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Abstract

We present a method to derive the Z-property, hence confluence, of a first-order term
rewrite system T from completeness of an associated context-sensitive term rewrite system
T , µ with replacement map µ. We generalise earlier such results by only requiring left-
linearity of T and that T -critical peaks be T , µ-critical peaks. We introduce convective
replacement maps as a generalisation of canonical maps known from the literature.

Background The direct inspiration for this note was the invited IWC 2022 presentation [2], in
particular its contemplation of cofinal strategies [8], which raised the obvious question whether
the Z-property could play a rôle in the theory developed (by Hirokawa based on earlier work of
Gramlich and Lucas), as it is known that the Z-property gives rise to a (hyper-)cofinal bullet
strategy [6], and entails confluence. We answer that question in the affirmative.

More in particular, this note concerns a method to transfer confluence of a terminating
context-sensitive term rewrite system (CSR) T , µ to its underlying term rewrite system (TRS)
T . We provide two assumptions allowing to establish the Z-property [6] for a TRS and its
layered bullet map •⊚, introduced here, that inside–out and layer-wise T , µ-normalises a term,
where the notion of layer is afforded by the replacement map µ of the CSR.

Preliminaries. For first-order term rewriting we base ourselves on [8], for context-sensitive
term rewriting on [1], and for the Z-property on [6], with which we assume the reader has a
nodding familiarity. Though we will recapitulate some key notions relevant to the developments
here, we refer the reader to that literature for background information.

Context-sensitive term rewrite systems are term rewrite systems, where contracting a redex
is restricted by a so-called replacement map mapping each function symbol in the signature
to its set of active argument positions. The notion of being active extends compositionally to
an occurrence of one term in another, via the latter occurring only in active arguments of the
function symbols occurring on its path from the root in the former. Given a replacement map,
context-sensitive rewriting only allows to contract active occurrences of redexes. Formally, for
µ a replacement map, a µ-redex is a redex at an active occurrence.

Given a context-sensitive term rewrite system (CSR) T , µ, with T a term rewrite system
(TRS) and µ a replacement map µ, we use → to denote the rewrite system induced by T , and
↪→ to denote the rewrite system induced by T , µ, contracting µ-redexes only.

Remark 1. Ordinary term rewriting is the special case of context-sensitive term rewriting, via
the replacement map in which all arguments of all function symbols are active.
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We will exploit that, despite appearances, whether or not the occurrence1 ⟨t | C[ ]⟩ of one term
t in another s = C[t] is active, does not depend on the (whole) context C[ ], but only on the
function symbols occurring on its access path, the path from the root to the hole of the context.

The main technique. We are interested in transferring confluence of ↪→ to that of →. To
that end, we will work throughout under the following two assumptions.

(i) T critical peaks are T , µ critical peaks.

(ii) T , µ is a left-linear and complete (confluent and terminating) CSR.

Remark 2. (1) Without assumption (i) one can’t expect to transfer confluence from ↪→ to
→, simply because context-sensitive rewriting in T , µ may miss out on (say nothing about)
critical peaks of T . For instance, consider the TRS T with rules a→ b and f(a)→ c where we
used (as we will do below) overlining2 to indicate that the argument of f is frozen, i.e. that
µ(f) := ∅. Then ↪→ is confluent, which may be shown by checking that the only ↪→-reducible
terms are a and f(a), and those are deterministic. In particular, we do not have f(a) ↪→ f(b)
since a is frozen in f(a), see [1, 5]. However, → is not confluent due to the non-joinable critical
peak f(b) ← f(a) ↪→ c. (2) Neither assumption (i) nor assumption (ii) is necessary. That
assumption (i) is not, may be shown by adjoining c→ f(b) to T . That preserves confluence
of ↪→, which may be transferred to confluence of → using that the source of f(a) → f(b) is
↪→-reducible to its target: f(a) ↪→ c ↪→ f(b), showing that the problematic critical peak is
redundant, cf. [3].

