
Triangulation in rewriting
Vincent van Oostrom1 and Hans Zantema2

1 Department of Philosophy, Utrecht University, The Netherlands
Vincent.vanOostrom@phil.uu.nl

2 Department of Computer Science, TU Eindhoven, The Netherlands
Institute for Computing and Information Sciences, Radboud University
Nijmegen, The Netherlands
h.zantema@tue.nl

Abstract
We introduce a process, dubbed triangulation, turning any rewrite relation into a confluent one. It
is more direct than usual completion, in the sense that objects connected by a peak are directly
oriented rather than their normal forms. We investigate conditions under which this process
preserves desirable properties such as termination.

1 Introduction

We study the problem of deciding whether two objects are equivalent with respect to the
equivalence relation generated by some rewrite relation. We do this in a fully abstract
setting, that is, any binary relation on any set of objects may serve as a rewrite relation.
The standard idea in such a setting is to compute the normal forms of both objects with
respect to the rewrite relation, subsequently comparing whether these normal forms are
equal or not. If and only if the normal forms are equal the original objects are deemed to
be equivalent.

For the above to work, i.e. for it to yield a sound and complete decision procedure for
equivalence, normal forms should exist and be unique within equivalence classes. For a
given rewrite relation neither needs to be the case. On the one hand, the objects b and
c are distinct normal forms with respect to the rewrite relation b //− a −.. c despite them
belonging to the same equivalence class {a, b, c} generated by −.. (see Figure 1 left); normals
forms are not unique so the procedure is not sound. On the other hand, the object a does
not have a normal form in the rewrite relation a −.. a; normal forms need not exist, even if
they are unique when they exist, hence the procedure need not be complete.

a

b c

a

b c

Figure 1 b //− a −.. c before (left) and after (right) triangulation

First we introduce in Section 2 a process called triangulation to stepwise extend an
arbitrary rewrite relation in such a way that normal forms are unique within each equivalence
class, without altering the generated equivalence relation. That is, after triangulation the
decision procedure is sound. For instance, triangulation would extend the above rewrite
relation b //− a −.. c by either of the steps b −I c (see Figure 1 right) or b J− c forming a
triangle, whence our naming. The idea of triangulation is similar to that of abstract Knuth–
Bendix completion, see e.g. [2]; the main difference is that by triangulation two not directly

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

related objects that are related by a peak will be related directly, while in completion their
normal forms will be related.

Next, in Section 3, we provide two sufficient conditions for triangulation to preserve
termination, guaranteeing existence of normal forms when starting out with a terminating
rewrite relation, thus giving rise to a sound and complete decision procedure for the gener-
ated equivalence. The first condition is a compatibility condition, requiring the union of the
original rewrite relation and the relation used to orient the adjoined steps to be terminat-
ing. The second condition requires both these relations to be terminating on their own, and
moreover the original rewrite relation to be codeterministic; at most one object rewrites to
any given object.

Finally, in Section 4, we reflect on how the triangulation process brings about complete-
ness. That is, looking back from the result of the completion process, i.e. from the original
rewrite relation and the the relation by which it is extended, we provide sufficient conditions
on these two relations for their union to be complete. These conditions are abstract in that
they do not employ the latter being stepwise generated from the former. We also provide
sufficient conditions for the result of triangulation to be cocomplete, i.e. coconfluent and
coterminating.

Directions for future research are given in Section 5.
The origin of this research was in a question of Jan Friso Groote, relevant for the typ-

ing mechanism in the toolset of the specification language mCRL2 [5]. In a part of that
mechanism types a, b, c, d, . . . are specified, some of which representing the same expressed
by definitions of the shape x //− y with x the definiendum and y the definiens. A natural
question that came up is whether two notions are equivalent in the sense that the one can be
reached by the other by means of a series of definition foldings and unfoldings. For instance,
in the system having six notions a, b, c, d, e, f with four definitions

a //− b, b //− c, d //− c, f //− e

the notions a and d are seen to be equivalent since they can be connected by the chain of
definition foldings and unfoldings a //− b //− c −.. d. Triangulation arose here as a method to
answer the equivalence question as it constructs unique representatives of equivalence classes,
hence checking equivalence of two notions reduces to checking equality of their respective
representatives (→-normal forms). Executing it on this example first the peak b //− c −.. d
is turned into a triangle by adjoining a definition b −I d, the direction being determined by
some given order on the objects, here the alphabetic order. This then gives rise to a new peak
a //− b −I d which in turn is made into a triangle by adjoining a −I d, after which d, f have
become the unique representatives of their respective equivalence classes. The notions a and
b are −..-equivalent since d is their common →-normal form. The example also motivates
our interest in studying rewrite relations that are codeterministic, as codeterminism of a
system of definitions −.. corresponds to the natural requirement, satisfied by the example,
that notions are not defined twice.

2 Triangulation

We introduce triangulation as a process to turn an arbitrary rewrite relation into a confluent
one, without altering the generated equivalence relation. We first quickly recapitulate the
few basic notions on rewrite relations needed for this, referring the reader to [1, 6] for
background information. Throughout, we will use relation to mean a binary relation. A

a

b

c

d

f

g h

e

1

a

b

c

d

f

g h

e

2

1 1
1

1

5

3

2

1
1

1
2

2

Figure 2 A rewrite relation −.. (left) and its triangulation (right)

