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Abstract
Despite sixty percent of Newman’s seminal 1942 paper being devoted to residual theory,

that remains obscure due to that his instantiation of the theory there to the (non-erasing)
λβ-calculus was fatally flawed. We redeem the approach showing: 1) any rewrite system in-
stantiating his theory induces a so-called 1-ra, an axiomatically orthogonal rewrite system,
entailing co-initial reductions have least upperbounds; 2) the rewrite system underlying
any (non-erasing) syntactically orthogonal TRS instantiates his theory. CC by 4.0 L M.

Rewriting The primary notion in rewriting is from [17]1: a rewrite system→:=⟨O,S, src, tgt⟩
comprises objects O and steps S with source, target maps src, tgt from the latter to the for-
mer [26, Def. 8.2.2]. Steps ϕ, ψ are co-initial if src(ϕ) = src(ψ), co-final if tgt(ϕ) = tgt(ψ)
and parallel to each other if both. A morphism from → to →′ := ⟨O′,S ′, src′, tgt′⟩ preserves
structure; it maps ϕ ∈ S with source a and target b, denoted by ϕ : a → b, to ϕ′ : a′ → b′ in
S ′. Rewrite properties [2, 26] pertain to various rewrite systems constructed from →. E.g., the
Church–Rosser property [5, 17] expresses that for any conversion there exists a valley of co-final
reductions parallel to it, with (finite) reductions and conversions rewrite systems constructed
from →. As constructions here we will use the 1-operations of loop 1, composition ·, reverse
−1 and residuation /, where by a 1-operation we mean an operation respecting sources and
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Figure 1: Step-forming operations: residuation /, loop 1, composition ·, reverse −1

targets as depicted by their generalised arities [22, Ex. 5.3] in Fig. 1. E.g., composition has
two consecutive steps as input (the full arrows) and a single step as output (the dashed arrow),
parallel to each other as depicted. That is, for each 1-operation its input arity is the universally
quantified (full) subsystem, and its output arity is the existentially quantified (dashed) subsys-
tem. The steps in the input arity of composition being consecutive captures that composition
is only defined on consecutive steps, i.e. if tgt(ϕ) = src(ψ) for steps ϕ, ψ. Similarly, residuation
/ requires co-initial steps in its input.

1-algebras To algebraically deal with 1-operations requires to enrich universal algebra. Where-
as 1, · and −1 and laws for them (see Def. 1) are known to be covered by essentially algebraic
theories [20, Ex. 4], the generalisations needed to smoothly deal with / are in statu nascendi [22].
Acknowledging this, we refer to algebras having a rewrite system→ as carrier and 1-operations
among those in Fig. 1 as 1-algebras. This allows to reuse, as we do, terminology from algebra.

1In Newman’s combinatorial topology-inspired words: We are concerned with two kinds of entities, “objects”
and the “moves” performed on them, and each move is associated with two objects, “initial” and “final.”
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l-unit(ϱ) : 1 · ϱ ⇒ ϱ invol-id : 1−1 ⇒ 1
r-unit(ϱ) : ϱ · 1 ⇒ ϱ anti-auto(ϱ, ς) : (ϱ · ς)−1 ⇒ ς−1 · ϱ−1

assoc(ϱ, ς, ζ) : (ϱ · ς) · ζ ⇒ ϱ · (ς · ζ) invol(ϱ) : (ϱ−1)−1 ⇒ ϱ

Table 1: 1-algebra laws / proofterm rewrite rules

Definition 1. A 1-monoid is a 1-algebra with 1-operations 1 and · satisfying the (pertaining)
laws in Tab. 1.2 We use ↠ to denote (the carrier of) the free 1-monoid induced by → and
refer to its elements as reductions [26, Def. 8.2.10]. A 1-involutive 1-monoid is a 1-algebra with
1-operations 1, · and −1 satisfying the laws in Tab. 1.2. We use ↭ to denote (the carrier of)
the free 1-involutive 1-monoid, cf. [7], induced by → and refer to its elements as conversions.

Example 1. Any algebra can be viewed as a 1-algebra by viewing its carrier as a single-object
rewrite system having a step on it for each element of the algebra. Accordingly, algebra examples
of 1-monoids are ⟨Z, 0,+⟩ and ⟨N, 0,+⟩, and algebra examples of 1-involutive 1-monoids are
⟨Z, 0,+, (−)⟩ and ⟨N, 0,+, id⟩. A 1-algebra example is (finite) walks in a graph with operations
empty, composition, and reverse, or more generally paths in space.