To maximise the chance that the context-sensitive rewrite system ↪→ is terminating, i.e. to
maximise applicability of assumption (ii), it is best to minimise the number of active arguments
or, stated differently, to maximise the number of frozen arguments [1]. That is, letting µ map
each function symbol to the empty set ∅ would be best, but that may not be possible as
assumption (i) forces for every rule ℓ→ r that for every position p in ℓ such that ℓ|p unifies
with some left-hand side of a rule, p be active / not frozen. This motivates:

Definition 3 (convective). A replacement map µ is convective if µcnv ⊆ µ, i.e. if µ is not more
restrictive than µcnv , where µcnv is the most restrictive replacement map such that for every
rule ℓ→ r, for every position p in ℓ such that ℓ|p unifies with some left-hand side of a rule (i.e.
an overlap), i∈µcnv (ℓ(q)) for any qi ⪯ p (i.e. q is the position of a function symbol on the path
from the root to the overlap position p and i is its argument for which this holds.

Convectivity guarantees that if two left-hand sides occurring in a term have overlap the one
is active iff the other is, but nothing more. In particular, in a critical peak the inner redex
occurrence is active since the outer occurrence, at the root, is.

Example 4 (convective running example). Consider the CSR3 having rules and replacement
map µcnv :

nats → from(0)

inc(x : y) → s(x) : inc(y)
hd(x : y) → x
tl(x : y) → y

from(x) → x : from(s(x))
inc(tl(from(x))) → tl(inc(from(x)))

1To be formal here we use the not(at)ion of occurrence of [8, Sect. 2.1.1]. Below we will make do with the
usual informal ways of specifying occurrences.

2Our overlining notation suggests that the overlined argument position is cut off from its context, i.e. frozen.
3Suggested to us by Nao Hirokawa.
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The only critical peak is between the fifth and sixth rules, for which convectivity entails we must
at least have 1 ∈ µ(inc), µ(tl). These two constraints give the convective replacement map µcnv .

For this CSR T , µ context-sensitive rewriting ↪→ trivially (easily checked by tools) is termi-
nating, whereas ordinary term rewriting for T trivially is non-terminating.

Remark 5. In the literature so-called canonical replacement maps, for which only the variables
may occur frozen in the left-hand sides of rewrite rules, play an important rôle. Formally, µ
is canonical if µcan ⊆ µ, i.e. if µ is not more restrictive than µcan , where µcan is defined by
i∈ µcan(f) if for some position p and some rule ℓ→ r, we have ℓ(p) = f and ℓ(pi) is a function
symbol.

Following-up on the preliminaries, the intuitive difference between canonical and convective
replacement maps is that a canonical replacement map requires all (non-variable) positions in
the redex-pattern of a redex to be active, whereas a convective replacement map requires this
only of the positions in a redex-pattern on an access path to where it may be overlapped by
another redex.

Example 6. In Ex. 4 canonicity requires we also have 1∈µcan(hd) due to the (first) argument
belonging to the pattern of the left-hand side of the third rule, illustrating µcnv ⊂ µcan here.

The idea of our terminology convective is to view a term as a fluid, and the paths from the
root of a left-hand side to the roots of overlapping left-hand sides as representing flows within
the fluid, with the flow enabling activation of the latter. A term is in ↪→-normal form iff there’s
no flow from the root of the term to any redex-pattern. It then makes some intuitive sense to
speak of its layer at depth 0 as being solid. Formally, the depth of an occurrence is the number
of frozen argument positions it is in on the path to the root, inducing a natural stratification
of terms into layers of symbols, subterms, and redexes occurring at a given depth.

Lemma 7. If t→ s then t• ↠ s•, where • maps a term to its ↪→-normal form, existing uniquely
by assumption (ii).4

Proof of Lem. 7. We claim t q−→ s entails5 t• ↠ ŝ←←↩ s for some ŝ. From the claim we conclude
using ŝ ↠ s• by assumption (ii) and ↪→ ⊆ →. We prove the claim by induction on t w.r.t. ←↩
well-founded6 by assumption (ii), and by distinguishing cases on t q−→ s:

If t q−→ s decomposes as t ↪→ t′ q−→ s, we conclude by the IH for t′ q−→ s and t• = t′•.
Otherwise t q−→ s only contracts non-µ-redexes, occurring at depths at least 1 in t. By

assumption (i) those cannot have overlap with any redex-pattern at depth 0 in t, as that would
give rise to a critical peak of T that is not a critical peak of T , µ.

