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We show that a proof term in a string rewrite system can be mapped to its causal graph and that the
latter is a unique representative of the permutation equivalence class of the former. We then map the
causal graph back to a proof term of a special shape, a so-called greedy multistep reduction. Com-
posing both transformations yields a simple and effective way of constructing the greedy multistep
reduction of a proof term, and thereby of deciding permutation equivalence of proof terms in general,
and of (multistep) reductions in particular.

1 Introduction

In general, we are interested in all aspects of computations as modelled by rewrite systems. Here, we are
interested in finite computations ‘doing the same work up to the order of the tasks performed’. This can be
analysed from the perspective of causality [21, 8] with the idea that it is exactly the causally independent
tasks that can be reordered. In term rewriting the ensuing notion of equivalence of computations is known
as permutation equivalence and is well-studied [12, 10, 15, 13, 2, 6]. Our vantage point here is [22,
Section 8.1.3] Causal equivalence. The goal of this short note then is to exhibit the close ties between the
theory of permutation equivalence and developments in neighboring areas in [24, 25] (physics) and [4]
(algebra). Concretely, this note was provoked by a remark in 2020 by Jan Willem Klop that Wolfram’s
causal graphs should characterise permutation equivalence. Being aware of that already, my short reply
was to refer him to [22]. That was too cryptic. This is the long reply (whose essence is in Figures 1, 2).

The characterisation presented here is for string rewriting and hinges on two ideas. The first is to
represent computations in rewrite systems as terms themselves, so-called proof terms [15, 22]. Con-
sequently, computations may be given meaning in an algebraic way, namely via so-called proof term
algebras for their representing proof terms. Each such proof term algebra induces a notion of equiva-
lence of computations, namely, computations having the same interpretation are deemed equivalent. The
subsequent idea is to employ a proof term algebra exactly capturing permutation equivalence. We show
that Wolfram’s causal graphs serve that purpose, and arise from a proof term algebra whose objects we
call tragrs (pronounce as trackers), short for trace graphs, which are a variation on the internal trace
relation of [22, Definition 8.6.17]. Finally, we show that topological (multi)sorting allows to map any
tragr back to the unique computation that is both permutation equivalent to the original one and greedy
in the sense of [4], i.e., in which tasks are performed as early as possible as allowed by causality.

Referring the reader to [15, 22] for formal background on proof terms, here we only give their idea
and illustrate their versatility by two examples from category theory and deep inference. The basic idea
is to extend the signature with symbols for rules. A term over such an extended signature is naturally
interpreted as a multistep whose source / target is obtained by (homomorphically) mapping each rule in
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2 Causal graphs as representatives for permutation equivalence

it to its left-hand side / right-hand side. Proof terms are obtained from this by further adding a symbol
· to represent composition (respecting sources and targets) in the mix. A proof term can thus be seen
as witnessing statements (of rewrite logic [15]) of shape s ⩾P t expressing that the (target) string t is
reachable from the (source) string s using rules from P.

Example 1. 1. Consider the term rewrite system (TRS) expressing associativity of the operation @:

α(x,y,z) : @(@(x,y),z) → @(x,@(y,z))

with α a (ternary) rule symbol. The TRS is terminating, so to show confluence it suffices by Huet’s
critical pair lemma to check its critical peaks are joinable. Here there’s only one such, with source
@(@(@(w,x),y),z). Its local confluence diagram may be rendered using proof terms, as:

@(α(w,x,y),z) ·α(w,@(x,y),z) ·@(w,α(x,y,z)) ⇒ α(@(w,x),y,z) ·α(w,x,@(y,z))

Both sides are proof terms: compositions (expressed by ·) of steps (expressed by terms over @ and
α). For example, α(w,@(x,y),z) denotes a step having source @(@(w,@(x,y)),z) and target
@(w,@(@(x,y),z)). The diagram captures exactly the pentagon diagram of monoidal categories.

