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Abstract

We continue our study of the difference between Weak Normalisation (WN) and
Strong Normalisation (SN). We extend our earlier result that orthogonal TRSs with
the property WN do not admit cyclic reductions, into three distinct directions:

(i) to the higher-order case, where terms may contain bound variables,
(ii) to the weakly orthogonal case, where rules may have (trivial) conflicts, and
(iii) to weak head normalisation (WHN), where terms have head normal forms.

By adapting the techniques introduced for each of the three extensions separately,
we even are able to show the result generalises to each pair of combinations and to
various λ-calculi. The combination of all three extensions remains open however.
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1 Introduction

.

We continue our study of the difference between Weak Normalisation (WN)
and Strong Normalisation (SN) started in [7], to which we refer the reader for
ample motivation. There we showed that although WN in general does not
imply the absence of infinite reductions, it does imply acyclicity (AC), i.e. the
absence of cyclic reductions in the case of orthogonal first-order term rewriting
systems (TRS). The prototypical such TRS witnessing both phenomena is:

a → f(a)

f(x) → b

with typical reduction ladder (see [7]) as in Figure 1. As exemplified by the

f(f(f(b)))

a f(a) f(f(a))

b f(b)

f(f(f(a)))

f(f(b))

f(f(f(f(a))))

Figure 1. Infinite reduction ladder in orthogonal TRS which is WN but not SN

figure, this TRS is WN. By the main result of [7], it therefore does not admit
cyclic reductions, although it obviously does admit infinite reductions. From
acyclicity we conclude, using that there are only finitely many terms of a given
size, that the terms along such infinite reductions must grow unboundedly in
size, as witnessed by the reduction ladder in the figure.

In this paper, we extend the WN ⇒ AC result, as obtained in [7] for
orthogonal first-order term rewriting systems, into three distinct directions:

(i) to the higher-order case, where terms may contain bound variables,

(ii) to the weakly orthogonal case, where rules may have (trivial) conflicts,
and

(iii) to weak head normalisation (WHN), where terms have head normal
forms.

In particular, the first of these extensions pertains to the λβ-calculus [3].
In itself this is not interesting as the λβ-calculus is not WN. We will show
however that our result carries over to its sub-calculi and in particular to
typed λ-calculi, for which WN often can be shown. Therefore, we provide a
partial answer to:

Conjecture 1.1 (Barendregt–Geuvers–Klop) WN ⇒ SN, for typed λβ.

In particular, although we do not show that infinite reductions do not exist
in such a WN typed λβ-calculus, it does follow that if an infinite reduction
would exist, then the situation is as in the prototypical TRS above: the infinite
reduction is acyclic and the terms along it grow unboundedly in size.
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We also show that the result pertains to each pair of combinations of the
individual extensions presented above. The combination of all three extensions
remains open however:

Conjecture 1.2 WHN ⇒ AC, for weakly orthogonal PRSs.

Finally, we turn our attention to λ-calculi, in particular to λβ-calculi,
λβη-calculi, yielding the same partial answer to the Barendregt–Geuvers–Klop
conjecture for typed λβη-calculi as for such calculi without η, and the λ-calculi
with explicit substitutions λx− and λσ.

This is an extended abstract of the technical report [6]. Because of space
limitations we can present only two of the four novel proof techniques intro-
duced there. We have chosen to completely develop here the proof techniques
of fully extending a rewriting system and projection of cycles along exten-
sions, referring the reader to the technical report for details of the other proof
techniques (covering clusters of overlapping redex-patterns by chains and elim-
inating redex-patterns from clusters). For the same reason, we assume here fa-
miliarity with the basic theory of confluence for (weakly) orthogonal TRSs [14,
Chapter 4].

Throughout, the rewriting systems considered are left-linear.

2 Acyclicity for separate generalisations

We generalise the WN ⇒ AC result and its proof, as obtained in [7] for
orthogonal first-order term rewriting systems, into each of the three individual
directions mentioned in the introduction. To that end, we first recapitulate
their main ingredients as presented in [7].

See [14,2] for introductions to abstract rewriting systems (ARSs). Con-
cretely, we use the ARSs of [14, Definition 8.2.2], a, b, c, . . . to denote objects,
φ, ψ, χ, . . . to denote steps, and σ, τ , υ, . . . to range over reductions.

Definition 2.1 A loop is a step having the same source and target. A non-
empty reduction in a given ARS → is a cycle, if it is a loop in the associated
reduction-ARS ։. If the source or target of a loop (cycle) is a, we will speak
of a loop (cycle) on a.

In this paper, we will be interested in acyclicity (AC) of rewriting systems,
i.e. in the absence of cycles. For example, the TRS in the introduction is AC.

Definition 2.2 A step C[lσ] → C[rσ] according to rule l→ r is a head step
if C is the empty context. A set of reductions is said to have sub-reductions,
if for any non-head reduction in the set with source t, there is a reduction in
the set having some proper subterm of t as source.

Notions for ordinary reduction relativise in the obvious way to head reduc-
tion, e.g. a TRS is WHN (weakly head normalising) if for every term there is
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a reduction to a term in head normal form.

Theorem 2.3 (Head normalisation) If a term allows a reduction contain-
ing infinitely many head steps in an orthogonal TRS, a so-called hyper-head
reduction [14, Definition 9.1.18], then it does not have a normal form.

The (contrapositive of) the statement of the theorem may be abbreviated
to head reductions are hyper-normalising or equivalently hyper-head reductions
are normalising.

Lemma 2.4 (Sub-cycle) Cycles have sub-reductions in TRSs.

Theorem 2.5 ([7]) Weakly normalising orthogonal TRSs are acyclic.