If t = t• we may trivially set ŝ := s.
Otherwise, for some t′ there is a step t ↪→ t′ orthogonal to t q−→ s, hence by the assumed

left-linearity of T the steps commute. Because t ↪→ t′ is not below (any redex-pattern in)
t q−→ s, the residual of the former after the latter is again a (single) ↪→-step, inducing a
diagram of shape t ↪→ t′ q−→ s′ ←↩ s. By the IH for t′ q−→ s′ and assumption (ii) we conclude
to t• = t′• ↠ ŝ←←↩ s′ ←↩ s for some ŝ, as desired.

4We employ Klop’s convention, cf. [8], to use an arrow with a double arrowhead to denote the reflexive–
transitive closure of the rewrite relation denoted by the arrow with a single arrowhead.

5We employ Huet’s convention, cf. [8], to use an arrow adorned with two vertical strokes to denote parallel
reduction, allowing to perform steps with respect to the unadorned reduction at an arbitrary number of parallel
positions in parallel.

6Recall the widespread convention (used in proof theory, in rewriting [8], in proof assistants (Coq)) to say
a relation ←↩ is well-founded if there are no infinite descending sequences . . .←↩ a2 ←↩ a1 ←↩ a0.
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Assumption (ii) ensures ↪→ has the Z-property7 for bullet map • by [6, Lem. 11]. That bullet
map is extensive for ↪→, i.e. t ↪→→ t• [6, Definition 4]. We show → has the Z-property under
assumptions (i) and (ii) for some bullet map •⊚ based on •. To define •⊚ we use that any term
can be uniquely decomposed into its active layer at depth 0 w.r.t. µ,8 and its frozen arguments
at depth 1. Accordingly, we write C ⟨⃗t⟩ to denote such a unique decomposition, where C is the
active layer and t⃗ the (vector of) frozen arguments.

Definition 8. The layering •⊚ (of •) is inductively defined by C ⟨⃗t⟩•⊚ := C ⟨⃗t•⊚⟩•.

Lemma 9. C [⃗t•⊚] ↠ C [⃗t]•⊚

Proof. By induction and cases on C. The base cases C = 2 and C = x being trivial, suppose C

has shape f(C⃗) and decompose t⃗ accordingly. We conclude to C [⃗t•⊚] = f(
−−−→
C [⃗t•⊚]) ↠ f(

−−−→
C [⃗t]•⊚) ↠

f(
−−→
C [⃗t])•⊚ = C [⃗t]•⊚ by, respectively, the decomposition of C [⃗t], the induction hypothesis for C⃗

and closure under contexts of→, the claim that g(s⃗•⊚) ↠ g(s⃗)•⊚ for all g and s⃗, and by definition
of the decomposition again.

To prove the claim, first observe that g(s⃗•⊚) ↠ g(s⃗•⊚)• by extensivity of • and ↪→ ⊆ →.
Therefore, to conclude it suffices to show g(s⃗•⊚)• = g(s⃗)•⊚. To that end, let g(s⃗) uniquely

decompose as g(
−−→
D[u⃗]) with for i∈µ(g), Di⟨u⃗i⟩ the unique decomposition of si, and for i ̸∈µ(g),

Di = 2 and u⃗i = si. Hence g(s⃗)•⊚ = g(
−−−→
D[u⃗•⊚])• per construction of the decomposition and by

definition of •⊚. To conclude to g(s⃗•⊚)• = g(s⃗)•⊚ = g(
−−−→
D[u⃗•⊚])• it then suffices to show that g(s⃗•⊚)

and g(
−−−→
D[u⃗•⊚]) are ↪→-convertible since ↪→ is complete by assumption (ii). Convertibility follows

from that for each active argument i ∈ µ(g) we have that si uniquely decomposes as Di⟨u⃗i⟩ so
that s•⊚i = Di⟨u⃗i •⊚⟩• hence s•⊚i and Di⟨u⃗i •⊚⟩ are ↪→-convertible and by i being active this extends

to the respective ith arguments of g(s⃗•⊚) and g(
−−−→
D[u⃗•⊚]), and from that for each frozen argument

i ̸∈ µ(g) we have by definition of Di and u⃗i that s
•⊚
i = Di[u⃗i

•⊚].

Theorem 10. → has the Z-property for •⊚.