2. Consider the TRS expressing inference rules medial m and contraction ac↓a, for each constant a:

m(w,x,y,z) : (w∧ x)∨ (y∧ z) → (w∨ y)∧ (x∨ z)
ac↓a : a∨a → a

Combining the idea of deduction as reduction of [9, Section 4.4] with representing reductions as
proof terms as above, allows to express the two SKS-deductions of [5, Example 2.15] exactly as:

(m(a∧b,c,a∧b,c))·(((a∧b)∨(a∧b))∧ac↓c)·(m(a,b,a,b)∧c)·((ac↓a∧(b∨b))∧c)·((a∧ac↓b)∧c)

m(a∧b,c,a∧b,c) · ((m(a,b,a,b) · (ac↓a ∧ac↓b))∧ac↓c

The latter being the canonical form [22, Definition 8.3.4] of the former captures exactly that the
latter’s synchronal SKS-deduction is obtained by synchronising the former’s sequential one [5,
Example 2.19].1 Both (d/r)eductions perform the same tasks so are permutation equivalent [22].

Since permutation equivalence was defined for term rewriting in [22] and we consider string rewrit-
ing, we extend the 2 standard embeddings [22, Section 3.4.4] of the latter in the former, to proof terms.

One is (what one could call) the oudenadic embedding, viewing letters in the string alphabet as
nullary symbols. In that embedding, strings are constructed from the letters by means of nullary (for
empty string), and binary (for append) constructs (giving the free monoid). The drawback of that is that
we must then work modulo the monoid identities for these to obtain unique representatives of strings.

The other is the monadic embedding, viewing the letters in the string alphabet as unary symbols.
This embedding does away with the drawback of the oudenadic embedding by absorbing the monoid
equations; strings are uniquely represented as terms. A drawback is that an asymmetric (top–down)
structure of terms is imposed on the symmetric (left–right) structure of strings.

We first relate both embeddings, by translations, introducing proof terms and permutation equiva-
lence for the oudenadic embedding such that these correspond to the extant notions of [22, Chapter 8].

1Technically, [5, Theorem 2.18] is an instance of [22, Exercise 8.3.6].
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2 Embedding string rewriting into term rewriting

We consider term rewrite systems in the sense of [22, Chapters 8 and 9] meaning that rules themselves
are symbols whose arity is the number of variables in (the left-hand side of) the rule, and rules come
equipped with source / target functions mapping them to their lhs / rhs. This enables expressing proofs
in rewrite logic as proof terms [15, 22], terms over a signature comprising the letters, the rules, and a
binary composition symbol · representing the transitivity inference rule of rewrite logic [15].

Definition 1. A term rewrite system is oudenadic if all rule and function symbols have arity 0, it has a
nullary symbol ε (empty string) and a(n implicit) binary symbol (juxtaposition), and terms are considered
modulo the monoid laws for the latter, i.e. εs = s, sε = s, and (st)u = s(tu).

A term rewrite system is monadic if all rule and function symbols have arity 1 and each rewrite rule
ρ(ε) : ℓ→ r is linear, meaning in this case that the source ℓ and target r have the same free variable, ε .

Identifying a string with an oudenadic term modulo the monoid laws, and a string rewrite system
with its oudenadic term rewrite system modulo the monoid laws, we let ♯ be the function mapping each
equivalence class of strings modulo the monoid laws to a monadic term,2 and mapping the string rewrite
system ⟨Σ,P⟩ to the monadic term rewrite system ⟨Σ♯,P♯⟩, where Σ♯ is Σ with all symbols being assigned
arity 1, and P♯ having a rule ρ♯ : ℓ♯→ r♯ for each rule ρ : ℓ→ r in P. We use ♭ to denote the inverse map
from monadic to oudenadic term rewriting.

We assume sources and targets of rules to be nonempty strings (see Remark 3). Our usage of the
notation ε commonly used to denote the empty string, to denote an arbitrary but fixed free variable is
justified by that the embedding maps the empty string to that free variable:

Example 2. Consider the string ABAAB in the string rewrite system ⟨Σ,P⟩ with alphabet Σ := {A,B} and
rules P := {α : BB→A,β : AAB→BAAB}. The corresponding monadic term is A(B(A(A(B(ε))))) and
the corresponding monadic term rewrite system has a signature embedding the letters {A,B} as unary
function symbols, and the rules as α(ε) : B(B(ε))→A(ε) and β (ε) : A(A(B(ε)))→B(A(A(B(ε)))).

In line with naming the functions ♭ / ♯ we refer to oudenadic / monadic rewrite systems as flat / sharp.
The functions ♭ and ♯ are inverse to each other. We extend this to proof terms [15, 22].