Freeness of ↠ means that any morphism from → to a 1-monoid factors into a morphism
from → to ↠ and (a 1-monoid preserving) one from ↠ to the 1-monoid, and similarly for ↭.

Example 2. The length-morphism maps each step ϕ to 1 in the involutive monoid ⟨N, 0,+, id⟩.
It factors through mapping the step ϕ to the conversion ϕ, and so does the relation-morphism
mapping ϕ to (src(ϕ), tgt(ϕ)) in the equivalence closure, convertibility, of the rewrite relation of
→, equipped with the expected operations. Similarly, that same morphism into the reflexive–
transitive closure, reducibility, factors through mapping the step ϕ to the reduction ϕ.

(1-involutive) 1-monoids are (dagger) categories, and them being essentially algebraic means
that free such can be defined syntactically [20]: letting the operations 1, · and −1 double as
function symbols of arities 0, 2 and 1, one can inductively build terms from the steps of →
respecting sources and targets. Such terms we refer(red) to as proofterms [26, Ch. 8] as they
are terms that can be conceived of as proofs (of reducibility of their source and target in case
of ↠ and of their convertibility in case of ↭) in (sub-)equational logic(s) [18] induced by
→. To quotient out the (pertaining) laws from proofterms, one may use (proof)term rewriting
itself: orienting the laws into rules on proofterms as in Tab. 1 yields a complete (confluent and
terminating) (proof)term rewrite system ⇒, with a ⇒-normal form being either a single 1 or
a right-branching ·-tree of (reversed) →-steps, i.e. ⇒-normal forms are in 1–1 correspondence
with the usual notion of a reduction (conversion) as sequence of forward (and backward) →-
steps [5, 26]. This then allows to define the 1-operations 1, · (and −1) on reductions (and
conversions) as the proofterm-forming operation of applying the corresponding function symbol
followed by ⇒-normalisation [7, App. A].

Example 3. As running example we employ Kleene’s rewrite system→ [26, Fig. 1.2] comprising
the four steps ϕ :a→ a′, ϕ′ :a′ → a, ψ :a→ b, and χ :a′ → c. Then ϕ ·ψ is not a proofterm since
the target a′ of its 1st step ϕ is distinct from the source a of its 2nd step ψ. Among proofterms
ϱ := (ϕ′−1 · ϕ−1)−1, ϱ′ := ϕ · ϕ′, ς := (ϕ′ · ϕ) · ϕ−1 and ς ′ := ϕ′ · (ϕ · ϕ−1), both ϱ′ and ς ′ are
conversions, but only the former is a reduction. Because both ϱ and ς are ⇒-reducible neither
is a conversion; their ⇒-normal forms are, ϱ′ and ς ′.

2 For the moment reading the proofterm rewrite rules as laws (symmetrically) for the 1-operations. We have
left the assumptions [20, Ex. 4] on sources and targets of ϱ, ς, ζ and 1 implicit, to stress similarity with algebra.
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Orthogonality We recast the diamond and cube properties, cf. [26, Sec. 8.7], 1-algebraically.

Definition 2. → has the diamond property (DP), if for all co-initial ϕ, ψ, there exist co-final
ψ′, ϕ′ such that ϕ

ψ′⋄ψϕ′ , where ϕ
ψ′⋄ψϕ′ denotes that ϕ, ψ, ψ′, ϕ′ constitute a diamond : src(ϕ) =

src(ψ)& tgt(ϕ) = src(ψ′)& tgt(ψ) = src(ϕ′)& tgt(ψ′) = tgt(ϕ′). → is confluent if ↠ has the DP.

(ϕ / ψ) / (χ / ψ) = (ϕ / χ) / (ψ / χ)

ϕ / ψ χ

ϕ

ψ

ϕ

ψ

ψ / ϕ

Figure 2: The diamond property (⋄; left) vs. the cube property (�; right)

Using that a peak (valley) [5] is a conversion of shape ←·→ (→·←), DP expresses that for
every peak there exists a valley parallel to it. Using a skolem-function / (residuation in Fig. 1)
to witness ψ′ by ψ/ϕ and ϕ′ by ϕ/ψ,3 DP can be expressed 1-algebraically as: for all co-initial
ϕ, ψ, ϕ

ψ/ϕ⋄
ψ
ϕ/ψ. Thus, → has the DP iff ⟨→, /⟩ is a 1-algebra for some residuation /.