relation R is said to have property co-P if its converse has property P .1 A rewrite relation
is a binary relation on a set of objects, that is, a relation having the same domain and
codomain. To stress we are interested in the direction of rewrite relations we will use arrow-
like notations like →, −.., −I to denote them. For a rewrite relation →, we inductively
define an object a to be terminating, if for all objects b such that a → b, b is terminating.
The rewrite relation → is terminating if all its objects are. For a rewrite relation denoted
by an arrow-like notation →, its converse is denoted by the converse ← of the notation. We
denote the union of two rewrite relations by the union of their notations, e.g. ↔ denotes
←∪→, the symmetric closure of →. We say → is total if a↔ b for all objects a, b. We use
−.. · −I to denote the composition of −.. and −I, and →= and →+ to denote respectively
the reflexive and transitive closure of →. To denote the reflexive–transitive closure of →,
i.e. its ‘repetition’, we employ the ‘repetition’ � of its notation, or, if clutter would arise
from repeating the notation, →∗. If a� b then we say that a reduces or rewrites to b. We
define →-expansion as →-coreduction, i.e. ←-reduction, and →-convertibility as ↔∗ which
is easily shown to be the equivalence closure of →. A rewrite relation → is confluent if
� ·� ⊆� ·�. Further notions and notations will be introduced on a by-need basis.

I Definition 2.1 (Triangulation). Let R be a total relation on the objects of a rewrite relation
−... The triangulation Tr(−..) of −.. with respect to R is the rewrite relation→ =

⋃
n≥1→n,

where →n is defined inductively as follows:
→1 = −..; and
a→n b holds for n > 1 if and only if
a R b and for some m, k ≥ 1 with m+ k = n there is a c such that a←m c→k b; and
for no k < n, a↔=

k b holds.
Below we will assume the relation R to be total.

I Example 2.2. Triangulating the rewrite relation −.. displayed on the left in Figure 2
with respect to the usual alphabetic order on its objects {a, . . . , h} gives rise to the rewrite
relation displayed on the right of that figure. The original arrows are labelled by 1. Next
for every peak x ← · → y with x 6= y for which there is not yet an arrow between x and y
an arrow x→2 y is created or conversely, depending on whether x R y or y R x holds. This

1 We will in particular be interested in codeterminism, coconfluence, cotermination and cocompleteness.

is continued until after creating the →5 arrow, there is a direct arrow between x and y for
all peaks x← · → y with x 6= y.

I Remark. The index n of a step a→n b is the number of −..-steps in a proof showing that
a and b are −..-convertible. Counting each axiom (−..-step) and transitivity rule employed
in such a proof, this amounts to the same thing as half of (one plus the size of that proof).
In Example 2.2 the step d →5 e witnesses a proof of size 9 (= 2 × 5 − 1) based on the
−..-conversion d //− b //− a −.. c //− f −.. e consisting of 5 steps and 4 applications of the
transitivity rule as witnessed by first b→2 c and c→2 e, then d←3 c, and finally d→5 e.

The rewrite relation in the example is finite, hence triangulation must stop in the sense
that no new steps will be adjoined from some stage on (in fact, from stage 5 on). But also
for infinite rewrite relations the process may well stop. Triangulation always results in an
affluent rewrite relation without altering the generated equivalence relation.

I Definition 2.3 (Affluence). A pair −..,−I of rewrite relations is affluent2 if ////− · −II ⊆
////−∪−II, one-step affluent if //− · −I ⊆ //−∪−I, and locally affluent if //− · −I ⊆ ////−∪−II.
These notions pertain to a single rewrite relation → via the pair →,→.

Observe that in term rewriting affluence seldomly occurs: even with respect to the single
rule a→ b, affluence does not hold for the term f(a, a). So both affluence and triangulation
are about rewrite relations in abstract settings, typically not described by a term rewriting
system.

I Remark. One-step affluence of −..=,−I= is equivalent to //− · −I ⊆ (//− ∪ −I)=, hence
implies sub-commutation //− · −I ⊆ −I= · //−=. In turn, local affluence of −..,−I implies
local commutation //− · −I ⊆ −II · ////− and affluence of −..,−I implies commutation
////− · −II ⊆ −II · ////−. In case of a single rewrite relation, the same hold, replacing
commutation by confluence. Just as confluence of → is equivalent to ↔∗ ⊆ � · �, i.e. to
the Church–Rosser property, affluence of → is equivalent to ↔∗ ⊆�∪�, i.e. to totality of
� on →-equivalence classes.

The standard example showing that local commutation does not imply commutation, b //−
a −I//− a′ −I c, shows local affluence does not imply affluence. Analogous to the fact that
one-step commutation implies commutation by the former being preserved under taking
reflexive and transitive closures, one-step affluence implies affluence:

I Lemma 2.4. If −..,−I is one-step affluent, then so are −..=,−I= and −..+,−I+.

Proof. Suppose the pair −..,−I is one-step affluent.
That −..=,−I= is one-step affluent follows from //−= · −I= = id∪ //−∪−I∪ (//− · −I).
To prove that−..+,−I+ is one-step affluent, we show for n,m ≥ 0, a //−n · //− · −I · −Im

b implies a (//−+ ∪ −I+) b, by induction on n+m. By assumption a //−n · (//− ∪−I) · −Im
b. Suppose w.l.o.g. a //−n · //− · −Im b. Then we conclude to a //−+ b if m = 0. Otherwise
we conclude to a (//−+ ∪ −I+) b by the induction hypothesis. J

I Theorem 2.5. Let → = Tr(−..) be the triangulation of any rewrite relation −... Then →
is affluent and ↔∗ = //−..∗.

2 The idea is that whereas the standard notion of confluence expresses that rewrite sequences (viewed
as streams) may ‘flow together’, we use affluence in its original (archaic) sense to express that one of
them may ‘flow to’ (is a tributary of) the other.