(empty) ε : ε ⩾♭ ε (left unit) s · γ ≡♭ γ

(letter) a : a⩾♭ a for each letter a (right unit) γ · t≡♭ γ

(rule) ρ : ℓ⩾♭ r for each rule ρ : ℓ→ r (associativity) (γ ·δ ) ·ζ ≡♭ γ · (δ ·ζ )
(juxtaposition) γ1γ2 :s1s2⩾♭ t1t2 if γi : si ⩾♭ ti (exchange) γδ ·ζ η ≡♭ (γ ·ζ )(δ ·η)

(transitivity) γ ·δ : s⩾♭ u if γ : s ⩾♭ t and δ : t ⩾♭ u

Table 1: Proof terms for string rewriting (left) and their permutation equivalence (right)

Definition 2. Proof terms for an oudenadic system are an inductively defined subset of the terms over
the signature of the system extended with the rules ρ in P as nullary symbols, and a binary composition
· (representing transitivity). They come equipped with source and target functions src and tgt mapping
them to strings. We use γ : s ⩾♭ t to denote that γ is a proof term having the strings s and t as source

2This itself can be achieved by term rewriting: orienting the monoid laws from left to right yields a complete (confluent and
terminating) term rewrite system, having as normal forms strings of shape either ε or a1 . . .an with juxtapositions associated to
the right; such a string is mapped to the monadic term ε respectively a1(. . .(an(ε) . . .).
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and target. The clauses inductively defining proof terms are given on the left in Table 1. Juxtaposition is
again taken modulo the monoid laws (this is compatible with sources and targets), and is assumed to bind
stronger than ·. Proof terms for a monadic system are defined analogously, see [22, Definition 8.2.18].

We employ γ,δ ,ζ ,η , . . . to range over proof terms of either system. To keep the respective reacha-
bility relations apart we use ⩾♭ for the former and ⩾♯ for the latter.
Example 3. For the string rewrite system of Example 2, the proof term γ := ABβ ·AαAAB ·AAβ ·βAAB ·
BβAAB ·αAABAAB ·AβAAB witnesses that ABAAB ⩾♭ ABAABAAB. An alternative, shorter, witness to
the same reachability statement is the proof term γ ′ := ABβ ·Aαβ ·βAAB ·BβAAB ·αβAAB.

(empty) ε♯ := ε (empty♯) ε♭ := ε

(letter) a♯ := a(ε) (letter♯) (a(γ))♭ := aγ♭

(rule) ρ♯ := ρ(ε) (rule♯) (ρ(γ))♭ := ργ♭

(juxtaposition) (γ1γ2)
♯ := s♯1(γ

♯
2) · γ

♯
1(t

♯
2)

(transitivity) (γ ·δ )♯ := γ♯ ·δ ♯ (transitivity♯) (γ ·δ )♭ := γ♭ ·δ ♭

Table 2: Translations ♯ from flat proof terms to sharp ones (left) and vice versa ♭ (right)

Lemma 1. s ⩾♭ t iff s♯ ⩾♯ t♯ by extending ♯ and ♭ to flat and sharp proof terms as per Table 2.3

Remark 1. The intuition that the flat system is left–right symmetric but the sharp system is not, is
captured formally by that although the sharp system may accommodate context / prefix-sharing as in
a(ρ(ε) ·ϑ(ε)) :a(a(ε))⩾♯ a(c(ε)) for string rewrite rules ρ :a→b and ϑ :b→c, suffix-sharing as in the
flat (ρ ·ϑ)a : aa ⩾♭ ca is impossible in the sharp system, and translated away by the sharp translation,
yielding ρ(a(ε)) ·ϑ(a(ε)) (‘decorated’ with empty steps3) in which the suffix a indeed is ‘unshared’.