Example 4. In Ex. 3, for the ↠-peak ψ−1 · ϕ the ↠-valley ψ−1 · ϕ′−1 is parallel to it, but →
is not confluent since for the peak ψ−1 · (ϕ ·χ) there is no valley (b and c are →-normal forms).

In [17, Sec. 1], Newman explained confluence of a rewrite system→ in terms of its reducibility
quasi-order ↠ having upperbounds. He left the determination of conditions required for having
least upperbounds for later. We put forward such conditions in [26, Sec. 8.7] in the form of the
laws on residuation in Tab. 2, proposing to call any rewrite system satisfying (1)–(4) orthogonal,
cf. [15, 9] (Fig. 2 depicts law (4) going back to [17, Thm. 5(∆4)] dubbed cube in [13, Lem. 2.2.1]).
Here we recast that account 1-algebraically to then instantiate it in the next sections.

ϕ / 1 = ϕ (1)
ϕ / ϕ = 1 (2)
1 / ϕ = 1 (3)

(ϕ / ψ) / (χ / ψ) = (ϕ / χ) / (ψ / χ) (4)

χ / (ϕ · ψ) = (χ / ϕ) / ψ (5)
(ϕ · ψ) / χ = (ϕ / χ) · (ψ / (χ / ϕ)) (6)

1 · 1 = 1 (7)

Table 2: Laws of a 1-ra (left) and of a 1-rac (also right)

Definition 3. A 1-residual algebra (1-ra) is a 1-algebra ⟨→, 1, /⟩ such that (1)–(4) in Tab. 2
hold. A 1-rac (1-ra with composition) is a 1-algebra ⟨→, 1, /, ·⟩ such that (1)–(7) hold.

Example 5. ⟨N, 0, −̇,+⟩ is a 1-rac, so ⟨N, 0, −̇⟩ is a 1-ra, for −̇ monus (cut-off subtraction).

In a 1-ra(c) there is a natural order on co-initial steps given by ϕ ⪯ ψ := (ϕ/ψ = 1). Quoti-
enting out ⪯∩⪰ yields a 1-ra(c) again whose natural order is a partial order [26, Lem. 8.7.25(iii)
and 8.7.41(ii)]. Key to referring to a rewrite system → constituting a 1-ra as being orthogonal,
is that any such induces a 1-rac on ↠ [26, Lem. 8.7.47], which then has least upperbounds [26,
Exc. 8.7.40(ii)]. This is characterised, using categorical language to be (ex/comp)act, by:

Theorem 1 (cf. [25, 15, 21]). ⟨→, 1, /, ·⟩ is a 1-rac whose natural order is a partial order, where
ϕ / ψ := ϕ′ for every peak ϕ, ψ and its pushout valley ψ′, ϕ′ (in the categorical sense) iff
⟨→, 1, ·⟩ is a 1-monoid that is left-cancellative (each χ is epi: for all ϕ, ψ, if χ · ϕ = χ · ψ then
ϕ = ψ), gaunt (isomorphisms are 1) and has pushouts; i.e. lubs of peaks exist.

3We a priori get 2 skolem-functions, f(ϕ, ψ) for ψ′ and g(ϕ, ψ) for ϕ′, but may assume f(ϕ, ψ) = g(ψ, ϕ).
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Redeeming Newman In 1942 in [17], Newman refactored the proof of the Church–Rosser
property for the λI-calculus in [5], by abstracting from the λ-term-structure of objects, factoring
the proof through an axiomatisation of a function | entailing confluence [17, Sec. 8–12], and
showing the axioms to be satisfied for the λI-calculus [17, Sec. 13,14]. The latter was later
found to be erroneous [23] due to confusing variables when working with λ-terms modulo α-
equivalence.4 We redeem his approach, showing in this section his main result [17, Thm. 5]
factors through orthogonality, and in the next that it applies to (non-erasing) OTRS. To present
his result,5 let | yield for co-initial ϕ, ψ a (finite) set ϕ|ψ of→-steps from tgt(ψ), the ψ-derivates
of ϕ; it lifts to (finite) sets Φ of steps by Φ|ψ:=