Proof. To prove affluence of −.. it suffices by Lemma 2.4 and the remark above it, to prove
← · → ⊆ ↔=. To that end, we show that for all natural numbers n,m ≥ 1, a ←n c →m b

implies a ↔= b. By the triangulation construction then either a is
⋃

1≤k<n+m↔=
k -related

to b and we are done, or a is not so related to b and then a↔n+m b by the assumed totality
of the relation R.

To prove ↔∗ = //−..∗ it suffices, since → =
⋃
n≥1→n, to show →n ⊆ //−..∗ for all n ≥ 1

by induction on n. In the base case→1 = −.. ⊆ //−..∗. If a→n+m b because a←n c→m b for
some object c and natural numbers n,m, then by the induction hypothesis a //−..∗ c //−..∗ b,
and we conclude by transitivity of //−..∗. J

I Corollary 2.6. The triangulation Tr(−..) is confluent for every rewrite relation −...

Having established this basic result, we investigate in the next section on which rewrite rela-
tions triangulation is a completion process, i.e. for which rewrite relation does triangulation
preserve termination?

3 Completion

When does triangulation yield a complete rewrite relation? That is, when does triangulation
yield a rewrite relation that is both confluent and terminating? We first present an example
showing that, in general, triangulation may fail to do so. Analysing the example, we then
propose two sufficient conditions for triangulation to preserve termination of the rewrite
relation, i.e. for triangulation to be a completion process.

a

b

c

d

f

g h

e

Figure 3 Rendering of Figure 2 using convention to decompose → into −..,−I

To ease discussing the various examples and conditions, we will from now on, when
discussing triangulation, use −I to denote

⋃
n>1→n. Hence → = −.. ∪ −I and this union

is disjoint; the triangulation → consists of the original relation −.. and the triangulating
relation −I, cf. Figure 3.

I Example 3.1. Consider the rewrite relation −.. and its triangulation with respect to
the usual greater-than relation > as displayed in Figure 4. The resulting rewrite relation
→ = −.. ∪ −I is not terminating; it is even cyclic: 0 −.. 4 −I 3 −.. 1 −I 0.

What causes that triangulation succeeds in yielding a complete rewrite relation in Ex-
ample 2.2? Below we present two sufficient conditions, compatibility and codeterminism,
for triangulation to be a completion process.

5

0

43

2

1

Figure 4 Failure of triangulation to yield a complete rewrite relation

3.1 Compatibility
Our first (trivial) condition is based on the observation that despite that both the original
rewrite relation −.. and the greater-than relation > with respect to which triangulation
takes place in Example 3.1 are terminating, they are not compatible in the sense that their
union is not terminating; it even is cyclic, e.g. 0 −.. 4 > 0. Since the −I-steps adjoined by
triangulation conform to the relation with respect to which triangulation takes place, the
latter being compatible with −.. guarantees that termination is preserved:

I Theorem 3.2. The triangulation Tr(−..) of −.. with respect to R is terminating if −..∪R
is terminating.

Proof. Combining →1 = −.. with →n ⊆ R, for all n > 1, we conclude to → =
⋃
n≥1→n ⊆

−.. ∪R, hence to termination of →. J

I Remark. The termination assumption on −.. ∪ R could have been rephrased as: −.. ⊆ R

and R is terminating. Clearly, the latter entails the former. To see the converse, note that
if a −.. b but a 6R b, then b R a by totality of R, hence a −.. b R a contradicting termination
of −.. ∪R. Therefore −.. ⊆ R and R is terminating.

I Remark. Under the conditions of the theorem also ordinary completion, which instead
of adjoining a step between b and c as in triangulation adjoins a step between −..-normal
forms of b and c if distinct, yields a complete rewrite relation. However, ordinary completion
results in confluence, not the stronger affluence guaranteed by triangulation.

I Remark. If triangulation results in a complete rewrite relation, then, although unboundedly
many stages may have been needed, there cannot be unbounded creation. More precisely,
there is no infinite sequence of triangulating steps such that each step in the sequence is
a cause (one of the two) in the triangulation process for the next step in the sequence, as
unbounded creation would contradict termination of the obtained rewrite relation.

3.2 Codeterminism
Our second (nontrivial) condition is based on the observation that the original rewrite rela-
tion −.. in Example 3.1 is not codeterministic: there are objects that are the target of more
than one rewrite step, viz. 0 −.. 4 //− 5.

I Definition 3.3. A binary relation R is deterministic if for all objects a in its domain, and
all objects b,c in its codomain, a R b and a R c imply b = c.

Forbidding the above configurations is captured by requiring the rewrite relation to be
codeterministic per our earlier convention of a relation having a property co-P if its converse
has property P .

g

a b c d e

hf i

j

Figure 5 Codeterministic rewrite relation

I Example 3.4. Neither of the rewrite relations of Examples 2.2 (left) and Example 3.1
is codeterministic. For the latter this was observed above. The former fails to be code-
terministic because, for example, a −.. c //− f . Both the system of definitions given in the
introduction and the rewrite relation displayed in Figure 5 are codeterministic.

Note that the graph in Figure 5 consists of a number of trees branching off from a cycle
(a −.. b −.. c −.. d −.. e −.. a). It is easy to see (branching ‘off’ is allowed by codeterminism,
but branching ‘in’ is not) that this holds in general: each component of the graph of a
codeterministic rewrite relation consists of a number (possibly 1) of trees branching off (if
at all) from pairwise distinct objects lying at a (possibly empty) cycle. Thus the graph of
an acyclic codeterministic rewrite relation is a forest of trees.3

I Remark. Although it is not unreasonable to require acyclicity, in any case for systems of
definitions as in the introduction, one can well imagine an infinite setting without maximal
notions, where definitions can always be folded further. In Section 4 we also provide a
dual approach, choosing maximally unfolded representatives. For the moment we will view
termination simply as necessary for the approach via maximally folded representatives to
make sense.