Proof For a proof by contradiction, consider a term t in a weakly normalising
orthogonal TRS R of minimal height which is cyclic. That is, there exists a
non-empty reduction σ:t ։ t. By the Sub-Cycle Lemma and the minimality
assumption, σ must contain some head step, hence the infinite reduction σω

from t obtained by repeating σ infinitely often contains infinitely many head
steps. Therefore, by the Head Normalisation Theorem, t does not have a
normal form, contradicting the assumption that R was weakly normalising.2

The proof is abstract in that it only depends on the Head Normalisation
Theorem and the Sub-Cycle Lemma. Hence it will suffice to generalise these.

For the generalisation of the implication WN⇒ AC to WHN ⇒ AC, only
the Head Normalisation Theorem needs to be generalised.

Theorem 2.6 Weakly head normalising orthogonal TRSs are acyclic.

Proof To reach a contradiction with the weak head normalisation assump-
tion, as before, it suffices to prove that head reductions are even hyper-
head normalising for orthogonal TRSs. Observing that head steps are head
needed in the sense of [14, Definition 9.5.52], i.e. they cannot be eliminated
by other non-overlapping steps, the result follows from the fact that head
needed reductions are hyper-head normalising for orthogonal TRSs ([14, The-
orem 9.2.60]). 2

Example 2.7 Replacing the right-hand side of the rule f(x) → b by c(a)
transforms the TRSs of the introduction into an orthogonal TRS which is
WHN (but no longer WN). We conclude AC from the theorem.

To generalise the implication WN⇒ AC from orthogonal to weakly ortho-
gonal TRSs, that is to left-linear TRSs the critical pairs of which are trivial
(c.f. Example 2.9), it suffices to adapt the Head Normalisation Theorem.

Theorem 2.8 Weakly normalising weakly orthogonal TRSs are acyclic.

Proof To reach a contradiction, reasoning as before, it suffices to prove that
head reductions are hyper-normalising also for weakly orthogonal TRSs. Ob-
serving that head steps are outermost steps, and hence that a reduction which
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eventually always performs a head step is outermost fair in the sense of [14,
Definition 9.3.1], i.e. outermost redexes are eventually eliminated, the result
follows from the fact that outermost-fair reductions are normalising for weakly
orthogonal TRSs ([12, Theorem 1], [14, Theorem 9.3.12]). 2

Example 2.9 The predecessor/successor TRS with rules P (S(x))→ x and
S(P (x))→ x is weakly orthogonal; both its critical pairs are trivial:

P (x)← P (S(P (x))→ P (x) S(x)← S(P (S(x))→ S(x)

We conclude AC from WN (it is even SN, but that’s not the point here).

Our third generalisation of the implication WN ⇒ AC, from first-order to
higher-order term rewriting systems (PRSs [14, Chapter 11]), is more difficult
to establish. We will first prove it for PRSs which are fully extended or fully
applied, meaning that whether a rule is applicable or not does not depend on
whether a bound variable occurs in one of its arguments or not.

Example 2.10 The paradigmatic example of a non-fully-applied PRS is the
λβη-calculus, with rules, for M , N terms:

β:(λx.M)N →M [x:=N ] η:λx.Mx→M , if x 6∈M

Whereas the β-rule is fully applied, the η-rule is not, as its applicability de-
pends on whether the bound variable occurs. In general, a rule scheme con-
taining variable conditions on its terms yields a non-fully-applied PRS rule.

The problem with non-fully-applied rules is that the proof techniques em-
ployed above, normalisation of head needed/outermost-fair strategies, fail.

Example 2.11 Consider the term t = f(x.g(e(x))) in the orthogonal PRS
with rules f(x.Z)→a, g(Z)→g(Z), and e(Z)→a, where Z is a meta-variable
of base type. The f -rule is non-fully-applied as it tests for the absence of the
bound variable x in its argument Z (in PRSs, instantiating the meta-variable
Z in the left-hand side f(x.Z) of the first rule requires that no variable be
captured, so no x may occur in the instance of Z). Since this test fails, t is
not yet a redex, and hence the g-redex is the outermost redex in t. On the one
hand, repeatedly contracting this outermost redex gets you nowhere. On the
other hand, a reduction to normal form is possible, by first contracting the
non-head-needed and non-outermost e-redex in t which erases the variable x,
yielding the term f(x.g(a)) which reduces in one step to the normal form a.

Note that the example is not a counter-example to the implication WN⇒
AC, since the sub-term g(e(x)) of t does not have a normal form.

Theorem 2.12 A weakly normalising fully applied orthogonal PRS is acyclic.

Proof We generalise the Head Normalisation Theorem and the Sub-Cycle
Lemma. For the former, we make an appeal to [12, Theorem 1], expressing
normalisation of outermost-fair strategies for to fully applied orthogonal PRSs.
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For the latter this is trivial. In fact, cyclic reductions are closed under sub-
reductions for arbitrary PRSs. 2

Example 2.13 Since the λβ-calculus (without the η-rule) is fully applied
and orthogonal, we conclude that if it were normalising, then it would be
acyclic. This implication is trivial since the λβ-calculus obviously is not weakly
normalising. Still, the proof is readily seen to go through for any sub-calculus
of a fully applied orthogonal PRS which is closed under reduction. In fact,
the λβ-calculus itself is only a sub-calculus of its PRS encoding, as the latter
allows too many terms. However, the examples of sub-calculi important to us
are typed λβ-calculi. Weakly normalising such are AC by the theorem.

To generalise Theorem 2.12 to non-fully-applied PRSs, note that the prob-
lem in Example 2.11 is that the reduction step erasing the variable is intuitively
needed to create the head redex-pattern, but it is not needed in the technical
sense, since the step does not ‘contribute’ to the redex-pattern via the ordin-
ary descendant relation. We construct the full-extension H̄ of a PRS H where
this problem is resolved, while preserving the good properties of H,

Definition 2.14 The full-extension H̄ of a PRS H is obtained by taking as
rules the rules of H, but supplying all ‘missing’ bound variables to the meta-
variables in the left-hand side of each rule, and supplying arbitrary closed
terms in the right-hand sides. Then a redex-pattern for rule l̄→ r̄ is defined
to be an instance of l̄ which can be reduced to an instance of l by means of
H-steps in its arguments. 4 All redex-pattern-defined notions for a PRS H
are generalised to its full-extension H̄ via this notion of redex-pattern.

