is assigned a label (type).

6.4 SN for Typed Proof Nets

Proving that typed proof net reduction is strongly normalizing is difficult,
because it seems to have both increasing and decreasing rewriting rules. For
example, taking the number of boxes of a proof net as a measure would not
work, since box–weakening deletes boxes, while box–fan duplicates them.

For this reason we will split the −→πt -ARS in two: the first system will
contain only the weakening rule and the second every non-weakening rule.
Now to prove that −→πt is SN, we will prove that the two abstract rewriting
systems resulting from this division are both SN. Furthermore we will have to
prove that their union −→πt is still SN, because this is not the case in general.
Take for example the two abstract rewriting systems R1 and R2:

R1 a→ b SN
R2 b→ a SN

R1 ∪ R2
a→ b
b→ a

×

Independently, they are both strongly normalizing, but their union is obviously
not. To prove that the union of our two abstract rewriting systems →w and
−→πt

−w
is indeed SN, we will use the following lemma:

Lemma 6.1 (Postponing) Let→ = (→1∪→2) and if a→1 b→2 c then a→2 d� c
(which is equivalent to (→1 ◦→2) ⊆ (→2 ◦�)) then→ is SN iff→1 and→2 are both
SN.

The ‘only if’ direction of the iff is trivial, since→1 ⊆ → and→2 ⊆ →. To prove the ‘if’
direction, we will show that if→ permits an infinite sequence, then there is a reduction
a →2 b such that b permits an infinite reduction sequence again. This would prove
that→2 is not SN, which contradicts one of our assumptions.

1st step is→2: Trivial.

1st step is→1: Since→1 is SN by assumption, the remaining reduction sequence will
be of the form�1 ◦→2 ◦R and because from our assumption that (→1 ◦→2) ⊆
(→2 ◦�) we can derive (�1 ◦ →2) ⊆ (→2 ◦�) by induction on the length of
�1, we can create an infinite reduction.

�

So our aim is now to prove three things:

1. SN for −→πt
−w

2. that→w-steps can always be postponed

43

3. SN for→w

First, we will give a proof of SN for −→πt
−w

, using the following lemma which
can be found in [Oos01]. The idea is that if an object keeps growing and there
is some sort of limit to how big such an object can become, the process will
eventually stop. We will use the notion eventually increasing:

Definition 6.3 (Eventually Increasing) An ARS is eventually increasing if there
is a function f toN such that if a→ b then f (a) ≤ f (b), and→ ∩ = f is SN.

Lemma 6.2 (WCR, WN, eventually increasing⇒ SN) An ARS which is WCR,
WN and eventually increasing, is SN. We will prove this using the following scheme:

∞

a′
0

WCR

Newman

WCR

Newman

a0

b′
2

b′
3

a′
3

a′
2

b3

b2

b1

b′
1

a′
1

a3

a2

a1

b0

b′
0

Let R be an unsafe reduction R : a0 � b0 to normalform. The reduction is unsafe
in the sense that there is another reduction S : a0 � a1 → . . .∞. Note that for every
unsafe reduction to normal form there is a critical step, the contractum of which is SN.
In the picture above, the critical steps are red. Now using WCR repeatedly, we can
construct an infinite reduction sequence a0 � a1 → . . .∞ such that f (ai) ≤ f (b0),
which leads to a contradiction because of well-foundedness of f . We may now conclude
that there are no unsafe reductions.

�

For the purpose of proving that −→πt
−w

is eventually increasing, we will
introduce a more sophistocated kind of an inductive proof net, called an induc-
tive memory net. The introduction of these memory nets is necessary, because
−→πt

−w
still has both increasing and decreasing rules. For instance, if we would

44

like to define the size of a typed proof net as the sum of the size of every cut
node, we would find that most rules are decreasing except for the box–fan rule,
which duplicates an arbitrary number of cuts. We could also take the sum
of the weight of every node of a proof net as a measure, but this approach is
bound to fail as well, since in the ∼-rules nodes inevitably disappear. We will
see that the memory net equivalent of −→πt