Intuitively, triangulating is a completion process for codeterministic rewrite relations, since
despite that triangulating the different branches from a node in a forest will create new
steps ‘spanning the gaps’ between these branches, no cycles will be created nor will disjoint
trees be joined by triangulating, hence termination will be preserved. As formalizing this
intuition exactly is tedious, we instead provide a short proof based on the following result
due to Doornbos and von Karger. Variations on this result are given by Dershowitz in [3].

I Lemma 3.5 ([4]). For rewrite relations −..,−I let → = −..∪−I. Then → is terminating
if −.. and −I are terminating, and −.. · −I ⊆ −.. ∪ (−I ·�).4

Proof. We provide a Ramsey-style proof, see Figure 6, as an alternative to the calculational
proof in [4]. Without loss of generality we may assume −.. and −I to be disjoint (otherwise
consider −..−−I and −I).

For a proof by contradiction, suppose an object a0 such that∞(a0) were to exist, writing
∞(a) to denote that a allows an infinite→-reduction. Such an infinite→-reduction sequence
may then be constructed through objects an with ∞(an), while giving preference to −I-
steps. Formally: suppose the sequence has been constructed up to an. If there exists an

3 The trees may be infinite: both infinitely branching and non-rooted trees are allowed.
4 The latter property was dubbed lazy commutation in [3].

a9

infinite →
-reduction giving preference to −I-steps

infinite −..-reduction

a0 a1

a2 a5

a6

a7

Figure 6 Ramsey-style construction in proof of Lemma 3.5

object a such that an −I a and ∞(a), then we set an+1 to a. Otherwise we set an+1 to any
object a such that an −.. a and ∞(a) (which must exist since ∞(an) and → = −.. ∪ −I).

We show one can construct an infinite −..-subsequence through objects that do not allow
a −I-step to an object b with ∞(b). Formally: we start out with the empty subsequence for
some object an for a pair of indices n,n + 1 such that an −.. an+1. Such a pair must exist
since otherwise the original reduction sequence would be an infinite −I-reduction sequence.
Per construction of the original sequence, an −.. an+1 entails that an does not allow a −I-
step to an object b with ∞(b). Next, suppose to have a subsequence ending in an for some
pair of indices n < m such that an −.. am.

In case am −.. am+1 (e.g. a1 −.. a5 −.. a6 for n = 1, m = 5 in Figure 6), we extend the
subsequence with am and continue with the pair of indices m,m+ 1.
Otherwise an −.. am −I am+1 (e.g. a6 −.. a7 −I a8 in Figure 6), hence by assumption
an (−.. ∪ (−I ·�)) am+1. Since by construction an does not allow a −I-step to an
object b with ∞(b), but ∞(am+1), in fact an −.. am+1 must hold and we may continue
with the pair of indices n,m+ 1.

Noting that we always eventually end up in the first case (otherwise the original sequence
would contain an infinite −I-reduction sequence, cf. a6 −.. a9 in Figure 6), the process yields
an infinite −..-reduction sequence (in Figure 6 the sequence a1, a5, a6, a9, . . .), contradicting
termination of −... J

I Remark. The proof of Lemma 3.5 in fact shows a stronger property than preservation of
termination of rewrite relations: it shows that any object allowing an infinite →-reductions
also allows an infinite →-reduction having either an infinite −..-tail or an infinite −I-tail.

I Theorem 3.6. Triangulating with respect to a terminating relation preserves termination
of codeterministic rewrite relations.

Proof. Let → be the triangulation Tr(−..) of the codeterministic terminating rewrite re-
lations −.. and let −I be the, terminating, triangulating rewrite relation. Since → =
−.. ∪ −I ⊆ −..+ ∪ −I ⊆ →+, to prove termination of → it suffices by Lemma 3.5 to
prove −..+ · −I ⊆ −..+ ∪ (−I · �). The latter property follows from the claim that
−..+ · ↔n ⊆ −..+ ∪ (−I · �) for all n > 1, a claim we prove by induction on n. Suppose
a −..+ b↔n c. By definition of triangulation b↔n c and n > 1 imply that there is an object
d and there are natural numbers n > m, k ≥ 1 such that b←m d→k c. We distinguish cases
on whether or not m is greater than 1.

if m = 1, then b //− d by definition of triangulation, hence a −.... d by codeterminism of
−... If in fact a = d then we are done since then a −I c. Otherwise we conclude by the
induction hypothesis for a −..+ d→k c.
if m > 1, then by the induction hypothesis for a −..+ b ←m d we conclude that
a (−..+ ∪ (−I ·�)) d. If in fact a −..+ d then we conclude by the induction hypo-
thesis as in the previous item. Otherwise a −I ·� d→ c. J

I Corollary 3.7. Triangulating a terminating codeterministic rewrite relation with respect
to a terminating relation, is a completion process.
The corollary does not necessarily yield a decision procedure for deciding equivalence of ter-
minating codeterministic rewrite relations, as the triangulation process may well be infinite
itself, as is the case for the rewrite relation in Figure 7.

Figure 7 Rewrite relation requiring infinite triangulation

Acyclicity too is preserved by triangulation of codeterministic relations.

I Corollary 3.8. Triangulating an acylic codeterministic rewrite relation with respect to an
acylic relation, yields an acylic relation.

Proof. If a cycle were to exist in the triangulation, then this cycle would be generated from
a finite part of the rewrite relation. On this finite part both the rewrite relation and the
total relation with respect to which is triangulated, are terminating by acyclicity, hence by
Theorem 3.6 there can be no cycle. J

3.2.1 Codeterministic triangulation yields skew-ladders
We conclude this section by showing that triangulation of a codeterministic rewrite relation
with respect to an acylic relation proceeds in a very specific way: the triangulating steps
constitute a skew-ladder as displayed in Figure 8 (left), where each triangulating −I-step is
based on at least one orginal −..-step.