The flat translation ρa ·ϑa of the sharp term ρ(a(ε)) ·ϑ(a(ε)) in the remark is distinct from the
original proof term (ρ ·ϑ)a. That is, although by Lemma 1 the flat and sharp translations preserve
reachability, they are typically not inverse to each other. Still, the translations are natural in that rule
applications are preserved, so that proof terms ‘do the same work’. The latter is captured by the notion
of permutation equivalence ≡ between proof terms [12]. For strings, permutation equivalence ≡♭ is gen-
erated by the equivalences on the right in Table 1, and for terms permutation equivalence ≡♯ is generated
by the equivalences in [22, Table 8.2]. The next lemma entails that the translations in Lemma 1 between
flat and sharp proof terms, although not inverse to each other, are so modulo permutation equivalence.
Lemma 2. If γ ≡♭ δ then γ♯ ≡♯ δ ♯. If γ ≡♯ δ then γ♭ ≡♭ δ ♭. γ ≡♭ (γ♯)♭ and γ ≡♯ (γ♭)♯.

The above justifies freely switch between flat and sharp proof terms as we do below. E.g., we
may just write ⩾ and ≡. Whereas the proof terms in Remark 1 exhibit sharing, those in Example 3 don’t.
Definition 3. A multistep is a proof term without occurrences of ·. It is empty / a (single) step if it has
no / one occurrence of a rule. A (multi)step reduction either is an empty multistep or a composition of
nonempty (multi)steps.

Multisteps may alternatively be defined as strings over the letters Σ and the rules P. We use Φ,Ψ,X , . . .
to range over multisteps, and φ ,ψ,χ, . . . to range over steps. If t is reachable from s, then this may be
witnessed by a (multi)step reduction, known as logicality of (multistep) reduction for rewrite logic [17].
This can be brought about in general, in a permutation equivalence preserving way:

3The inside–out order chosen in (juxtaposition) corresponds to the one in deep inference, but is in principle arbitrary; any
sequentialisation will do. Although ordering is indeed not compatible with working modulo the monoid laws, as pointed out
by one of the reviewers, ♯ can be defined on representatives as per footnote 2.
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Lemma 3 (cf. [15, Lemma 3.6]). For every flat proof term γ , there is a (multi)step reduction γ ′ ≡ γ .

The lemma expresses that every proof term factorises as the vertical composition of a number of
horizontal juxtapositions (see Figure 2), i.e. as the sequential composition of parallel compositions of
steps. Composing the sharp and flat translations as in Lemma 2 does even more, sequentialising the
steps contained in a parallel composition into a sequence of single steps; it favours length over width so
to speak. In the next sections, we will go into the opposite direction, maximally favouring width over
length (area being an invariant). For instance, the proof term γ in Example 3 is wasteful in two ways:

(too long) This can be remedied by proceeding greedily [4], employing proper multisteps instead of
steps. For instance, the second and third steps AαAAB ·AAβ : ABBAAB ⩾ AABAAB in γ can be
combined into the single multistep Aαβ : ABBAAB ⩾ AABAAB. Proceeding greedily, combining
as many of the single steps into multisteps as possible, and as early as possible, turns γ into the
shorter greedy multistep reduction γ ′ given in the same example.

(too large) This still holds true for γ ′. The point is that (multi)steps not only represent what changes,
rules, but also what does not change, letters (cf. the frame problem). As a consequence, multisteps
predominantly consist of letters. Causal graphs [24] (as in Figure 1 below) remedy this.

To express both remedies we will employ a bit of residual theory for multisteps (going back to [3] for
multisteps for the β -rule). To avoid things becoming too heavy for this short note, we only develop
the residual theory necessary here and in an ad hoc informal fashion, referring the reader to Chapter 8
of [22] in general and to Section 8.7 in particular, for background on (from the perspective of permutation
equivalence), and a formal treatment of, residuation.

Definition 4. For multisteps Φ, Ψ having the same source, we write Φ ⊆ Ψ to denote that Φ is contained
in Ψ, meaning that Φ is obtained from Ψ by mapping some occurrences of rules to their source. In that
case, we denote by Ψ/Φ the residual of Ψ after Φ, that is, the multistep obtained from Ψ by mapping the
other occurrences of rules (the complement of those selected for Φ ⊆ Ψ) to their target.

For instance, ABBAAB, ABBβ , AαAAB and Aαβ are the four multisteps contained in Aαβ in Exam-
ple 3. We have, e.g., Aαβ/ABBβ = AαBAAB and Aαβ/AαAAB = AAβ . Observe that if Φ ⊆ Ψ and Φ

is nonempty, then fewer rules occur in Ψ/Φ than in Ψ.