−w
, which will be called →m, does

not have any decreasing rules. The name ‘memory net’ is used because unlike
ordinary inductive proof nets, memory nets ‘remember’ how many increasing
rules have been applied. That is, they store integers that are raised by the
increasing rules in their so-called storage links. We will now give a formal
definition of a memory net:

Definition 6.4 (Inductive Memory Nets) If m, n and p are integers and A and B
are inductive memory nets, then so are the following nets:

A

A
AA

p

n
n

mim1
n

nn

n
nn

mn

AA

BA
BA

We see that memory nets are in fact ordinary proof nets of which the cut and
axiom nodes are labeled with an integer and every link has been replaced by a
number of what we will call storage links (the red objects in the picture above).
Just like the cut and axiom links, storage links are labelled with an integer. They
can be seen as representations of little pieces of a proof net link, resulting from
splitting the edges of an ordinary proof net. However, some storage links do
not represent part of an ordinary proof net link: for the storage links that are
not connected through their lower port their is no proof net link equivalent. To
be able to distiguish between these two kinds of storage links, we introduce the
notion of global port:

Definition 6.5 (Global Ports) A port will be call ‘global’ if it is not connected to
another port.

We will also define a notion of equivalence on the memory nets. The idea
behind this equivalence relation is that intuitively it doesn’t matter in what
memory-node the integers are being stored, just as long as the total amount
being stored remains the same.

45

Definition 6.6 (Memory Equivalence (=m))

pm

=m

n m

p

n + p

0

m n

p +m

0

m m + n m + n

=m

n 0

m

n +m

p + n

m

m

n

=m

=m

n

=m

n

m + n

=m

m

n

0

Obviously, we will demand that if one of these equivalence rules is applied
to a memory net the result is still a memory net. In other words, we need to
prove the subject reduction property for =m:

Lemma 6.3 (SR for =m) Since =m never deletes storage links, but only merges/splits
them (deletion would give us trouble at the global ports) and moves around their labels,
the result applying a =m-rule to a memory net is still a memory net.

�

Definition 6.7 (Memory Net Reduction (→m))

46

B

A

B

A

A

AA

A

A

m

m

m

m

m

m

n

m + n + p

p

nn

kik1mkik1m

p

q

qq

n p

m kik1

p

q

n ki

k1 m

q

p

m ki

k1

n

n +m + p + q + k + 1

n

m

qpk

n +m + p + q + k + 1
qpk

m

n

1

s

s

pm

n

00

k jk1r

r k jk1 nin1m

q

p

q

p

m nin1 n

0 0 0 0

47

We do not only want the subject reduction property for =m, but also for→m:
if a →m-rule is applied to a memory net then the result should be a memory
net again:

Lemma 6.4 (SR for→m) We need show for every left-hand-side of a→m-rule, that if
it is a well-formed memory net, its right-hand-side is too. Since this is rather obvious,
we will only show this for the box–dereliction rule:

A
A

B

m

n

kim

p

q

k1

k1

m

ki

n

q

p

B

Green boxes indicate well-formed components of the proof net. Like we saw in
Lemma 4.1, there is only one problem we might encounter in constructing a scheme
such as the one shown above: we might have associated the wrong inductive structure
with the proof net shown on the left-hand side of the→m-rule, for we know that more
than one inductive memory net can be associated with a memory net. However, if a
dereliction-node is indeed connected to a box through a number of storage links and
a cut link, one can always re-arrange the green boxes to fit the left-hand side of the
→m-rule shown above, using rules like the following:

A A

The same goes for the rest of the→m-rules.

�

Of course we want to want some kind of correspondence between these
newly defined memory nets and our original proof nets. This correspondence

48

will be shown by proving two important lemmas (the Lifting Lemma and the
Projection Lemma) on the mappingM, which maps a memory net in memory-
NF to its corresponding proof net. The idea here is that we want to transform
a memory net to some sort of standard, on which we will be able to apply
the mapping. This standard will be called the memory-NF of a memory net.
Memory Nets in memory-NF will have a unique storage link at every non-
storage-link-port (i.e. every port which is not the port of a storage link), so that
they can be ‘broken down’ by the mapping. This mapping will, in transforming
a memory net into an ordinary proof net, delete the storage links attached to
the translated link.