I Definition 3.9. A family (→n)n≥1 of rewrite relations has the skew-ladder property with
respect to R, if →n+1 ⊆ R ∩ ((←1 · →n) ∪ (←n · →1)) for n ≥ 1. A rewrite relation −..
has the skew-ladder property with respect to R, if the family (→n)n≥1 in Definition 2.1,
obtained by triangulating −.. with respect to R, has that property.

Before showing the skew-ladder property, we first note that for this property to hold it
is necessary that the rewrite relation be codeterministic (see Figure 8 (middle) for a non-
codeterministic counterexample) and that the relation with respect to which triangulation
takes place be acyclic (aee Figure 8 (right) for a cyclic counterexample), where −.. = →1
and −In =→n for n > 1.

...

2

4

3

2 2

4

2 2

2

3 5

18

Figure 8 Skew-ladder (left) and non-ladders (middle, right)

I Theorem 3.10. Codeterministic rewrite relations have the skew-ladder property with re-
spect to acyclic total relations.

Proof. Let (→n)n≥1 be the family of rewrite relation obtained by triangulation of −.. with
respect to R, so −.. =→1 and −I =

⋃
n>1→n ⊆ R. For a proof by contradiction, suppose

n > 1 were minimal such that a →n+1 b (hence by definition of triangulation a R b) but
not a ((←1 · →n) ∪ (←n · →1)) b. By definition of triangulation then there would be m, k
such that n = m + k and a ←m c →k b for some c. By the induction hypothesis the skew-
ladder property holds for both c →m a and c →k b. By induction and codeterminism of
−.. it is easy to see (Figure 9) this implies there exist objects a′, b′, c′ and natural numbers
m′, k′,m′′, k′′ such that c′ −.. c and a //−m′′

a′ ←m′ c′ →k′ b′ −..k′′
b with m′+m′′+ 1 = m,

k′+k′′+1 = k and m′, k′ ≥ 1. We claim repeatedly applying triangulation to this peak gives

b′

a b

c

c′

a′

Figure 9 Construction in the proof of Theorem 3.10

rise to a skew-ladder with final rung a→n′ b such that n′ + 1 ≤ n, which would contradict
existence of the step a→n b.

To see that the claim holds, it suffices to show that the rung is eventually created (not
missed). To that end note that surely a rung incident to either a or b is created, say w.l.o.g.
to b.

If the rung ends in b, then a′1 −I b with a′ −.... a′1 −.. a1 −.... a. Then a1 R b must
hold as otherwise a1 R c R b R a1, by totality of R, contradicting acyclicity of R. So we
obtain a1 −I b, eventually ending up with a −I b.
If the rung would start in b but not end in a, then a′′ J− b for some a′′ with a′ −....
a′′ −..+ a. But then b R a′′ R c R b, contradicting acyclicity of R. J

4 Completed

The previous section provided sufficient conditions on the original rewrite relation −.. and
the relation R with respect to which it was triangulated, for the triangulation process to yield
a complete rewrite relation. In this section, we reverse the process and look for conditions
on rewrite relations −..,−I that are sufficient for their union to be complete. Although one
still may think of −.. as the original rewrite relation and −I as the triangulating rewrite
relation, the conditions provided will be abstract in that they only concern −.. and −I. In
particular, the conditions refer neither to the triangulation process nor to the relation R used
in it; they may (and will) of course refer to the characteristic properties the triangulation
process brings about. Throughout → will be used to denote −.. ∪ −I.5

On the one hand, triangulation guarantees every peak to give rise to a triangle:

← · → ⊆ ↔= (affluence)

On the other hand, it guarantees that every −I-step is caused by triangulation:

−I ⊆ ← · → (triangulation)

As these properties are characteristic of the triangulation process of Section 2, we will assume
both throughout this section.

Since (affluence) states affluence of→= which in turn implies→ is confluent (Lemma 2.4),
to obtain completeness it only remains to investigate which conditions on −..,−I are suf-
ficient to guarantee termination of →. In case −.. is not codeterministic, one cannot do
much more than crudely requiring that → itself is terminating. Of course, one may try to
employ compatibility results such as Lemma 3.5, to reduce termination of → to that of its
constituting relations −..,−I, but as the following example shows, employing that lemma is
tied closely to the codeterministic case.

I Example 4.1. The union of a //− b −.. c //− d −.. e and c −I e J− a J− c is terminating,
but Lemma 3.5 cannot be used to show this as b −.. a −I e but neither a −..+ e nor
a −I ·� e. Note that −.. is not codeterministic.

Hence(forth), we restrict ourselves to the codeterministic case below. That is, we will assume
the following property on top of the (affluence) and (triangulation) assumptions:

−.. · //− ⊆ id; (codeterminism)

5 Assuming −.. and −I to be disjoint would not affect the results in this section.

4.1 Preservation of acyclicity by finiteness
We first show that for finite rewrite relations, as is the case for the motivating systems of
definitions in the introduction, the above three conditions are already sufficient to guarantee
completeness of →, if −..,−I are assumed terminating. After that we show this does not
hold for infinite rewrite relations.

Noting that for finite rewrite relations termination coincides with acyclicity, our first
result can be formulated as a preservation of acyclicity result.

I Theorem 4.2. For finite rewrite relations −..,−I and → = −.. ∪ −I, if properties (tri-
angulation) and (codeterminism) hold and −..,−I are acyclic, then → is acyclic.