Clearly, every H redex-pattern, say for rule l→ r is a H̄ redex-pattern for
the corresponding fully-extended rule l̄→ r̄, and applying either then yields
the same result since the closed terms supplied in the right-hand side r̄ of
the latter will be erased. In general, the H-steps in arguments of an l̄-redex-
pattern serve to erase variables restricted by variable conditions in H.

Example 2.15 Fully-extending the λβη-calculus does not change the β-rule.
However, the η-rule changes into (the PRS representation of):

η̄:λx.Mx→M [x:=a]

for an arbitrary closed term a. Note the absence of the usual side-condition
on M . For instance, the term λx.KIxx then is a redex-pattern for the η̄-rule,
since β-reducing its argument KIx to I yields the instance λx.Ix of the η-
rule. However, λx.xIKx is not such a redex-pattern, since its argument xIK
cannot be λβη-reduced to a term not containing x (it is in normal form).

Lemma 2.16 Let H̄ be the full-extension of the PRS H. Then

• →H ⊆ →H̄,

4 This makes redex-patternhood undecidable. That does not matter here.
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• the sets of (head) normal forms of H and H̄ coincide,

• H̄ is orthogonal if and only if H is.

• residuals of H̄-redex-patterns are H̄-redex-patterns again.

• H̄-reductions are closed under standardisation.

Proof See [6]. 2

Theorem 2.17 Weakly normalising orthogonal PRSs are acyclic.

Proof [Sketch] It suffices to generalise the Head Normalisation Theorem. So
consider a reduction σ in H which eventually always performs a head step.
By Lemma 2.16, σ is a reduction in H̄ as well, having the same property.
We claim that again [12, Theorem 1] can be applied, yielding that σ is a
normalising H̄-reduction. Therefore, by Lemma 2.16 again, the reduction will
find a H-head normal form as well.

To prove the claim it suffices that the proof of [12, Theorem 1] generalises
from fully applied orthogonal PRSs to H̄. Apart from orthogonality, its proof
requires the following properties, all of which are implied by Lemma 2.16: 5

• residuals of redex-patterns are redex-patterns again,

• head normal forms are closed under reduction,

• reductions are closed under standardisation, and

• head normal forms are closed under expansions below the head.

2

Example 2.18 The λη-calculus (without β) is an orthogonal PRS, hence we
may conclude its acyclicity from its weak normalisation.

3 Acyclicity for the pair-wise combinations

We consider the three pair-wise combinations of the three generalisations in
the previous section of the implication WN ⇒ AC. Two of them are easy.

Theorem 3.1 For weakly orthogonal fully applied PRSs, WN ⇒ AC.

Proof As for Theorem 2.8: [12, Theorem 1] applies to fully applied PRSs.2

Remark 3.2 We don’t know whether fully-applied-ness can be dropped here.

Theorem 3.3 For orthogonal PRSs, WHN ⇒ AC.

Proof As for Theorem 2.17: its proof established that the set of H̄-head
normal forms is a set of results, as required for head normalisation [12, The-
orem 2], instead of just normalisation [12, Theorem 1]. 2

Example 3.4 WHN sub-calculi of the λβ-calculus are AC.

5 The last two properties fail for H.
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The third combination seems to evade standard theory.

Theorem 3.5 For weakly orthogonal TRSs, WHN ⇒ AC.

Proof See [6] and the next section. 2

4 Acyclicity by projection of cycles

We present an alternative proof of Theorem 2.6 based on the projection of
cycles. Apart from that we think the concepts involved are interesting in their
own right, the reason for presenting this alternative proof technique here is
that it is at the basis of our proof of Theorem 3.5, as presented in [6], a theorem
which resisted all other methods. As before we present the proof method in
an abstract fashion, relying instead of on the Head Normalisation Theorem,
on the Head, the Non-Head, and the Extension Lemma, respectively.

4.1 Head

We prove the Head Lemma, showing that head steps project in a particularly
simple way. Here we say that an ARS has projection if it has the diamond
property [14, Definition 1.1.8(v)], and if moreover that fact is witnessed by a
projection function (see Figure 2).

ψ/φ

ψ

φ/ψφ

Figure 2. Diamond property and projection

Definition 4.1 An ARS → is said to have projection if there is a function /
from pairs of co-initial steps φ, ψ to steps such that:

• the target of ψ is the source of φ/ψ, and

• the targets of φ/ψ and ψ/φ coincide.

φ/ψ is the residual of φ after ψ, which is obtained by projecting ψ over φ.

Any ARS having the diamond property can be turned into an ARS having
projection by choosing for every pair of co-initial steps a particular ‘diamond
completing it’. It is a basic fact [14, Chapter 4] that for an orthogonal TRS
R multi-steps ◦−→R and parallel steps q−→R [14, Figure 8.8], allowing the
simultaneous contraction of an arbitrary number of redex-patterns (at disjoint
positions), have the diamond property. In fact, a projection function / working
both for ◦−→R and for q−→R was presented in [14, Definition 8.7.4].

Lemma 4.2 Residuals of parallel steps after multi-steps are parallel steps.
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Proof Using that q−→R has projection, it suffices to note that any multi-step
can be developed into a series of parallel steps. 2

A multi-step (parallel step) is empty, if it contracts an empty set of redexes.

Lemma 4.3 (Head) Let ψ be a head step co-initial to a multi-step φ in an
orthogonal TRS. Then its residual ψ/φ is either empty or a head step again.