3 Greedy multistep reductions

We give a standard algorithm for transforming a multistep reduction into a greedy one [4], but using a
novel description of greediness and the greedy algorithm, based on the analogy with sorting and stan-
dardisation [10, 22] in the literature. In sorting, (adjacent) inversions are consecutive elements that are
out-of-order, and in term rewriting, anti-standard pairs [10, 14] are consecutive steps in a reduction such
that the latter is outside (to the left of) the former. Such pairs of out-of-order elements are of interest since
they provide a local characterisation both of being sorted, i.e. the absence of such pairs, and of bringing
the list / reduction closer to being sorted, by permuting the out-of-order pair. This makes both processes
amenable to a rewriting approach, with bubblesort being an example for sorting and the extraction of
the leftmost-contracted-redex being an example for standardisation [10, 7, 13, 22, 14, 2]. To make the
greedy algorithm fit the same mould, we identify loath, i.e. non-greedy, pairs of multisteps.

Definition 5. A pair of consecutive multisteps Φ,Ψ is (X-)loath if X is a witnessing multistep such that
Φ ⊆ X with X/Φ ⊆ Ψ nonempty (with X/Φ nonempty and X/Φ ⊆ Ψ, that is). Its (X-)swap is defined to
be the pair X ,Ψ/(X/Φ). A greedy reduction is one without loath pairs.
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Lemma 4. If Φ,Ψ is X-loath, then Φ ·Ψ ≡ X · (Ψ/(X/Φ)).

Setting X to the patterns in Φ and all those in Ψ that ‘do not overlap Φ’, minimises swapping.

Example 4. The proof term γ in Example 3 comprises two loath pairs. Working from the tail to the
head, we first encounter the loath pair αAABAAB,AβAAB between the the 6th and 7th steps, which is
permuted into αβAAB,ABAABAAB. The next loath pair AαAAB,AAβ is between the 2nd and 3rd steps
and is permuted into Aαβ ,AABAAB. After this, we proceed by only permuting loath pairs that are trivial,
in the sense that their first multistep is empty (permuted into pairs where the second multistep is empty),
resulting in γ ′ ·ABAABAAB ·ABAABAAB, for γ ′ as in Example 3.

Instead of permuting trivial loath pairs, which is not useful as the example shows, we will instead
implicitly elide all empty multisteps, so that Example 4, starting from γ we indeed end up with the greedy
γ ′, not with γ ′ followed by two empty multisteps.

Lemma 5. Repeated swapping terminates in a permutation equivalent greedy multistep reduction.

In the next section we show that by suitably evaluating a proof term, we may obtain the greedy
multistep reduction directly and as a consequence the latter is unique modulo permutation equivalence.

Remark 2. An efficient procedure for searching for loath pairs can be based on the observation that
due to linearity of string rewrite systems, an occurrence of either a source or target of a rule can be
identified with a pattern in the sense of [22, Definition 8.6.21], i.e. with a convex set of positions in the
tree of the string having vertices as boundary. Following the main idea of [18], to see whether Φ,Ψ is
loath, it therefore suffices to check whether each pattern of a source of a rule occurring in Ψ has overlap
with some target of a rule occurring in Φ. Since a pattern in a string simply is an interval, characterised
by the two vertices constituting its boundary, a single top–down pass through both string-trees checking
disjointness of intervals via their boundaries, suffices. If for some pattern there is no overlap, we obtain
a loath pair by setting X to Φ in which the pattern was replaced by the rule.

For example, using underlining to indicate occurrences of patterns, that αAABAAB,AβAAB in γ is
a loath pair follows from that the pattern {2̊,3, 3̊,4, 4̊} in AAABAAB corresponding to the source AAB
of the rule β , does not have overlap with the pattern {1̊} in AAABAAB corresponding to the target A of
the rule α . This in turn follows from that the corresponding intervals [2̊, 4̊] and [1̊] are disjoint since 1̊ is
smaller than 2̊. By disjointness / non-overlap, replacing in αAABAAB the β -pattern AAB by the rule β

yields the multistep αβAAB, as desired.