Proof. Assume → admits a cycle. With a cycle we associate the multiset of elements on
it, by which cycles can be compared by a well-founded order: the multiset order induced
by −I. Now we take a →-cycle that is minimal with respect to this multiset order, that is,
there exists no cycle that is strictly smaller with respect to the multiset order.

As −.. and −I are acyclic, our cycle contains both −.. and −I-steps. Moreover, it also
contains a −..-step followed by a −I-step:

a −.. b −I c� a.

Now we choose c1 such that b ← c1 → c, using property (triangulation). As long as
b J− ci for increasing i we repeat the following: choose ci+1 such that b← ci+1 → ci, again
using property (triangulation). Now one of the following two cases holds:

This process stops. Then for the last chosen ci we have ci −.. b, see Figure 10. By

c5

b ca = c6 a

c1

c2
c3

c4

Figure 10 Smaller cycle if erecting cotriangles stops

property (codeterminism) we conclude a = ci. Since cj −I b for all j satisfying
1 ≤ j < i, we conclude that the cycle via {cj | 1 ≤ j < i}

a = ci � c� a

is smaller than our original minimal cycle: the element b has been replaced by the
(possibly empty) multiset {cj | 1 ≤ j < i}, contradiction.
This process goes on forever. Then by finiteness of the set we obtain cj = ci for some
j > i, yielding a new cycle cj → cj−1 � ci = cj . Since b J− cκ for all κ, all elements in
this new cycle are less than the element b occurring in the original minimal cycle, again
contradicting minimality.

As both cases contradict the assumption of the existence of a →-cycle, we have proved that
→ is acyclic. J

I Corollary 4.3. For finite rewrite relations −..,−I and → = −.. ∪ −I, if properties (af-
fluence), (triangulation) and (codeterminism) hold and −..,−I are terminating, then
→ is complete.

Somewhat surprisingly, this result does not generalise to rewrite relations on infinite sets of
objects as illustrated by the following counterexamples.
I Counterexamples 4.4. Take as objects the set of natural numbers and let
−.. = {(n+ 1, n) | n ≥ 2} ∪ {(2, 0), (0, 1)}; and
−I = {(n, 1) | n ≥ 2} ∪ {(1, 0)}.

Then except for finiteness, all conditions of Corollary 4.3 are satisfied yet → is not termin-
ating; it admits the cycle 0 −.. 1 −I 0 (see Figure 11 left).

0102345 2345 1

Figure 11 Loss of termination by infinite −..-expansion (left) and infinite −I-expansion (right)

For another example, take as objects the set of natural numbers and let
−.. relate 0 to 1;
−I be the greater-than relation.

Again all conditions of Corollary 4.3 except for finiteness are satisfied, yet → is not termin-
ating; it admits the cycle 0 −.. 1 −I 0 (see Figure 11 right where transitive −I-edges have
been omitted).
In the next two sections, we investigate how to regain the preservation result for (potentially)
infinite rewrite relations, for two natural generalisation of acyclicity, termination respectively
cotermination.

4.2 Preservation of termination by strong triangulation
To obtain completeness for infinite rewrite relations as well, we bar the counterexamples of
the previous section by requiring, on top of the (affluence) and (codeterminism), the
following strengthening of (triangulation)

−I ⊆ ((//− · →) ∪ (← · −..)) ∩ (////− · ((//− · −..)− id) · −....) (strong triangulation)

The first conjunct of (strong triangulation) captures the idea that every −I-step is
caused by a peak containing at least one −..-step, while the second conjunct captures that
the −I-step originates with some non-trivial peak of −..-reductions. Any codeterministic
rewrite relation has the skew-ladder property with respect to an acyclic relation as shown in
Section 3.2.1, and in that case the skew-ladder property entails (strong triangulation):
I Proposition 4.5. If (→n)n≥1 has the skew-ladder property with respect to some irreflexive
relation R, then (strong triangulation) holds for −.. =→1 and −I =

⋃
n>1→n.

Proof. Since −I ⊆ (//− · →) ∪ (← · −..) follows directly from the definition of the skew-
ladder property, it remains to show −I ⊆ ////− · ((//− · −..)− id) · −..... To that end it suffices
to establish →n ⊆ ////− · ((//− · −..) − id) · −.... for all n > 1, which we prove by induction
on n. In the base case the skew-ladder property gives →2 ⊆ R ∩ (//− · −..) from which
we conclude by irreflexivity of R. In the induction step, the skew-ladder property yields
→n+1 ⊆ R ∩ ((//− · →n) ∪ (←n · −..)) from which we conclude by the induction hypothesis
for →n and irreflexivity of R again. J

That is, (strong triangulation) captures an essential aspect of the triangulation of a
codeterministic rewrite relation with respect to an acyclic (hence irreflexive) total relation.

I Remark. That (strong triangulation) is a proper strengthening of (triangulation) can
be seen by considering the rewrite relations in Counterexamples 4.4. That the triangulation
of a non-codeterministic rewrite relation may fail to satisfy (strong triangulation) can be
seen by viewing −I in Example 4.1 as arising from triangulating −.., and considering the
step a −I e.

I Theorem 4.6. For rewrite relations −..,−I and → = −.. ∪ −I, if properties (strong
triangulation) and (codeterminism) hold and −..,−I are terminating, then → is ter-
minating.