Proof Trivial. 2

4.2 Non-Head

We prove the Non-Head Lemma, showing that if a head parallel cycle leaves
no (an empty) residual after a multi-step, then the multi-step cannot have
itself as residual after the head parallel cycle. Here a head parallel cycle is a
cycle of q−→-steps the first of which is a head step. We first lift projection
from steps to reductions and cycles by means of tiling (see Figure 3).

σ

ψ/φψ

φ

φ/ψ

σ/τ

τ

Figure 3. Projection of infinite reduction σ over finite reduction τ by tiling

Definition 4.4 Let → be an ARS having projection /. Then the projection
of a finite or infinite reduction over a finite one is defined by (cf. [5]):

σ/∅ = σ ∅/ψ = ∅

σ/(ψ · τ) = (σ/ψ)/τ (φ · σ)/ψ = (φ/ψ) · (σ/(ψ/φ))

Thus, ։ has projection if → has, corresponding to the well-known fact
that → is confluent (։ has the diamond property) if → has the diamond
property. Note that the residual of σ always has the same length as σ. To
prove the Non-Head-Lemma, it suffices to define a measure on multi-steps
which decreases along the projection of the latter over head parallel cycles.

Definition 4.5 The measure µ(φ) of a multi-step φ is the maximal length of
an outermost development of φ, where the outermost development of φ is:

• If φ is the empty multi-step, the result is the empty reduction.
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• Otherwise, the result is the contraction of an outermost redex φom followed
by an outermost development of the multi-step φ/φom.

By the Finite Developments Theorem [14, Thm. 4.5.4] µ is well-defined. In
fact, all outermost developments of a multi-step have the same length, which
follows e.g. by observing that they are self-delimiting in the sense of [13].

Example 4.6 Consider in the TRS with rules a→b and f(x, y)→g(x, x), the
maximal multi-step t∗:f(f(a, a), f(a, a)) ◦−→ g(g(b, b), g(b, b)) from the term
t = f(f(a, a), f(a, a)). An outermost development of t∗ is:

f(f(a, a), f(a, a))→ g(f(a, a), f(a, a))→ g(g(a, a), f(a, a))→

g(g(b, a), f(a, a))→ g(g(b, b), f(a, a))→ g(g(b, b), g(a, a))→

g(g(b, b), g(b, a))→ g(g(b, b), g(b, b))

Hence µ(φ) = 7. (Note that there is an ordinary development of length 13).

If ψ/φ is empty, then we say that ψ eliminates or absorbs φ.

Proposition 4.7 Let φ be a multi-step eliminating a co-initial parallel step ψ.
Then µ(φ) ≥ µ(φ/ψ) and if ψ moreover is a head step, then µ(φ) > µ(φ/ψ).

Proof One shows that for any multi-step φ with ψ/φ empty and any outer-
most development of φ/ψ, one may construct an outermost development of φ,
of at least the same length, by induction on µ(φ). 2

Remark 4.8 To see that Proposition 4.7 fails if we were to take the maximal
length of an ordinary development as measure of a multi-step, consider the
multi-step φ:e(d(a)) ◦−→ c and the co-initial step ψ:e(d(a)) ◦−→ e(f(a, a)) in
the orthogonal TRS with rules a→ b, e(x)→ c, and d(x)→ f(x, x).

Lemma 4.9 (Non-Head) If in an orthogonal TRS, a head parallel cycle σ
is co-initial to a multi-step φ with φ/σ = φ, then φ does not eliminate σ, that
is, the cycle σ/φ does not consist solely of empty steps.

Proof Suppose (the successive residuals of) φ would eliminate all parallel
steps of σ. Then, by repeated application of Proposition 4.7, µ(φ) > µ(φ/σ) =
µ(φ), since the first step of σ was assumed to be a head step. 2

4.3 Extension

Recall that the goal was to give a proof of WHN⇒ AC, based on the projection
of cycles. However, the following example shows that the projection of a cyclic
reduction over a multi-step needs not yield a cyclic reduction again.

Example 4.10 The step σ:f(a, a, a) → f(a, a, a) is a cycle in the TRS with
rules a→ b and f(x, y, z)→ f(y, x, a). However, the residual of σ after the
parallel step φ:f(a, a, a) q−→ f(b, a, b) is f(b, a, b)→ f(a, b, a) which obviously
is not a cycle (see Figure 4 left).
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φ̄

σ σ

cyclicacyclic

f(a, a, a) f(a, a, a)

f(a, b, a)f(b, a, b)

f(a, a, a) f(a, a, a)

f(b, b, a)f(b, b, a)

φ φ̄

Figure 4. Residuals of the cycle σ along the step φ and its extension φ̄, respectively.

Yet, there always is an extension of the multi-step which preserves cyclicity.

Definition 4.11 Let φ, ψ be co-initial steps in some ARS. If there is a reduc-
tion from the target of φ to the target of ψ, then ψ extends φ. An extension
(function) maps each step to some extension of it.

Intuitively, one may think of extending as one reduction overtaking the
other. Obviously, it is reflexive and transitive, i.e. a quasi-order.

Example 4.12 The parallel step φ̄:f(a, a, a) q−→ f(b, b, a) extends the paral-
lel step φ of Example 4.10, since the target f(b, a, b) of φ reduces to the target
f(b, b, a) of φ̄ as one easily checks. Note that the residual of the cycle σ after
φ̄ is f(b, b, a)→ f(b, b, a) which is a cycle (see Figure 4 right).

Guided by the example, we first show that for a given cycle σ and co-
initial multi-step φ, there is an extension φ0 of φ such that some repetition of
σ projects onto a cycle, when projected over φ0. Next, we show that all the
residuals of φ0 along this repetition can be compressed into an extension φ̄ of
φ0, such that σ itself projects onto a cycle when projected over φ̄.

Consider repeatedly projecting the step φ in Example 4.10 over the cycle
σ (see Figure 5). First, projecting φ over σ yields φ0:f(a, a, a) q−→ f(a, b, a).