Proof. We have to show that if ϕ : t → s is a TRS step, then there are reductions s ↠ t•⊚

and t•⊚ ↠ s•⊚, giving rise to the Z in [6, Figures 1 and 5]. This we prove by induction on the
decomposition C ⟨⃗t⟩ of the source t of ϕ and by cases on whether or not ϕ is a µ-step.

• if t ↪→ s, then by definition of •⊚ and extensivity of •⊚, there is a reduction t ↠ t•⊚ that
decomposes into a reduction γ : C ⟨⃗t⟩ ↠ C ⟨⃗t•⊚⟩ with steps at depth at least 1, followed
by a reduction δ : C ⟨⃗t•⊚⟩ ↪→→ C ⟨⃗t•⊚⟩• = t•⊚ with steps at depth 0. Since ϕ is a step at
depth 0, assumption (i) yields it and its residuals (after any prefix of γ) are orthogonal
to (the corresponding suffix of) γ, giving rise by standard residual theory [8, Chapter 8]
to a valley completing the peak between ϕ and γ that comprises a step ϕ/γ : C ⟨⃗t•⊚⟩ ↪→ u
and reduction γ/ϕ : s↠ u for some term u.

To conclude to s ↠ t•⊚ we compose γ/ϕ : s ↠ u with the ↪→-reduction (lifted to a →-
reduction using ↪→ ⊆ →) of its target u to ↪→-normal form, which is t•⊚ since t•⊚ =
C ⟨⃗t•⊚⟩• = u• by definition respectively ϕ/γ and completeness of ↪→.

To conclude to t•⊚ ↠ s•⊚, we claim that u has shape E[u⃗•⊚] and s has shape E[u⃗] for
some context E and vector of terms u⃗. Then, composing ϕ/γ : C ⟨⃗t•⊚⟩ ↪→ u with u =

7Recall from [6] that a rewrite system ↪→ has the Z-property for a map • on its objects, if a ↪→ b entails
b ↪→→ a• ↪→→ b•.

8In [4] this is called the maximal replacing context and denoted by MRCµ.
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E[u⃗•⊚] ↠ E[u⃗]•⊚ = s•⊚ obtained by Lem. 9, yields C ⟨⃗t•⊚⟩↠ s•⊚. From this we conclude to
t•⊚ = C ⟨⃗t•⊚⟩• ↠ (s•⊚)• = s•⊚ by Lem. 7 and idempotence of •.
It remains to prove the claim that u has shape E[u⃗•⊚] and s has shape E[u⃗] for some
context E and vector of terms u⃗. The idea is that both C and ℓ are preserved under
non-µ-steps, so their join is so too, and we set E be the result of contracting ℓ in the join.
Formally, we construct E as follows. Let ς := let X = C[x⃗] inX (⃗t) be the cluster [3]
corresponding to the occurrence of the context C in t, and let ζ be the cluster of shape
let Y = ℓ in . . . corresponding to the occurrence in t of the left-hand side ℓ of the rule
ℓ→r contracted in the step ϕ : t ↪→ s. Their join ξ := ς⊔ζ has shape let Z = D[z⃗] inZ(u⃗)
for some context D and terms u⃗, by ς being a root cluster of ς having overlap with ζ.

Per construction of ξ and by the TRS T being left-linear, there is some step ψ from D[z⃗]
contracting the occurrence of ℓ, such that ϕ is a substitution instance of ψ.9 Then we
define E from the target of ψ writing that uniquely as E[w⃗] for w⃗ comprising the replicated
variables of z⃗, so that ψ :D[z⃗] ↪→ E[w⃗]. In turn, we define u⃗ from the target s of ϕ : t ↪→ s,
noting the latter can be written as the unique substitution instance E[w⃗]υ = E[u⃗] of the
target E[w⃗] of ψ, for substitution υ mapping zi to ui such that ϕ = ψυ. Per construction,
t = D[z⃗]υ and s = E[w⃗]υ = E[u⃗].

Finally, we must show that u = E[u⃗•⊚]. To that end, note that any ↪→-step ϕ′ of shape
ψσ for term substitution σ, is orthogonal to any non-µ-step χ having the same source,
as (the redex-pattern of) χ can neither have overlap with ς by χ being non-µ, nor have
overlap with ζ by assumption (i) using that ψ is at depth 0 and χ at depth at least 1,
so χ cannot have overlap with their join ς ⊔ ζ either. Thus, χ is of shape D[z⃗]τ for some
step-substitution10 τ , and χ/ϕ′ = E[w⃗]τ and ϕ′/χ = ψτ ′

with τ ′ the step-substitution
such that τ ′(zi) is the target of τ(zi), for all i.