Definition 6.8 (memory-NF of a Memory Net) A memory net M is in memory-
NF iff

• for every two nodes of M which are connected by a path of storage links, this path
has length 2 and

• there is exactly one storage link at every global output and input port of M

This memory-NF can be reached using =m.

Definition 6.9 (MappingM) The functionM first brings a memory net to memory-
NF. Then all the storage links connected to a global port are thrown away and all the
other ports are mapped to proof net links, by means of the following function F :

49

()

(F)

F()
F (A) F (B)

F (A)

F (A)

F()

)(F

(F

(F

F (A)

F (A) F (B)A B

A

A

A

A B

F

A F (A)

)

)

Lemma 6.5 (Projection)

50

MAP

m m′

n′n

MAP

Since the storage links are merely a specification of ordinary links every memory net
can be mapped to a proof net by means of the mappingM, which removes every storage
link from a memory net. Furthermore, every →m rule has a −→πt

−w
-equivalent, so it

suffices to show that for every →m-rule, its left-hand-side can be mapped to the left-
hand-side of a certain −→πt

−w
-rule P and that its right-hand-side side can be mapped to

the right-hand-side of P. Since this is fairly obvious, we only show such a map for one
of the→m-rules:

m + n + p

1pm

n

π

m

�

Lemma 6.6 (Lifting modulo =m)

MAP

n n′

m′m

MAP

Using the mappingM again, we will show there is an→m-equivalent of every −→πt
−w

-
rule, which means we will prove that for every→m-rule M, if its left-hand-side can be
mapped to the left-hand-side of a −→πt

−w
-rule P, the right-hand-side of the→m-rule M

can be mapped to the right-hand-side of the −→πt
−w

-rule P. Since this is fairly obvious,
we only show such a map for one of the −→πt

−w
-rules:

51

n

m p 1

m + n + p

m

π

�

According to Lemma 6.2, the first property we have to prove in order to get
SN for→m is WCR. However, since an equivalence relation (=m) is defined on
the memory nets the →m-rules are applied to, proving WCR for →m will do
us no good. Instead, we need to prove WCR for →m modulo =m. But first a
definition of what it is exactly that we mean by ‘weakly confluent modulo’ will
be given.

In an ARS that is extended by a set of equations, we will typically have
rewriting sequences of the form:

a ∼ a′ → b ∼ b′ → c ∼ c′ → . . .

where∼ is some equivalence relation. So in this more general case, we also find
that trying to establish local confluence for our rewrite relation (which in this
case is→) would be useless. Rather, we would like to have local confluence for
the relation defined by ∼ ◦→ ◦ ∼.

Definition 6.10 (∼−→) The ∼−→-arrow is defined as ∼ ◦ → ◦ ∼, where ◦ is relation
composition6. In our case, ∼−→m will be: =m ◦→m ◦ =m.

So to prove local confluence for →m modulo =m we will have to show that:
(C ∼−→m A ∼−→m B)⇒ (C ∼−→m D ∼−→m B):

We will do this with the help of the following scheme:

6a→1 ◦→2 b iff a→1 b′ →2 b

52

c’’ c’

ed

b’a’

c

ba

S RQ

P

def

L 6.7

L 6.8

L 6.7

def def

Here is a function using (an oriented version of=m) which rewrites a memory
net to its USNF, with USNF defined as below:

Definition 6.11 (USNF of a memory net) A memory net is in USNF if every non-
zero integer is pushed forward in the direction of the arrows as far as the=m-equivalence
allows.

So we could say that two memory nets are the same modulo =m if they have
the same USNF.

Lemma 6.7 ((B →m A A′)⇒ (B C ◦ →m A′)) The idea here is that we would
like to apply both→m-steps and normalization arbitrarily, that is, it shouldn’t matter
whether we choose to first normalize a memory net and then apply a→m-step or the
other way around.