4 Causal graphs by proof term algebra

We give a proof term algebra such that evaluating it for a proof term yields its causal graph [24]. A proof
term algebra for a string rewrite system ⟨Σ,P⟩ is like an ordinary term algebra, but for the signature Σ⊎P
comprising both the letters Σ and the rules P. Moreover the algebra should cohere with the functions src
and tgt mapping a proof term to its source / target string [15]. Evolution [24] is a proof term algebra:

Example 5. The goal is to have the proof term γ of Example 3 evaluate to the top segment (the first 15
rows) of the evolution on the left of in Fig. 1 (taken from [20]; based on [24, fig. a, p.498]). To that
end, we interpret multisteps as rows of (possibly skewed) blocks obtained by A 7→ □, B 7→ ■, α 7→ ,
and β 7→ . Compositions of multisteps are interpreted by stacking the rows of the interpretations
of the multisteps on top of each other, interspersed with the evaluations of their sources and targets.
For instance, the top three rows are the evaluations □■□□■, , and □■■□□■ of the source,
multistep, and target of ABβ :ABAAB ⩾ ABBAAB. (The interpretations of α,β are next to the evolution).
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Figure 1: Evolution and causal network of ABAAB for string rewrite system BB→A, AAB→BAAB [20]

We show that the causal graphs of [24] can be obtained by means of another proof term algebra
capturing causal equivalence as in [22, Section 8.1.3], using a graph to represent what causes each
occurrence of a rule in a proof term, how these are caused by letters in the source and by other rules in
the proof term. For this to work rules must cause, i.e. their source / target nonempty.

Remark 3. Empty sources and targets are conceptually and technically problematic. Conceptually, they
allow infinite outward (ex nihilo instead of ex materia steps) respectively inward branching and it is not
clear whether that meshes well with causality, cf. [23]. Technically, empty targets are problematic for
causality via causal graphs as witnessed by rules ρ : c→ ε and ϑ : aa→ b. Then aρa ·ϑ : aca ⩾ b, but
the steps cannot be put into the same multistep since clearly the second is created by the first. However,
in the causal graph neither of the two a-symbols constituting the lhs of ϑ is caused by the ρ because
that has an empty rhs. As far as we know, this is not discussed in [24]; see [22, Remark 8.6.75] or the
Remark below Example 3 in [16] for two known work-arounds (reifying edges / splitting symbols).

The goal is for proof terms to have the same evaluation in the algebra iff they are causally equivalent.
For string rewriting, this is almost achieved by the proof term algebra of [22, Definition 8.6.17] based
on trace relations (see [22, Figure 8.37] for an illustration; trace relations are known as atomic flows in
deep inference as in Example 1.2.) We exemplify that proof term algebra, mainly to exhibit what is still
missing to exactly capture causal equivalence.

Example 6. Trace relations are relations between the positions in (the term tree of) proof terms. The
result of computing the source s, internal i, and target t trace relations [22, Def. 8.6.17] for the proof term
γ of Example 3, its source ABAAB, and its target ABAABAAB is depicted on the left in Figure 2, where
we have written the strings constituting γ (rather than the positions of the symbols within γ) horizontally,
and used dotted lines to indicate the induced trace relations. All ‘edges’ are directed downward.

The defect of proof terms being (too large) mentioned above, still applies to (internal) trace relations
as they have the set of positions of a proof term as domain. But observe letters in Σ may be elided since
they do not change causality: each letter relates and is related to exactly one other position (they represent
identities; cf. the text below [22, Def. 8.6.17]). Doing so for γ results in the trace relation in the middle in
Figure 2. That trace relation is identical to the initial segment (the first 7 steps; with the correspondence
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Figure 2: Trace relations and graph of (ABβ ) · (AαAAB) · (AAβ ) · (βAAB) · (BβAAB) · (αAABAAB) · (AβAAB)

indicated by the numbers) of the causal graph in the middle of Figure 1, except for parallel edges in the
latter. To regain these as well, we change to evaluating into trace graphs instead of trace relations.
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Figure 3: Trace graphs for ε , letter a, rules α and β , and elision rule ⇒ for letter a or ε

Definition 6. The trace graph (tragr) proof term algebra is given (by example) in Figure 3. It (recursively)
evaluates a proof term γ : s ⩾ t as a graph denoted by JγK having unique input and output edges (on
the left), with nodes labelled by symbols in Σ∪P∪{ε}, with labels determining the ports of a node,
cf. [1, 19]. For each occurrence of a letter in the source s (the target t) there is a correspondingly
labelled node having one input port, one output port, and a down (up) port, and these nodes are chained
forward ending in (backward starting from) an ε-node; the chain is called the source / target dag. The
number of input / output ports of a rule is determined by the length of its source / target string. We name
ports of rules by their index and a boolean ‘i’ / ‘o’ as shown for α in Figure 3 (only done for α there,
since for β it would lead to clutter).