⋃
ϕ∈Φ ϕ|ψ and to reductions by Φ|(ϱ·ψ):=(Φ|ϱ)|ψ

and Φ |1 :=Φ. A development of Φ is a→-reduction in which only derivates of steps in Φ occur
and no remain [5, 3, 26]. Using Newman’s notions and our notations, his result reads:

Theorem 2 ([17]). For co-initial reductions ϱ, ς and set of steps Φ, there are reductions ς ′, ϱ′
such that ϱ

ς′⋄
ς
ϱ′ and Φ | (ϱ · ς ′) = Φ | (ς · ϱ′) if axioms ∆1–∆4 hold and J1,J2 for a predicate J :

(∆1) ϕ | ψ = ∅ iff ϕ = ψ;
(∆2) if ϕ ̸= ψ, then (ϕ | χ) ∩ (ψ | χ) = ∅;
(∆3) if ϕ ̸= ψ, then there exist co-final developments ϱ of ψ | ϕ, and ς of ϕ | ψ;
(∆4) for ϱ and ς in (∆3), χ | (ϕ · ϱ) = χ | (ψ · ς);
(J1) If ϕ J ψ, then ϕ | ψ has precisely one member;
(J2) If ψ1 ∈ ϕ1 | χ and ψ2 ∈ ϕ2 | χ, and if ϕ1 J ϕ2 or ϕ1 = ϕ2, then ψ1 J ψ2 or ψ1 = ψ2.

Let the parallel rewrite system q−→ have as objects the objects of →, and a step Φa if Φ is
a set of steps at a that is a J-set [17, p. 232]: (distinct) steps in Φ are from a and pairwise
J-related. Then the source of Φa is a and its target is the target of a development of Φ.

Lemma 1. Under the assumptions of Thm. 2, ⟨ q−→, ∅, |⟩ is a 1-ra, so q−→ is orthogonal.

Proof. That q−→ is well-defined, i.e. that Φa has a unique target holds by [17, Lem. 2]. [17,
Lem. 5.1] shows both that | is a residuation (Fig. 1) for q−→, so q−→ has the DP, and that it
has the cube property, i.e. law (4) holds. Laws (1)–(3) are seen to hold by easy inductions.

Proof of Thm. 2. As →-reductions are (singleton) q−→-reductions and the 1-ra on q−→ induces
a 1-rac on q−→−→ by the previous section,6 one concludes by setting ς ′ := ς | ϱ and ϱ′ := ϱ | ς.

Steps-as-terms To apply Thm. 2 to a term rewrite system [2, 26] T := ⟨Σ, P ⟩ given by a
signature Σ and a set P of rules ρ:ℓ→r for ℓ, r terms over function symbols in Σ (and variables),
we let its multistep rewrite system ◦−→T have as objects terms over Σ and steps-as-terms, i.e.
as steps terms over Σ ⊔ P , with src (tgt) the homomorphic extension of the function mapping
rule symbols to their left-(right-)hand side. The parallel rewrite system q−→T and (single step)
rewrite system →T arise from ◦−→T by restricting rule-symbols to occur at parallel positions
respectively once in steps [26, Prop. 8.2.22]. We employ that q−→T is orthogonal (in the above
sense) if T is an OTRS, a TRS that has left-linear and non-overlapping rules [2, 26], i.e. that the
residuation / given in [26, Def. 8.7.4] induces a 1-ra on q−→T [26, Prop. 8.7.7(ii)] for OTRS.

Lemma 2. For an OTRS T , the assumptions of Thm. 2 hold for →T when:

• defining ϕ J ψ if ϕ, ψ are steps (whose rule symbols are) at parallel positions; and
4It being the first of its kind, the error could be called the α-α-error (lucerne-error?).
5See [17] for more. We present Newman’s axioms and result as is, as our only goal is to instantiate them.
6Alternatively, this can be concluded from that the assumptions of Thm. 2 entail properties 1–4 of [15].
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• letting ϕ | ψ be the set of steps occurring in (the parallel step) ϕ / ψ.