Since normalization is defined as ‘pushing every integer forward as far as possible’
and since

• no rule of→m blocks a path

• no unlawful duplication (duplication which would not be taken care of by un-
sharing) is done by any of the→m-rules

• by how much the net is increased does not depend on the weight of any link

we can safely assume that we won’t have any trouble normalizing a net after applying
a →m-step. However a path can be opened by the tensor-par rule, which will allow
the integers that we trapped between the tensor and the par to travel to the end of
the newly created path, so additional normalization may be necessary if we choose do
normalization first.

53

�

Lemma 6.8 ((d →m c→m e)⇒ (d ∼−→m S ∼−→m e)) We will now prove the final part
of our WCR-mod proof: if to a certain memory net two→m-rules are applied, the two
resulting memory nets can be rewritten into the same memory net again. Note that for
the sake of readability, we have left out quite a few of the obvious labels of the critical
pair pictures.

1. No overlap:

m1

m1 m2

m2

or worst case (if the redex of m1 is duplicated by m2):

m1

m1 m2

m2
m1

2. (a) m1 = m2:

0

m2m1

0

(b) Critical pairs:

Case 1

54

s1 + c1 + s2 + a + s3 + 1 s2 + a + s3 + c2 + s4 + 1s1s4

c1c2

s3s2s1 s4

s4 s1

c2c1

a

s1 + a1 + s2 + c + s3 + 1 s4 s2 + c + s3 + a2 + s4 + 1

a1a2

s1

s4s3s2s1

c

a2a1

=m

=m

Case 2

55

A B

B

A B

B
A

A

ni

q

s

r k jk1

p

m nin1 n

z

y

x

s
00

k jk1r

nin1m

q

p

n

ni

m

x

y

z n1 n

p

k1 k jr

s

q

nn1z

y

x

m

q

s

r k jk1

p

x

y

z

Case 3

56

Case 4

57

B

B

C

A

A

C

B

B

C

A

C

B

q

s

u

0

p

m

q

0

s

n

r kjk1
0

y

zx

m nin1 nvvhv1u

x

n

p

q

m n1 ni

r k1 kj

0 0
s

000 0

vhv1u v

y

z

z

y

nj

x

n1
v

z

y

x

u v1 vh v

s
00

kjk1r

nin1m

q

p

n

vi

r kjk1

v1

p

�

Lemma 6.9 ((c′ e R)⇒ R =m c′) By definition of : two memory nets are
equal modulo =m if they have the same USNF.

�

Lemma 6.10 (→m is weakly confluent modulo =m) By Lemma 6.8 and Lemma 6.7
the following scheme7 proves WCR modulo =m for→m:

7this is the exact same scheme as the one that appeared on page 53

58

c’’ c’

ed

b’a’

c

ba

S RQ

P

def

L 6.7

L 6.8

L 6.7

def def

�

Besides WCR, which we proved in Lemma 6.10, we needed to prove two
more properties of→m in order to derive SN for→m. One of these was that→m

is eventually increasing. A proof of this proposition is given below.

Definition 6.12 (Weight S of a Memory Net in USNF) The weight of a memory
net M in USNF is the sum of all the labels of M.

Definition 6.13 (=S-step) A step x is an =S-step iff x ∈ (→m ∩ =S). This means
that box–fan, box–dereliction and box–box the x-rules are the =S-steps, because the
weight S of a memory net M does not change when one of these rules is applied.

Lemma 6.11 ((→m ∩ =S) is Strongly Normalizing) We have already seen that de-
velopments of directed inductive clusters of−→$ are strongly normalizing (Lemma 4.8)
and that there is a proof net equivalent of every memory net rule (Projection –
Lemma 6.5). Now if we take a closer look, we see that the =S-rules are exactly
those memory net rules that have a −→$-equivalent, so the Projection Lemma allows
us to conclude that (→m ∩ =S) is strongly normalizing as well.