• The tragr Jγδ K is the juxtaposition of the tragrs JγK and Jδ K redirecting the edge to (from) the top
(bottom) ε-node in the former to the input (output) edge of the latter; and

• The tragr Jγ ·δ K is the composition of the tragrs JγK and Jδ K, connecting the output of the former
to the input of the latter, and then eliding the intermediate target and source dags (for tgt(γ) and
src(δ )), by normalising with respect to the elision rule ⇒ displayed on the right in Figure 3.

An example tragr is displayed on the right in Figure 2. Note that the tragr does reflect also the parallel
edges of the causal graph in Figure 1, which were lacking in trace relations.

Remark 4. Tragrs are acyclic and planar since the base cases are and both properties are preserved by
the ‘parallel’ (juxtaposition) and ‘series’ (composition) operations.
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Elision is complete: terminating because the number of nodes decreases and confluent because ⇒
can be viewed as an interaction net rule [11].

Contrary to causal graphs, but in line with trace relations, each tragr has a source / target dag, a
dag-representation of the source / target string of the proof term; the interface of the tragr. We consider
this discrepancy minor and suggest that if the causal graphs of [24] were to be completely formalised,
that would result in tragrs. Therefore, we consider them to be interchangeable and work with tragrs.

Lemma 6. JK maps proof terms that are equivalent modulo permutation equivalence (Table 1), to the
same tragr (up to isomorphism).

Theorem 1. There is a(n effective) bijection between greedy multistep reductions and trace graphs.

Proof idea. We give a function TS from tragrs to greedy multistep reductions performing a topological
(multi)sort of a tragr by selecting at each stage all minimal nodes, and show that TS and JK (restricted to
greedy multistep reductions) are inverse to each other. Executing TS on the tragr on the right in Figure 2
yields stages 1 to 5 (giving rise to 5 multisteps) as separated by double–dashed lines.

Using the above, we establish our main result that one may compute a greedy multistep reduction,
unique modulo permutation equivalence, for any proof term by first evaluating into its tragr / causal graph
(using JK), followed by the topological multisort (using TS) yielding the greedy multistep reduction. To
that end, we employ a simple case of Hardin’s interpretation method we dub confluence-by-evaluation.

Lemma 7 (CbE). Let nf be a function on the objects of a rewrite system → such that if a → b then
nf(a) = nf(b), and if a is a normal form, then nf(a) = a. Then → is confluent, if → is normalising (WN).

Proof. Suppose b ↞ a ↠ c. By → being normalising applied to b,c, there exist normal forms b′,c′ such
that b′ ↞ b ↞ a ↠ c ↠ c′. By the assumptions and convertibility of b′,c′, nf(b′) = nf(c′), so b′ = c′.

Theorem 2. For every proof term γ , there is a unique greedy multistep reduction γ ′ such that γ ≡ γ ′.

Proof. Instantiating → in Lemma 7 with the swap relation on multistep reductions and nf with the com-
position of JK with TS, we have that its assumptions are satisfied: → is (even strongly) normalising by
Lemma 5, nf is the identity on greedy normal forms by Theorem 1, and nf maps permutation equivalent
proof terms to the same greedy normal form since JK does so by Lemma 6, so nf is certainly preserved
by swap steps since these preserve permutation equivalence by Lemma 4. Therefore, swapping is both
terminating and confluent, i.e. complete. We conclude noting that, by Lemma 3, any proof term can be
transformed into a multistep reduction that is permutation equivalent.

Remark 5. We call the method employed confluence-by-evaluation (CbE) as it only relies on semantics.
It does not rely on Newman’s Lemma and the combination of termination (Lemma 5) and local confluence
of swapping (which we didn’t show, although one could). For another example of CbE: that the TRS for
multiplication and addition of [22, Table 2.3] is (ground) confluent follows from that it is WN and that
the natural numbers constitute a model and are in bijection with the (constructor) normal forms Sn(0).
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