σ
f(a, a, a) f(a, a, a)

f(b, a, b) f(b, a, a)

f(a, a, a)

f(a, b, a)

f(a, a, a)

f(a, b, a)

φ φ0 φ1 φ0

σ σ σ

Figure 5. Repetition in computing residuals of φ after the cycle σ.

Next, projecting φ0 over σ yields φ1:f(a, a, a) q−→ f(b, a, a). Finally, pro-
jecting φ1 over σ yields φ0 again. That is, the series of residuals eventually
becomes repetitive. This situation is completely general.

Lemma 4.13 (Repetition) Let φ be a multi-step co-initial to a reduction
cycle σ in an orthogonal PRS. Then there exists an extension φ0 of φ, and a
positive natural number n, such that φ0/σ

n = φ0.

Proof Consider the infinite sequence of residuals φ/σi of φ after the i-fold
repetition of σ, for arbitrary i. Since redex-patterns in a term in an ortho-
gonal PRS do not have overlap, ◦−→ is finitely branching. Therefore, by the
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Pigeon Hole Principle, the sequence of residuals must be eventually repetitive.
Moreover, the target of φ reduces to the target of any residual in the sequence,
since the target of φ/σi reduces to the target of φ/σi+1 via reduction σ/(φ/σi).
Taking the first residual on the repetition yields the desired extension of φ.2

The extension of φ constructed in the proof of the lemma will be called
the repetitive extension of φ and denoted by φ0. It is easy to see that in
general it may take an arbitrary number of cycles before repetition sets in,
and that the repetition itself may also take an arbitrary number of cycles.
For instance, taking the residual of the parallel step f(a, a, a, a, a, a) q−→
f(b, a, a, b, a, a) for the rule a → b, after the single-step cycle with respect
to the rule f(x1, x2, x3, z1, z2, z3)→ f(x2, x3, x1, a, z1, z2) takes 3 cycles to be-
come repetitive with a repetition of length 3.

Remark 4.14 The situation is similar to what happens in arithmetic when
dividing two natural numbers: the resulting decimal expansion eventually
becomes repetitive, after an initial part of arbitrary length. Figure 6 illustrates
this for dividing 45 by 33, which results, after an initial digit 1, into a repetition
of 36. The reason for the decimal expansion being repetitive is indeed the same

repetition of remainder

33 54
33
120
99
210

1.36

198
12...

...

Figure 6. Repetition in computing decimal expansion when dividing by 33

as for residuals: since there are only finitely many distinct numbers modulo
33, the Pigeon Hole Principle yields that eventually a remainder, i.e. residual,
reoccurs (in the example 12 reoccurs). Since the algorithm is deterministic,
the decimal expansion is repetitive from there on.

Remark 4.15 The repetitive extension is monotonic in the sense that if σ is
a cycle co-initial to both φ, ψ such that φ ⊆ ψ, i.e. the redexes contracted by
φ are a subset of those contracted by ψ, then ψ0 extends φ0.

Note that for such multi-steps φ and ψ, the length of either their repetitions
may exceed that of the other. For instance, let φ contract the first a in
f(a, a, a, a, a), and let ψ be the parallel step contracting the third a as well,
in a TRS with rules a→ b and f(x1, x2, y1, y2, y3)→ f(x2, x1, y2, y3, y1). For
the single step cycle σ with respect to the latter rule, we have φ0 = φ and
ψ0 = ψ, with respective repetition lengths 2 and 6. However, if we take for ψ
the parallel step contracting the first two as, its repetition has length 1.

As a consequence of the Repetition Lemma, projecting some repetition σn

of σs over the repetitive extension φ0 of some multi-step φ, is a cycle again.
But the goal was to find a multi-step φ̄ extending φ such that projecting σ

12
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itself over φ̄ yields a cycle. To that end we compress all residuals of the
multi-step φ0 occurring along the repetition of σ, into a single multi-step.

To see how compression works, reconsider Figure 5, showing a repetition
of length two. For the residuals φ0 and φ1 on the repetition it holds:

φ0/σ = φ1 φ1/σ = φ0

Combining these two equalities yields, by distributivity of projection over
union [14, Exercise 8.7.40(iv)] and commutativity of union:

(φ0 ∪ φ1)/σ = (φ0/σ) ∪ (φ1/σ) = φ1 ∪ φ0 = φ0 ∪ φ1

In other words, the union of the multi-steps on the repetition is its own residual
after the cycle σ. Since the union φ̄ =

⋃
0≤i≤1

φi contains φ0, it extends φ0,
which in turn extends φ by the Repetition Lemma, from which we conclude
preservation of cyclicity. This situation is completely general.

Lemma 4.16 (Compression) Let φ/σn = φ, for some step φ co-initial to a
cycle σ and positive natural number n, and let φ̄ be its (n-fold) compression
defined as

⋃
0≤i<n φ0/σ

i. Then φ̄/σ = φ̄ and φ̄ extends φ.

Proof Using distributivity, we compute

φ̄/σ = (
⋃

0≤i<n

φi)/σ =
⋃

0≤i<n

(φi/σ) =
⋃

0≤i<n

φi+1mod n =
⋃

0≤i<n

φi = φ̄

That φ̄ extends φ follows from φ̄ =
⋃

0≤i<n φ/σ
i ⊇ φ/σ0 = φ. 2

Remark 4.17 Although residuals of parallel steps are parallel steps again,
their compression may yield a multi-step which is not parallel, as witnessed
by the following example. Consider the term t = f(c(c(c(a))), c(c(c(a)))) in
the orthogonal TRS with rules a→ c(a), c(x)→ x, and f(x, y)→ f(y, c(x)),
The term t allows the cyclic reduction σ:

f(c1(c2(c3(a))), c4(c5(c6(a))))→ f(c1(c2(a)), c4(c5(c6(a))))→

f(c1(c2(a)), c5(c6(a)))→ f(c1(c2(a)), c5(c6(c(a))))→

f(c5(c6(c(a))), c(c1(c2(a))))

where we have numbered the occurrences of c in t to ease tracing each along
σ. It is easy to see that the parallel step φ0 contracting the set {c2, c5} of c-
redexes projects onto the parallel step φ1 contracting the set {c6, c1}, over one
σ-cycle, which projects onto the original φ0 after another σ-cycle. However,
their compression φ̄ = φ0 ∪ φ1 is the multi-step contracting {c1, c2, c5, c6},
hence is not parallel as c1 nests c2 (and c5 nests c6).