�

Lemma 6.12 (−→πt
−w

is eventually increasing) To prove that −→πt
−w

is eventually
increasing, we need a measure which eventually increases and a proof that the =m-rules
are SN. The latter has already been proven in Lemma 6.11 and we will show that the
weight S of a memory net is an apt measure which eventually increases:

1. =S-steps:

box–dereliction: S(rhs) = S(lhs)

59

box–fan: S(rhs) = S(lhs)

box–box: S(rhs) = S(lhs)

2. (ψ,∼)-steps:

tensor–par: S(lhs) + 2 ≤ S(rhs)⇒ S(lhs) < S(rhs)

axiom–cut: S(lhs) + 1 ≤ S(rhs)⇒ S(lhs) < S(rhs)

cut–axiom: S(lhs) + 1 ≤ S(rhs)⇒ S(lhs) < S(rhs)

�

Now the last property we had to prove was WN for→m. We will show this
by presenting a reduction strategy, which always leads to the normal form of a
proof net.

Definition 6.14 (=S-normalform) A (typed) proof net is in =S-NF iff it does not
contain any =S-redexes.

Definition 6.15 The weight G′ of a typed proof net is the sum of the weight g of the
types of all cut-nodes. The weight g of a type:

• g(a) = 1 if a ∈ VAR

• g(a⊥) = 1 if a ∈ VAR

• g(σ ⊗ τ) = g(σ) + 1 + g(τ)

• g(σ M τ) = g(σ) + 1 + g(τ)

• g(!σ) = 1 + g(σ)

• g(?σ) = 1 + g(σ)

Lemma 6.13 (−→πt
−w

is Weakly Normalizing) To prove that−→πt
−w

is indeed Weakly
Normalizing, we will present a reduction strategy RS which reduces every proof net P
in =S-NF to its normal form N:

1. Contract a cut-node at the highest level l, i.e. a cut link which is nested inside
the largest number of boxes: P→ Q

2. Reduce Q to =S-NF: Q�=S Q′

3. If Q is not in its normal form N: RS(Q)

Obviously, the weight of the typed proof net decreases over the first step, because we
contract one of the following redexes:

tensor-par: G′(Q) = G′(P) − 1⇒G′(P) > G′(Q)

axiom-cut: G′(Q) = G′(P) − 1⇒G′(P) > G′(Q)

60

cut-axiom: G′(Q) = G′(P) − 1⇒G′(P) > G′(Q)

After the first step ofRS is executed, new x-redexes may have been formed at level l.
However, contracting these redexes until =S-NF is reached again (step 2), never results
in the duplication of cut-nodes. This fact becomes clear if once we realize that a cut at
level i can only duplicate a cut at level i+1, but in selecting the cut-node at the highest
level for contraction (step 1) we eliminate the possibility that any cut exists beyond
level i.

If no new =S-redexes have been formed after the first step, Q′ like Q is in =S-NF
and can be used as input for a recursive call to RS.

�

Lemma 6.14 (→m is SN) By Lemma 6.2, we may conclude from Lemma 6.10, Lemma
6.12 and Lemma 6.13 combined with the Lifting Lemma 6.6 that→m is indeed SN.

�

We have now proven the first of the three goals we set ourselves at the
beginning of this proof of SN for −→πt . We will now proceed with the second
one: →w can always be postponed.

Lemma 6.15 (Postponing Weakening) Applying a weakening step can always be
postponed: (→w ◦ −→πt

−w
) ⊆ (−→πt

−w
◦�πt). This easy to see, because the weakening

rule can only create weakening redexes.

�

Proof 6.1 (−→πt is SN) By Lemma 6.14 and the Lifting Lemma 6.6 we know −→πt
−w

is SN. Furthermore the weakening rule is obviously SN8 and can always be postponed
until after all the −→πt

−w
-steps have been done (Lemma 6.15). So by proving Lemma

6.1, we have also proven SN for −→πt .

�

8every weakening step deletes a node

61

7 Typed Coinductive Proof Nets

7.1 Definition TCPN

Definition 7.1 (Coinductive Typed Proof Net) A typed coinductive proofnet is a
directed coinductive proofnet for which a type is assigned to every port of the net. Γ : σ
means that the typed coinductive proofnet Γ has a global output port labeled σ.