Proof. We proceed as in the proof of Theorem 3.6. That is, to prove termination of →
under the assumption that −..,−I are terminating, it suffices by Lemma 3.5 to prove −..+ ·
−I ⊆ −..+ ∪ (−I · �). The latter property follows from the claim that a −..+ b J−I c

entails a (−..+ ∪ (−I ·�)) c for all objects a, b, c, a claim we prove by induction on the pair
n,m of positive natural numbers such that b (//−n · ((//− · −..)− id) · −..m) c. Note that
the pair exists by the second conjunct of the (strong triangulation) property, and that
it is unique by the (codeterminism) property and the assumption that −.. is terminating.
We distinguish cases on the disjuncts of the first conjunct of the (strong triangulation)
property for b J−I c.

if b //− b′ −.. c, then by the (codeterminism) property, a −.... b′ −.. c and we conclude;
if b //− b′ −I c, then by the (codeterminism) property, a −.... b′ −I c. If in
fact a = b′ then we conclude. Otherwise we conclude by the induction hypothesis
for a −..+ b′ −I c, wich applies since by the second conjunct of the (strong tri-
angulation) property for b′ −I c, for some pair n′,m′ of positive natural numbers
b′ (//−n′ · ((//− · −..)− id) · −..m′) c, hence also b (//−n′+1 · ((//− · −..)− id) · −..m′) c, so
n = n′ + 1 and m = m′ by uniqueness of the pair n,m;
if b J− c′ −.. c then a (−..+ ∪ (−I ·�)) c′ by the induction hypothesis for a −..+ b J− c′,
which applies for the same reason as in the previous item. From that we conclude
again. J

I Corollary 4.7. For rewrite relations −..,−I and → = −..∪−I, if properties (strong tri-
angulation) and (codeterminism) hold and −..,−I are terminating, then → is complete.
Neither conjunct of the (strong triangulation) property can be dispensed with.

I Counterexamples 4.8. The first example of Counterexamples 4.4 satisfies all conditions of
Corollary 4.7 except for the second conjunct of the (strong triangulation) property, yet
→ is not complete; it is not terminating as we have seen before.

For an example satisying all conditions of Corollary 4.7 except for the first conjunct of
the (strong triangulation) property, consider objects a, b, c, d with rewrite relations given
by a //− b //− c −.. d and a −I d −I b. That the conditions hold is easy to check, yet → is
not complete; it is not terminating as it admits the cycle a −I d −I b −.. a.

4.3 Preservation of cotermination by triangulation
There are two natural generalisations of acyclicity from finite to infinite rewrite relations,
termination and cotermination. In the previous section we have seen that for termination
to be preserved (triangulation) had to be strengthened to (strong triangulation).6 In

6 Counterexamples 4.4 showed that the (triangulation) property was not sufficient to show preservation
of termination in the case of infinite rewrite relations.

this section we show that for cotermination no such strengthening is needed; it is preserved
without more. That is, investigating the properties of the triangulation process, we answer
the dual question whether triangulating a coterminating rewrite relation −.. with respect to
a coterminating relation R yields a coterminating rewrite relation, affirmatively.

That the triangulation of −.. with respect to R is coterminating if their union −.. ∪ R
is coterminating, follows by the same proof as the one of Theorem 3.2. The interesting
situation is again when −.. is assumed to be codeterministic, but no compatibility or finitenes
condition is put on the coterminating relations −..,R.7 We first show an auxiliary result,
characterising the −..-reduction peaks that cause →-steps.

I Lemma 4.9 (∆). For rewrite relations −.., −I and → = −.. ∪ −I, if properties (trian-
gulation) and (codeterminism) hold and −..,−I are coterminating, then for all a0 → a1
a common −..-expansion a0,1 of a0,a1 exists, such that a1 J−+ b, for i ∈ {0, 1} and all b
with ai //−+ b //−+ a0,1 (see Figure 12).

a0,1

a1a0
+

+
+

++

Figure 12 Illustration of the statement of the ∆-lemma

Proof. The proof is by induction on the pair consisting of a1 and the multiset of all −..-
expansions of a0, finite by (codeterminism) and cotermination of −.., well-foundedly
ordered by the lexicographic product of J− and its multiset extension. We distinguish
cases on the step a0 → a1.

(a0 −I a1) We distinguish cases on the peak obtained by (triangulation):
if a0 //− a2 −.. a1, then, setting a0,1 = a2, we conclude immediately;
if a0 //− a2 −I a1, then we conclude by the induction hypothesis for a2 −I a1, which
applies by a decrease in the second component as the multiset of −..-expansions of a2
is a proper submultiset of that of a0, since a0 //− a2;
if a0 J− a2 −.. a1, then we conclude by the induction hypothesis for a2 −I a0, which
applies by a decrease in the first component, since a1 J− a0;
if a0 J− a2 −I a1 then the induction hypothesis applies first to a2 −I a0 yielding a
common −..-expansion a2,0 (decrease in the first component: a1 J− a0) and next to
a2 −I a1 yielding a common −..-expansion a2,1 (decrease in the second component:
the objects on the −..-expansion from a2 up to a2,0 all are −I-expansions of a0 via a2).
By (codeterminism) a2,1−j ////− a2,j for one of j ∈ {0, 1}, so we may set a0,1 = a2,j

as common −..-expansion of a0,a1. If ai //−+ b //−+ a0,1 for some i ∈ {0, 1} and some
b, then either ai //−+ b //−+ a2,i or a2 ////− a2,i ////− b //−+ a0,1 = a2,j and we conclude
by either induction hypothesis and a1 J− a0;

7 By Corollary 3.8 cotermination is seen to be preserved in the case of finite rewrite relations, since then
termination, acyclicity, and cotermination all coincide.

(a0 −.. a1) Then we conclude, setting a0,1 = a0, trivially. J

Nothing in the conditions of the ∆-lemma entails completeness of →, and indeed it may fail
to hold as can be seen by letting −.. be the (coterminating) predecessor relation on natural
numbers and −I the empty relation. We do however have cocompleteness (coconfluence and
cotermination) even without requiring (affluence).