By induction on the length of γ, we obtain from the above that the reduction γ : t =
C ⟨⃗t⟩↠ C ⟨⃗t•⊚⟩, comprises only steps that are substitution instances of D[z⃗] so that C ⟨⃗t•⊚⟩
is as well. In particular note that each reduction from ti to t•i does not change its top
part (if any) overlapping the occurrence of ℓ, so is the same as that top part where all

its arguments have been reduced to •⊚-normal form. That is, C ⟨⃗t•⊚⟩ has shape D[z⃗]υ
•⊚
.

By the above, u then has shape E[w⃗]υ
•⊚
= E[u⃗•⊚] as common target of ϕ/γ and γ/ϕ, as

claimed.

• if t → s is not a µ-step then s = C⟨s⃗⟩ with ti → si for some i and tj = sj for all j ̸= i.
Then the Z-property holds for s⃗, i.e. s⃗ ↠ t⃗•⊚ ↠ s⃗•⊚ since by the IH si ↠ t•⊚i ↠ s•⊚i , and
sj ↠ t•⊚j = s•⊚j for all j ̸= i by extensivity of •⊚. We conclude to s = C⟨s⃗⟩ ↠ C ⟨⃗t•⊚⟩ ↠
C ⟨⃗t•⊚⟩• = t•⊚ ↠ C⟨s⃗•⊚⟩• = s•⊚, using that the Z-property holds for s⃗ by the IH and closure
of → under contexts for the first reduction, extensivity of • and ↪→ ⊆ → for the second,
and Z for s⃗ and closure under contexts and preservation of ↠ by • for the third.

From this we immediately obtain by [6, Lem. 51 and Thm. 50] that:

9Using traditional unification-speak D can be described as being obtained by unifying the occurrence of
the left-hand side ℓ with the context C (both linear and renamed apart). E is then the result of contracting
the ℓ-redex in D. We prefer to employ the lattice-theoretic language developed in [3] as that is based on
encompassment which encompasses both the subsumption (prefix; unification) and the superterm (suffix) orders
employed in such traditional accounts, and moreover avoids context-talk which is imprecise here since D and E
are not simply contexts, but linear terms; in particular, the names of the holes in E do matter.

10A substitution τ such that for all i, τ(zi) either is a single step or a term.
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Corollary 11. Under assumptions (i) and (ii), → is confluent and the bullet strategy •⊚−→, is
a hyper-cofinal strategy.11

Thus the bullet strategy •⊚−→ is (hyper-)normalising [8]. Moreover, the layered bullet function
•⊚ induces an effective (if ↪→ is) confluence construction and cofinal strategy.

A concrete criterion Our approach to confluence of a term rewrite system (via the Z-
property) has confluence of context-sensitive rewriting ↪→ as an assumption; in fact local con-
fluence suffices given termination is also assumed.12 The following is a sufficient condition for
local confluence of context-sensitive rewriting ↪→ known from [5]; see that paper for others.

(iii) T , µ is 0-preserving if, whenever a variable occurs at depth 0 in the left-hand side of a
rule, then all its occurrences in the right-hand side are at depth 0 as well.

Lemma 12. If T , µ is a left-linear CSR satisfying assumptions (i) and (iii) with ↪→-joinable
critical peaks, then context-sensitive rewriting ↪→ is locally confluent.

Proof. This is the special case of [5, Thm. 30], arising by (additionally) assuming left-linearity
and the absence of extended critical pairs [5, Definition 29].

For a direct proof, note that a local ↪→-peak s←↩ t ↪→ u either is overlapping or not.
In the former case, the peak is an instance of a critical ↪→-peak occurring in some context

at an active position. Then we conclude by assumption (i) and ↪→-joinability of critical peaks.
The latter case further splits into the disjoint (a) and nested redex-patterns cases (b) and (b’)

in the proof of [8, Lem. 2.7.15], Huet’s Critical Pair Lemma. The proof of case (a) carries
over directly from → to ↪→. The proof of cases (b) and (b’) carries over as well, but using
assumption (iii) to ensure that the residuals (at parallel positions) of the nested step remain
at depth 0, so are ↪→-steps again.