Proof. That the axioms hold follows from well-known facts for parallel steps in OTRS [2,
26], e.g., J2 corresponds to the Disjointness Property in [26, Ex. 8.6.30] and ∆4 to cube [13,
Lem. 2.2.1], permutation [15]. (Using steps-as-terms, the axioms can also be verified by
inductions on steps.) Note that non-erasingness is (only) needed for ∆1, cf. [26, Ex. 8.7.24].

Conclusions We ruminate about the past, present and future of orthogonality.

Past (the curious case of orthogonality in rewriting) It is curious that Newman starts
out [17] with stating to leave the study of least upperbounds (lubs) for later, to then devote
most of the paper to introducing conditions that guarantee the very existence of lubs, as shown
above (Lem. 1). That reductions constitute a lattice (have lubs) was shown only much later (in
the 70s) for concrete rewrite systems such as recursive programs and the λβ-calculus, see [13],
subsequently axiomatised and couched in categorical language (existence of pushouts) in [25,
15, 21]. Here we cast our account of that [26, Sec. 8.7] 1-algebraically (Def. 3 and Thm. 1).

β(x, y, z) :B xy z → x (y z) γ(x, y, z) : C xy z → x z y ι(x) : I x → x

Table 3: Combinatory Logic: term rewrite rules P of BCI in applicative notation

Example 6 (illustrating that lubs are subtle to define). BCI is the TRS with signature Σ :=
{B,C, I,@} and rules P := {β, γ, ι} (Tab. 3). Since the rules of the Combinatory Logic BCI
in Tab. 3 are left-linear and non-overlapping, q−→BCI is orthogonal by the above. Consider
the peak I x ϕ← I (I x) →ψ I x for the steps ϕ := ι(I x) and ψ := I ι(x). (Note that ϕ, ψ are
extensionally the same but not intensionally so.) The lub (pushout) of the peak is formed not
by the empty valley from I x, but by the valley comprising twice the step ι(x) : I x →BCI x
since ψ /ϕ = ι(x) = ϕ/ψ. That is, that ϕ, ψ are intensionally different, perform different work,
constitute a syntactic accident [13, p. 34], is reflected in their pushout (lub) not being empty.

Despite the prominence of Combinatory Logic and the λβ-calculus since the 30s, it took
until the 80s to clepe them orthogonal term rewrite systems, making them in retrospect the 1st

and 2nd (1st and 2nd-order) such. But that definition of orthogonality is syntactic, asks rule(s)
to be left-linear and non-overlapping [2, 26], pertains to terms only. That led to the second
curiosity that on the one hand many structured rewrite systems having lubs, e.g., interaction
nets [12], braids [16], self-distributivity [24], . . . were not covered by that syntactic definition,
and that on the other hand that syntactic definition was found to be lacking, to not guarantee
confluence let alone existence of lubs, already for minor generalisations of term rewriting:

Example 7. The rules a→ b and f(x)→ c⇐ x = a are left-linear and non-overlapping but not
even confluent as witnessed by both f(b) and c being normal forms in the peak f(b)← f(a)→ c.

Whence we propose(d [26, Sec. 8.9]) to factor the syntactic definition of orthogonality
through its associated rewrite system being orthogonal, to constitute a 1-ra (Def. 3), mak-
ing it interesting to see whether for systems in the literature the former entails the latter. For
orthogonal TRS and PRS this is known to be the case [26, Sec. 8.7][4] by associating ◦−→T to
T with the proof unifying [5] with axiomatic [17] and inductive [3, Sec. 3.2] (TML) proofs. By
steps-as-terms being conceptually parsimonious the residuation-based proof is superior to TML,
which is based on ad hoc prooftrees, as we illustrate for BCI in Ex. 8. Ex. 9 exemplifies that
for certain context-sensitive and conditional TRS, orthogonality indeed induces orthogonality.
We leave it to future research to check other syntactically orthogonal systems in the literature.

5
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Example 8 (orthogonality of ◦−→BCI for OTRS BCI). The (proof )terms ϕ:=B I γ(C, x, y) ι(z)
and ψ :=β(I, C C x y, I z) yield a peak B I (C y x) z q←−ϕ B I (C C xy) (I z)→ψ I (C C xy (I z))
for which residuation (per [26, Def. 8.7.4]) yields the valley B I (C y x) z →ψ′ I (C y x z) q←−ϕ′

I (C C xy (I z)), the lub (pushout) of ϕ, ψ, formed by (proof )terms ψ′ := ψ / ϕ := β(I, C y x, z)
and ϕ′ := ϕ / ψ := I (γ(C, x, y) ι(z)), as one may check in Haskell or ProTeM.