I Theorem 4.10. For rewrite relations −.., −I and → = −.. ∪ −I, if properties (code-
terminism) and (triangulation) hold and −..,−I are coterminating, then → is cocom-
plete.

Proof. First we consider cotermination of →. For a proof by contradiction, suppose a1 ←
a2 ← . . . were an infinite expansion. Then adjoining an object a0, and steps ai+1 −I
a0, for all i, would yield relations still satisfying the assumptions. The ∆-lemma yields a
contradiction as a0 and a1 do not have a common −..-expansion.8

For the proof of coconfluence of →, note that the ∆-lemma yields that →-convertibility
is contained in −..-convertibility, from which one concludes as −.. is trivially coconfluent
by (codeterminism). J

Although we think the proof of the result, in particular that of the ∆-lemma, is interesting,
as of yet this is just a theoretical result and we do not have applications (except for providing
an alternative more general/complex proof to Corollary 4.3). Still, the result lends itself well
for a reformulation as a nice puzzle, i.e. one that is easy to understand but hard to solve.
I Puzzle 4.11. Consider a city with Red (−I) and Blue (−..) buslines (see Figure 13 left):

Blue buses are deterministic, i.e. the next stop of a Blue bus (if it can go anywhere at
all) is completely determined by the stop it’s currently at;
Red buses can be triangulated, i.e. if a Red bus can go directly from stop a to stop b,
then there is a stop c (not necessarily distinct from a,b) such that one can go directly
from both a and b to c, in each case by either taking a Red or a Blue bus.

Show that if one can make an infinite trip using buses of either company, then one can make
an infinite monochrome trip, i.e. a trip using buses of one and the same company only.9

2

> 3

1

Figure 13 On the left Red and Blue buslines satisfying the conditions of the puzzle is shown.
On the right it is shown how to construct an infinite monochrome Red −I-trip.

To solve Puzzle 4.11 for the particular case displayed in Figure 13 it suffices to apply, the
contrapositive of, the construction in the proof of the ∆-lemma (for the converse of the
relations):

8 For an alternative constructive proof, one may show, measuring objects by their multiset of −..-
expansions, a decrease in the multiset extension of J−, along any step.

9 So one can save lots of money by buying an ∞-pass from one of the companies only.

I Solution 4.12. Applying the construction to the busroute from top–right to top–left in
the circuit on the left in Figure 13 leads to adjoining an infinite succession of triangles to
−I-steps, as indicated by the numbers on the right in the figure, and thereby to an infinite
monochrome trip, the Red −I-trip indicated by the thick arrows.
A general solution to the puzzle requires considering arbitrary length bichrome trips instead
of single hops, corresponding exactly to our result.

5 Conclusion

In diagram completion in rewriting theory [6] the focus is on square diagrams. For instance,
for proving confluence if a rewrites to both b and c we are looking for d such that both b and
c rewrite to d, as depicted in a square diagram as is in the RTA logo. In doing so, typically
the diagram is tiled by applying local confluence, again using such a square diagram as a
basic building block. In contrast, in this paper not these squares are the basic building
blocks, but the even more basic triangles: in the above setting we directly want to orient
b and c. Inspired by computational geometry where splitting up polygons into triangles is
called triangulation, we define triangulation to be the process of extending a rewrite relation
by extending every peak to a triangle. The triangulation process is somehow the opposite of
the standard completion processes in that the former completes as fine-grained as possible
whereas the latter completes as course-grained as possible. In this paper we studied some
basic properties of triangulation, and its relation to confluence and termination. It turned
out that the result of triangulation is always confluent (Theorem 2.5), even affluent, being
the natural strengthening of confluence with respect to triangulation. In Example 3.1 we
show that in general triangulation does not preserve termination. In case the initial rewrite
relation is codeterministic it turned out that termination is preserved (Theorem 3.6); the
proof of this property was remarkably hard.

Acknowledgements. We thank Ashish Tiwari for interesting discussions on Puzzle 4.11,
and the attendants of TeReSe and the TF-lunch seminar for useful feedback. We have em-
ployed Nachum Dershowitz’ idea to present Theorem 4.10 as a puzzle on buslines.

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998. (doi:10.2277/0521779200).

2 L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof order-
ings. Journal of the ACM, 41(2):236–276, 1994. (doi:10.1145/174652.174655).

3 N. Dershowitz. On lazy commutation. In Languages: From Formal to Natural,
volume 5533 of Lecture Notes in Computer Science, pages 59–82. Springer, 2009.
(doi:10.1007/978-3-642-01748-3_5).

4 H. Doornbos and B. von Karger. On the union of well-founded relations. Logic Journal of
the IGPL, 6(2):195–201, 1998. (doi:10.1093/jigpal/6.2.195).

5 J.F. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers, C. Tankink, Y. Usenko,
M. van Weerdenburg, W. Wesselink, T. Willemse, and J. van der Wulp. The mCRL2
toolset. In Proceedings of the International Workshop on Advanced Software Development
Tools and Techniques (WASDeTT 2008), 2008. (pdf at workshop).

6 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003. (doi:10.2277/0521391156).

http://dx.doi.org/10.2277/0521779200
http://dx.doi.org/10.1145/174652.174655
http://dx.doi.org/10.1007/978-3-642-01748-3_5
http://dx.doi.org/10.1093/jigpal/6.2.195
http://scg.unibe.ch/download/wasdett/wasdett2008-paper05.pdf
http://dx.doi.org/10.2277/0521391156

	Introduction
	Triangulation
	Completion
	Compatibility
	Codeterminism
	Codeterministic triangulation yields skew-ladders

	Completed
	Preservation of acyclicity by finiteness
	Preservation of termination by strong triangulation
	Preservation of cotermination by triangulation

	Conclusion