If C is a coinductive proof net. then it is of one of the following forms:

?τn

σkσ1

σ

?σ

A

σ1 σk σM τ

σ τ

A

σ σ⊥

B

σ τ

σ ⊗ τ

A

σ1 σk τnτ1

B

σ⊥σ

A

σkσ1 τ1 τn

A

?τσkσ1

A

?σ

?σ?σ

σ1 σk

A

σ ?τ1

!σ ?τ1 ?τn

where A or A and B are coinductive proof nets again with their sets of ports defined as:

axiom: prt(C) = {a : σ, b : σ⊥} for some a : σ and b : σ⊥

par: prt(C) ∪ {a : σ, b : τ} = prt(A) ∪ {c : σ M τ}

tensor prt(C) ∪ {a : σ, b : τ} = prt(A) ∪ prt(B) ∪ {c : σ ⊗ τ}

cut: prt(C) ∪ {a : σ, b : σ⊥} = prt(A) ∪ prt(B)

dereliction: prt(C) ∪ {a : σ} = prt(A) ∪ {c :?σ}

weakening: prt(C) = prt(A) ∪ {b :?τ}

fan: prt(C) ∪ {a :?σ, b :?σ} = prt(A) ∪ {c}

box: prt(C) = prt(A), where every input port of C with type ?τ will have type ?τ in A
and the output port of C with type !σ will have type σ in A.

where prt(x) is a function from proof nets to sets of ports.

Definition 7.2 (Typed Proof Nets) The typed proof net associated with an typed
inductive proof net P is the graph G(P). This graph is constructed in a way similar to
the one in Definition 4.2 only now every port is assigned a label (type).

Definition 7.3 (Typed Coinductive Proof Net)

62

7.2 Properties of TCPN

Now what about the properties of these typed coinductive proof nets? They
are of course CR, because TCPN ⊆ CPN and we already knew that CPN is CR.
But for the inductive equivalent of typed coinductive proof nets we found an
additional property: strong normalization or termination. Unfortunately, in
extending the set of finite proof nets with infinite ones, we also created a few
proof nets with infinitely many redexes. It should be obvious that these proof
nets will not be stongly normalizing and therefore typed coinductive proof net
reduction −→co

πt can not be strongly normalizing either.
However, there exists a counterpart of strong normalization which is able

to handle infinite objects: head normalization (HN). The idea behind head
normalization is that one should only contract those redexes that are necessary.
This approach should lead to the head normal form of an object; it should
return stable information which is not subject to change anymore even though
not all redexes are contracted yet.

But we will see that HN too, is not a property of −→co
πt . Our counterexample

comes from the coinductive λ-calculus [Joa01]:

CE = (λx.x)(λx.x)(λx.x)(λx.x)(λx.x)(λx.x) . . .∞

We see that whatever reduction we apply to CE, the result will be CE again
even though this λ-term is perfectly typable. Now since every typed λ-term
can be mapped onto a typed proof net, we can constuct a proof net counterpart
of this example:

∞

63

8 Conclusions

In this thesis we investigated (co)inductive proof nets. We have presented a
proof of confluence for both inductive and coinductive proof net reduction
(−→π and −→co

π) and a proof of strong normalization for typed inductive proof
net reduction −→πt . Counterexamples were given for strong normalization of
type-free inductive proof net reduction −→π, for strong normalization of typed
coinductive proof net reduction −→co

πt and for head normalization of typed
coinductive proof net reduction −→co

πt .
So even though we established confluence for typed coinductive proof net

reduction, the rewrite system CPN = (CP,−→co
πt) is far from ideal. We would

like to have at least some control on the termination of a rewriting sequence.
Therefore future work includes exploring the possibility of a standardization
procedure, which would always reduce a proof net to its (head) normal form,
given that the proof net has one.

Futhermore, future work could include finding (if there is one) an apt switch-
ing criterion for the exponential fragment, the additive fragment and of course
for the coinductive version of proof nets.

And in a broader perspective, one could think of investigating the cognitive
claims about proof nets made in [Joh98] and [Mor00]. Maybe these claims
can even be extended and teach us something not only about the processes
involved in analyzing natural language, but also about the processes involved
in reasoning . . .