Example 9. ⟨ ◦−→, 1, /⟩ is a 1-ra for / as in Ex. 8 [26, Def. 8.7.4], if steps ϕ are restricted by:7

(i) for CSR as in [14, Thm. 8.12]: all frozen arguments are Σ-terms, or
(ii) for orthogonal normal CTRS [26, Sec. 4.11.2]: if ϕ = ρ(ϕ⃗) for rule ρ(x⃗) : ℓ→ r ⇐=

−−−→
ℓ↠ r,

then for all j, ℓσj ↠ rσj (observe rσj = rj by normality), where σ(xi) := src(ϕi) for all i.

Present (inappropriate appropriation) Rewrite systems being basic small wonder they
occur elsewhere nowadays, e.g., as multidigraphs, quivers in representation theory [8], pre-
categories in Garside theory [6] or 1-polygraphs in higher-dimensional group presentations [1].
As much as we would like to base ourselves on [6, 1], we cannot as both accounts are inadequate
for our key notions conversion and residuation. More generally, subsystems [18] (↔ and →+,
the free 1-algebras with −1 respectively · satisfying the laws in Tab. 1) and supersystems [26]
(infinit(e/ary) reductions) are absent from them, and so is (must be) classical rewrite theory.

l-inv(ϱ) : ϱ−1 · ϱ ⇒ 1 l-inv-x (ϱ, ς) : ϱ−1 · (ϱ · ς) ⇒ ς
r-inv(ϱ) : ϱ · ϱ−1 ⇒ 1 r-inv-x (ϱ, ς) : ϱ · (ϱ−1 · ς) ⇒ ς

Table 4: 1-algebra laws / proofterm rewrite rules for 1-groups, extending Tab. 1

Remark. Modelling conversions as↔-reductions is too weak, so 1-polygraphs are [11, Sec. 2.4],
as categories (1-monoids) miss out on involution [7],8 and assuming cancellation is too strong [17,
Sec. 1], as groupoids (1-groups; see Tab. 49) lose embedding [19]. Indeed, [6, 1] have algebraic
accounts of neither conversion nor residuation, so cannot account for orthogonality, 1-ra’s (hav-
ing composition without residuation is analogous to having addition without monus; we do not
know of other accounts where both are treated on a par, algebraically, as we think they should).

Future (explorations) (I) We restricted attention to the axioms in [17] for the non-erasing
λβ-calculus; (∆1). These entail additional properties, e.g., the natural order on q−→-steps is the
subset order, all developments have the same length [19], and → is normalising (WN) iff it is
terminating (SN) [17, Thm. 8][26, Thm. 4.8.5]. Which are retained for the axioms in [17] for the
(erasing) λβ-calculus? orthogonality? (II) Does meta-theory such as that the full ◦−→-strategy
is (hyper-)normalising, generalise? (III) Does viewing a proof order (see [26, Thm. 7.5.12])
as a morphism from conversions into a (well-founded) 1-involutive 1-monoid have advantages
beyond those in [7]? (IV) Does the approach generalise to infinit(e/ary) reductions? (V)
Can the Grothendieck group construction be based on orthogonality? (VI) How to formalise
this algebraic approach, in particular residuation, cf. [10]? (VII) How to generalise proofs via
steps-as-terms to other structures, e.g., to steps-as-port-graphs for interaction nets [12].

Acknowledgments We thank Nao Hirokawa, Vítek Jelínek, Philip Saville and Fer-Jan de
Vries for discussions and feedback on a previous version, and the IWC reviewers for reviews.

7As before5, we refer the reader to the cited literature for more, for reasons of room.
8Involution is essential and useful ; it saved half the work in formalising [7] (B. Felgenhauer; pers. comm.).
9The proofterm rewrite rules are obtained by 1-completion, see Ch. 7 of either [2, 26]: though l-inv-x and

r-inv-x are derivable they need to be adjoined to turn ⇒ into a complete proofterm rewrite system.
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