Remark 4.18 Continuing Remark 4.14, we note that also compression can
be applied to repeating decimals. To see this, consider computing the decimal
expansion of 6

7
. Clearly, for each pair r, r′ of consecutive remainders it holds:

r · 10 = r′ mod 7

Now consider the ‘compression’ r̄ = Π0≤i<nri of all the remainders along the

13
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repetition. Since multiplication distributes over taking the remainder modulo
7, combining the equations for all consecutive pairs of residuals yields:

r̄ · 10n = r̄mod 7

From this we may conclude, without actually computing r̄, that either r̄ = 0
or 10n = 1 mod 7, hence that the repetition is either 0 or has length 6. In
case of 6

7
the latter possibility holds: It computes to 0.857142 with remainders

r0 = 4, r1 = 5, r2 = 1, r3 = 3, r4 = 2, and r5 = 6. Hence n = 6.

Lemma 4.19 (Extension) Let φ be a multi-step co-initial to a cycle σ. Then
there exists an extension φ̄ of φ such that φ̄/σ = φ̄, hence σ/φ̄ is a cycle again.

Proof By the Repetition Lemma, there exist an extension φ0 of φ and a
positive natural number n, such that φ0/σ

n = φ0. Defining φ̄ of φ as the
n-fold compression of φ as in the Compression Lemma, we obtain by it that
φ̄ extends φ0 for which it holds φ̄/σ = φ̄. Therefore, the other projection σ/φ̄
both starts and ends at the target of φ̄, so is a cycle. Since φ̄ extends φ0 which
extends φ, the result follows by transitivity. 2

The extension φ̄ of φ used in the lemma is be called the cyclic extension of
φ. The cyclic extension of φ of Example 4.10 is shown on the right in Figure 4.

Remark 4.20 Also the cyclic extension is monotonic. In fact, for a ‘maximal’
multi-step t∗ from a term t, its repetitive and cyclic extensions coincide t∗0 = t̄∗.

Remark 4.21 Both the Repetition Lemma and the Compression Lemma can
be entirely cast into the theory of finitely branching abstract residual sys-
tems [14, Sec. 8.7] for which union distributes over residuation. For instance,
both lemmas hold for ‘parallel moves’ in the λβ-calculus.

4.4 Alternative proof of WHN ⇒ AC

Using the above results, an alternative proof of Theorem 2.6, i.e. of the fact
that weakly head normalising orthogonal TRSs are acyclic, can be given.

For a proof by contradiction, assume there would exist a non-empty parallel
cycle. Select among the parallel cycles of minimal length a head parallel cycle
consisting of a head step ψ followed by a (possible empty) sequence τ of parallel
steps. For any multi-step φ co-initial to ψ, the Extension Lemma yields an
extension φ̄ of φ such that φ̄ = (ψ · τ) and (ψ · τ)/φ̄ is a parallel cycle again.
We claim that it is in fact a head parallel cycle of the same length as ψ · τ . By
repeated use of the claim we then reach the desired contradiction, since then
also the target s of a reduction from t to head normal form, which exists by
assumption, could be reduced further to a head redex, as shown in Figure 7.

To prove the claim note that by φ̄ = (ψ · τ) and the Non-Head Lemma,
(ψ · τ)/φ̄ is a non-empty parallel cycle. By the minimality assumption the
cycle has the same length as ψ · τ . In particular, the residual of ψ which is the
first step on the cycle is non-empty, hence a head step by the Head Lemma.
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Figure 7. Projecting head parallel cycles inductively along extension

5 Acyclicity for λ-calculi

We consider acyclicity for various λ-calculi (with explicit substitutions).

Theorem 5.1 For sub-calculi of the λβ-calculus, W(H)N ⇒ AC.

Proof These are just Examples 2.13 and 3.4. 2

Theorem 5.2 For sub-calculi of the λβη-calculus, WN ⇒ AC.

Proof It suffices to prove the Head Normalisation Theorem, i.e. that head
strategies are hyper-normalising for λβη-calculus. To that end, let t be a
term which has a normal form. By η-postponement [3], we may assume the
reduction σ to normal form is of shape σβ · ση, for some β-reduction σβ :t ։ s
and η-reduction ση:s ։ u. W.l.o.g. we may assume that s is in β-normal form.

We show that projecting such a reduction over a hyper-head reduction τ
eventually results in an empty reduction. Thereto, we measure σ by first the
number of η-redexes contracted in ση and second the µ-measure [12] of σβ. We
distinguish cases on whether the (first) step φ:t→ t′ of τ projected over (use
the weakly orthogonal projection of [12,14]) has a residual after σβ or not.

In case it does, φ must be an η-step since σβ was assumed to end in β-
normal form, and φ must be eliminated by ση since the latter was assumed to
end in η-normal form. Thus the residual of ση contracts one η-redex less.

In case it does not, φ must have been eliminated by σβ . But then the
µ-measure of the projection of σβ has been decreased (in case of overlap) or
is unchanged (in case all residuals of φ have been erased).

Noting that a head step can not be erased we conclude. 2

Remark 5.3 We do not know whether the assumption of the theorem can
be weakened from WN to WHN. One problem is that the leftmost outermost
strategy need not be head normalising, as witnessed by the term t = λx.z(ss)x
with s = λy.Kyxy. The leftmost outermost strategy reduces this term to
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itself, whereas the head normal form zΩ can be reached by first contracting
the K-redexes.