Since convectivity entails assumption (i), and ↪→-joinability of critical peaks and 0-preservingness
entail confluence of ↪→ for left-linear CSRs by Lem. 12, combining this with termination of T
all assumptions of Thm. 10 are satisfied:

Corollary 13. If T , µ is a left-linear 0-preserving CSR such that µ is convective, critical peaks
are ↪→-joinable, and context-sensitive rewriting ↪→ is terminating, then the TRS T , i.e. the
rewrite system →, has the Z-property for the layered bullet function •⊚.

This generalises [1, Thm. 2], the main result of that paper, both by relaxing two of its assump-
tions, canonicity to convectivity and level-decreasingness to 0-preservingness, and by strength-
ening its conclusion from confluence to the Z-property.

Example 14 (application to running example). The CSR of Ex. 4 is left-linear (by inspec-
tion of the left-hand sides; no repeated variables), 0-preserving (vacuously so, since there are
no variables at depth 0 in left-hand sides; all occur in overlined subterms), has a convective
replacement map (µcnv is the most restrictive such), and is terminating as was observed.

The (only) critical peak is between its fifth and sixth rules and is ↪→-joinable as shown by (the
following) two legs of its confluence diagram: inc(tl(from(x))) ↪→ tl(inc(from(x))) ↪→ tl(inc(x :

from(s(x)))) ↪→ tl(s(x) : inc(from(s(x)))) ↪→ inc(from(s(x))) and inc(tl(from(x))) ↪→ inc(tl(x :

11Recall from [6] that the bullet strategy iterates the bullet map (here •⊚) on objects, and that a →-strategy
is hyper-cofinal if for any a ↠ b, starting from a always eventually performing a •⊚−→-step after a number of
→-steps will yield an object c that exceeds b in the sense that b ↠ c.

12Alternatively, completeness may be decomposed into random descent and normalisation [7].
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from(s(x)))) ↪→ inc(from(s(x))).13 Corollary 13 yields → has the Z-property, is confluent, and
•⊚−→ is a cofinal ↠-strategy.

Remark 15. The methods of [1] do not apply to yield the result of Ex. 14. Their methods
require level-decreasingness of the rules and the fifth added rule is not for the canonical re-
placement map µcan employed by them: the level of x in the lhs is then 1 whereas in the rhs it
occurs not only with level 1 but also with level 3. The only way to regain level-decreasingness
is to make both the second argument of : and the argument of s active, but that would violate
termination of ↪→ (the fifth rule becomes spiralling), one of the other assumptions of [1, Thm. 2].

Conclusion By relaxing the assumptions of [1, Thm. 2], Cor. 13 partially settles [1, Open
Problem 1]. In the long draft http://www.javakade.nl/research/pdf/z-csr.pdf from which
this note was derived, we provided several more illustrative examples (omitted here for com-
pactness) and also positively settled [1, Open Problem 2]. Although we didn’t implement our
method, we think it should be relatively easy to integrate into extant tools for context-sensitive
rewriting (especially those already basing themselves on canonical replacement maps).

Acknowledgments We thank Nao Hirokawa and Salvador Lucas for inspiration and feed-
back.
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A CSR of Ex. 14 in format suitable for automation

The CSR of Ex. 14 can be given in COPS 14 format as:

13Indeed, as pointed out by Salvador Lucas (personal communication 1-6-2023) termination and local conflu-
ence of this CSR (see App. A) are established automatically by the tool CONFident (http://zenon.dsic.upv.
es/confident/), employing the general criterion mentioned in the proof of Lem. 12.

14See http://project-coco.uibk.ac.at/problems/.
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Z for ll-TRSs via convective complete CSRs V. van Oostrom

(REPLACEMENT-MAP

(_:_ )

(from )

(hd )

(s )

)

(VAR x y)

(RULES

nats -> from(0)

inc(_:_(x,y)) -> _:_(s(x),inc(y))

hd(_:_(x,y)) -> x

tl(_:_(x,y)) -> y

from(x) -> _:_(x,from(s(x)))

inc(tl(from(x))) -> tl(inc(from(x)))

)
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