64

References

[Abr90] Samson Abramsky, The lazy lambda-calculus, In D. Turner,
editor, Declarative Programming, Academic Press, 1990.

[AG98] A. Asperti and S. Guerrini, The optimal Implementation of
Functional Programming Languages, Cambridge Tracts in The-
oretical Computer Science, Cambridge University Press,
1998.

[Bet00] Inge Bethke, Jan Willem Klop, Roel de Vrijer, Descendants
and Origins in Term Rewriting, Information and Computation
159, 2000.

[DR89] Vincent Danos and Laurent Régnier, The structure of multi-
plicatives, Archive for Mathematical logic 28:181-203, 1989.

[Dan90] Vincent Danos, La Logique Linéaire appliquée à l’étude de divers
processus de normalisation (principalement du lambda-calcul),
PhD thesis Université Paris VII, 1990.

[Gir87] Jean-Yves Girard, Linear Logic, Theoretical Computer Science
50, 1987.

[Gir95] Jean-Yves Girard, Linear Logic, Its Syntax and Semantics, Ad-
vances in Linear Logic (Proc. of the Workshop on Linear
Logic, Cornell University, June 1993), Cambridge Univer-
sity Press, 1995.

[GR96] Philippe de Groote and Christian Retoré, On the Semantic
Readings of Proof Nets, Formal Grammar, FoLLI, 1996.

[Jac97] Bart Jacobs and Jan Rutten, A Tutorial on (Co)Algebras and
(Co)Induction, Bulletin of the European Association for The-
oretical Computer Science 62, 1997.

[Joa01] Felix Joachimski, Reduction Properties of Π IE-Systems, PhD
Thesis LMU München, 2001.

[Joh98] Mark Johnson, Proof nets and the complexity of processing center
embedded constructions, JoLLI 7:433-447, 1998.

[Joi93] Jean-Baptiste Joinet, Etude de la normalisation du calcul des
séquents classique à travers la logique linéaire, PhD thesis Uni-
versité Paris VII, 1993.

[Laf95] Yves Lafont, From Proof-Nets to Interaction Nets, Advances in
Linear Logic, Cambridge University Press, 1995.

[Mac71] Saunders MacLane, Categories for the Working Mathematician,
Springer-Verlag 1971.

65

[Mel02] Paul-André Melliès, Residual Theory Revisited, In Proceedings
of Conference on Rewriting Techniques and Applications,
Copenhague, 2002 (to appear).

[Mid97] Aart Middeldorp, Call by Need Computations to Root-Stable
Form, Symposium on Principles of Programming Lan-
guages, 1997.

[Moo02] Richard Moot, Proof Nets for Linguistic Analysis, PhD Thesis
Utrecht University 2002.

[Mor00] Glyn Morrill, Incremental processing and acceptability, Compu-
tational Linguistics 26(3):319-338, 2000.

[Ken99] Richard Kennaway, Vincent van Oostrom, Fer-Jan de Vries,
Meaningless Terms in Rewriting, Journal of Functional and
Logic Programming 1, 1999.

[Oos01] Vincent van Oostrom, Net-calculus,
http://www.phil.uu.nl/˜oostrom/, 2001.

[Pey87] Simon L. Peyton Jones, The Implementation of Functional Pro-
gramming Languages, 1987.

[Plu98] Detlef Plump, Term graph rewriting, Handbook of Graph
Grammars and Computing by Graph Transformation, vol-
ume 2, World Scientific, 1998.

[vR96] Femke van Raamsdonk, Confluence and Normalisation for
Higher-Order Rewriting, PhD thesis Vrije Universiteit, Am-
sterdam, 1996.

[Reg92] Laurent Régnier, Lambda-calcul et résaux, PhD thesis Univer-
sité Paris VII, 1992.

[Sor98] Morten Heine B. Sorensen and Pawel Urzyczyn, Lectures on
the Curry-Howard Isomorphism, DIKU-rapport 98/14, Techni-
cal Report, Department of Computer Science, University of
Copenhagen, 1998.

[Ter02] Terese, Term Rewriting Systems, Cambridge University Press,
2002 (to appear).

66