Next, we turn our attention to the two λβ-calculi with explicit substitu-
tions λx− and λσ. The proof of acyclicity is by reduction to acyclicity of the
associated weakly head normalising λβ-calculus.

(λx.M)N →Beta M [x:=N ]

(M1M2)[x:=N ] →@ M1[x:=N ]M2[x:=N ]

(λx.M)[y:=N ] →λ λx.M [y:=N ]

x[x := N ] →= N

y[x := N ] → 6= y

First, we consider the λx−-calculus [4], which is the λβ-calculus extended with
an explicit substitution operator [ := ] with rules as displayed, for x 6= y.

Theorem 5.4 If λx− is weakly head normalising, then it is acyclic.

Proof It suffices to adapt the Head Normalisation Theorem, proving that
head reductions are hyper head normalising in λx−. For a proof by contradic-
tion, assume that t allows both for a reduction σ containing infinitely many
head steps as well as a reduction τ to head normal form s. We claim that
we may assume that σ contains infinitely many Beta-steps which project onto
head-β-steps. The result follows, since then in the λβ-calculus, the projection
σ↓

x
is a reduction containing infinitely many head-β-steps, and the projection

τ↓
x

is a reduction to the head normal form s, since λx−-head normal forms
are λβ-normal forms. This is impossible by (the proof of) Theorem 3.3.

We prove the claim in four proof steps.

First, since λx− is a left-linear second-order PRS the standardisation the-
orem holds for it [12]. That is, any reduction can be transformed into a
reduction which is standard in the sense that a redex-pattern contracted in
any of its steps overlaps the redex-pattern of the first step (if any) after and
outside or to the left of it. Since λx− is left-normal, the standard reduction
can be obtained by repeatedly permuting so-called anti-standard pairs, i.e.
two consecutive steps such that the redex-pattern contracted by the latter is
entirely above, or to the left of the former [9]. Hence, standardising σ yields a
standard reduction still containing infinitely many head steps. Therefore, we
may assume without loss of generality that σ is standard.

Second, all Beta-steps of σ must be on the spine. This holds true, since by
standard-ness the position of a contracted redex-pattern φ must overlap the
redex-pattern of the first redex-pattern ψ contracted outside it in σ. Such a
step ψ always exists since σ contains infinitely many head steps. From the
form of the left-hand sides of the λx−-rules, we have that if ψ is on the spine,
then φ must be so as well. Since head steps are on the spine, all are.

Third, there must always eventually be a Beta-step in σ. This holds by
SN of the explicit substitution rules of λx−, and infiniteness of σ.
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Finally, assuming a Beta-step φ on the spine in σ, consider a non-substitu-
tion symbol above it (not necessarily properly so), hence on the spine, which
is closest to the head. Note that by the form of the rewrite rules the symbol
has a unique residual, until contracted as part of a Beta-redex, which is then
closest to the head and on the spine again. Moreover, after a head step the
residual is closer to the head. Hence, eventually it must be contracted. 2

As for ordinary λ-calculi, this result in itself is not interesting as the λx−-
calculus is not weakly head normalising; it is interesting only for sub-calculi.
Let X be a sub-calculus of λx− in the sense that it is closed under reductions
and taking sub-terms. In order to be able to reduce acyclicity of X to that of
a λβ-calculus, we define the sub-ARS of the λβ-calculus induced by X as →β

restricted to terms in X , and verify that W(H)N is preserved.

Proposition 5.5 For the sub-ARS of →β induced by X it holds:

• it is a sub-calculus of →β, and

• it is weakly (head) normalising, if →λx− is so on X .

Hence, Theorem 5.4 extends to sub-calculi of λx−.

Proof

• Note that any β-step on λ-terms may be simulated by a number of λx−-
steps [8, Lem. 5(3)]. Thus, closure under taking sub-terms and under β-
reduction, follow from the corresponding properties of X .

• Let t be a λ-term. By assumption, it can be reduced to some (head) normal
t′. Define s = t′↓

x
, that is, s is the substitution normal form [8, Lem. 5(1)]

of t′. By [8, Lem. 5(1,2)], s is a λ-term which is reachable by β-steps from t.
Refining the observation of the first item to: a (head) β-step from a λ-term
gives rise to a (head) Beta-step from it, we conclude that t is β-reducible to
a (head) normal form, since s being a λx−-reduct of a (head) normal form,
s itself is one too.

2

Finally, we consider the calculus of explicit substitutions λσ [1].

Theorem 5.6 Weakly (head) normalising sub-calculi of λσ are acyclic.

Proof This follows from [11, Thm. 3].

Here we present a direct proof that head strategies are hyper head norm-
alising for λσ, by adapting the earlier proof for λx− above, only indicating the
essential properties used in its four proof steps.

First, standardisation holds for λσ as it is a left-linear left-normal TRS
(see Figure 8), so we may assume reductions containing infinitely many head
steps to be standard.

Second, all the Beta-steps must be on the spine. This follows by proving the
stronger property that all sub-terms above a Beta-redex-pattern (in particular
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Figure 8. Left-hand sides of λσ-rules, with Substitutions dashed/in blue

the term itself), must in fact have type Expression, which holds by standard-
ness since a Beta-redex has type Expression, terms of type Expression only
overlap terms having that type again, and if a sub-term on the spine is over-
lapped by a sub-term of type Expression, then the latter is on the spine again
(see Figure 8).

Third, the explicit substitution calculus σ of λσ is strongly normalising.

Checking the fourth step proceeds as for λx−, verifying that an outermost
application symbol on the spine is preserved by all steps until contracted by
a Beta-redex, and we conclude. 2

One way of construing these results is as an explanation for the fact that the
counter-examples to preservation of strong normalisation for typed λ-calculi
with explicit substitution, as found in the literature starting from the seminal
paper [10], display acyclic behaviour and hence unbounded growth; it couldn’t
have been otherwise! More precisely, we have:

Corollary 5.7 Typed λσ is acyclic.

Proof Let t be a typed λσ-term and consider its family [3], i.e. the set all
terms reachable from it w.r.t. the union of the reduction and the sub-term
relations, 6 which is a sub-calculus. Any term s in this sub-calculus is seen to
be weakly head normalising as follows.

First reduce s to substitution normal form. This yields a term consisting of
a (possibly empty) context of sub-terms of type Substitution having arguments
of type Expression which are (translations of) typed λβ-terms. Since typed
λβ-calculus is SN, these arguments can be reduced to normal form in the λσ-
calculus, by simulating the reduction to normal form in the λβ-calculus. This
yields a term in λσ-normal form.

Therefore, by the previous theorem, t is acyclic. 2

It is not immediately clear how to generalise this to the untyped case. In
particular, starting from some untyped λβ-term t which is strongly normal-

6 Since ‘sub-term steps’ can be postponed, the same notion is obtained by considering only
sub-terms of reachable terms.
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ising, is its associated λσ-term acyclic? The point is that it is not clear why
its family should be weakly head normalising: following the procedure in the
proof, the arguments in substitution normal form might be λβ-terms which
are not in the λβ-family of t!

Vice versa, the λ-calculi with explicit substitutions can be construed as
counter-examples of sorts to the Barendregt–Geuvers–Klop Conjecture 1.1. As
their failure to be strongly normalising, in the typed case, can be attributed to
their ability to express and manipulate ‘composition of substitution’, it would
be interesting to formulate this ability abstractly and prove that ordinary
typed λβ-calculi are lacking it.

6 Conclusions

We have generalised our earlier result, WN ⇒ AC for orthogonal TRSs, into
several directions. The generalisations to rewriting systems which still have
a nice theory of permutation, were relatively straightforward, consisting in
generalising the Head Normalisation Theorem to these cases. In contrast,
the generalisations to rewriting systems which do not have a nice theory of
permutation, in particular to weakly orthogonal and to non-fully-extended re-
writing systems, and to the λ-calculi with explicit substitutions λx− and λσ,
required substantial effort. The reason is that generalising the Head Norm-
alisation Theorem is not straightforward for λ-calculi with explicit substitu-
tions, and even fails for weakly orthogonal and non-fully extended rewriting
systems. To overcome these problems, we have introduced several new notions
and techniques, the main ones of which were:

• the full-extension of a non-fully-extended PRS,

• a theory of projections of cycles, and

• reduction of AC from λ-calculi with, to calculi without explicit substitution.

This paper is but a small step towards a theory of cyclic reductions. The
latter and, more generally, the theory of non-terminating reductions remain
largely unexplored. Apart from the Barendregt–Geuvers–Klop Conjecture 1.1,
we have left several concrete problems open, which we leave as conjectures:

• WHN ⇒ AC, for weakly orthogonal PRSs.

• Head strategies are hyper-head-normalising for the λβη-calculus.

• The image in an explicit substitution calculus λ? of the λβ-family of a λβ-
term, is the same as the restriction of its λ?-family to images of λβ-terms.
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[5] Huet, G. and J.-J. Lévy, Computations in orthogonal rewriting systems, Part
I + II, in: J. Lassez and G. Plotkin, editors, Computational Logic – Essays in
Honor of Alan Robinson (1991), pp. 395–443.

[6] Ketema, J., J. Klop and V. v. Oostrom, Vicious circles in rewriting systems,
Report SEN-E0427, CWI (2004), Available on internet.

[7] Ketema, J., J. Klop and V. v. Oostrom, Vicious circles in orthogonal term
rewriting systems, in: S. Antoy and Y. Toyama, editors, Proceedings of the
workshop on reduction strategies, WRS 2004, Electronic Notes in Theoretical
Computer Science (200x), to appear.

[8] Khasidashvili, Z., M. Ogawa and V. van Oostrom, Uniform normalisation
beyond orthogonality, in: A. Middeldorp, editor, Proceedings of the Twelfth
International Conference on Rewriting Techniques and Applications (RTA ’01),
Lecture Notes in Computer Science (2001), pp. 122–136.

[9] Klop, J., “Combinatory Reduction Systems,” Mathematical Centre Tracts 127,
Mathematisch Centrum, Amsterdam, 1980.

[10] Melliès, P.-A., Typed lambda-calculi with explicit substitutions may not
terminate, in: M. Dezani-Ciancaglini and G. Plotkin, editors, Proceedings of
the Second International Conference on Typed Lambda Calculi and Applications
(TLCA ’95), Lecture Notes in Computer Science 902 (1995), pp. 328–334.

[11] Melliès, P.-A., Axiomatic rewriting theory II, the λσ-calculus enjoys finite
normalisation cones, Journal of Logic and Computation 10 (2000), pp. 461–
487.

[12] Oostrom, V. v., Normalisation in weakly orthogonal rewriting, in: P. Narendran
and M. Rusinowitch, editors, Proceedings of the Tenth International Conference
on Rewriting Techniques and Applications (RTA ’99), Lecture Notes in
Computer Science 1631 (1999), pp. 60–74.

[13] Oostrom, V. v., Delimiting diagrams, CKI Preprint 53, University of Utrecht
(2004), Available on internet.

[14] Terese, “Term Rewriting Systems,” Cambridge Tracts in Theoretical Computer
Science 55, Cambridge University Press, 2003.

20


	Introduction
	Acyclicity for separate generalisations
	Acyclicity for the pair-wise combinations
	Acyclicity by projection of cycles
	Head
	Non-Head
	Extension
	Alternative proof of WHN  AC

	Acyclicity for -calculi
	Conclusions
	References

