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Abstract4

We make some observations on how innermost →i, parallel innermost q−→i and full parallel innermost5

rewriting −→i relate for first-order term rewrite systems (TRSs).6
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11

Confluence We only employ basic concepts in abstract and first-order term rewriting [5].12

▶ Lemma 1. Let →, ↪→ be rewrite systems on the same set of objects such that (i)13

↪→ ⊆ →+; and (ii) → ⊆ ↪→ · =←. Then confluence of ↪→ entails confluence of → if14

(iii) →= · ↪→ ⊆ ↪→ ·→=, and is equivalent to it if (iv) → is terminating.15

Proof. Let →, ↪→ be rewrite systems on a set of objects, satisfying assumptions (i) and (ii).16

The assumptions allow us to speak just of normal forms as →- and ↪→-normal forms coincide.17

We first show confluence of ↪→ entails confluence of → assuming (iii). It suffices [5,18

Prop. 1.1.11] that ↪→→·→= has the diamond property, as the 1st inclusion in→ ⊆ ↪→→·→= ⊆↠19

holds by reflexivity of ↪→→ and the 2nd by assumption (i). We conclude by =←·←←↩·↪→→·→= ⊆(ii)
20

→= · ←←↩ · ↪→→ · =← ⊆CR(↪→) →= · ↪→→ ·←←↩ · =← ⊆(iii) ↪→→ ·→= · =← ·←←↩.21

Next we show ↪→ is confluent iff → is, assuming (iv).22

For the only–if-direction, we claim a

↪→ = b

↪→ for all a ↠ b, where the normal forms a

↪→ and b

↪→

23

of a and b exist uniquely by termination (assumptions (iv) and (i)) and confluence (assumption)24

of ↪→. The claim entails confluence of → since b ↞ a ↠ c gives b̂ ↞ b ↞ a ↠ c ↠ ĉ for25

normal forms b̂ = ĉ of b and c, existing by assumption (iv) and equal as b̂ = b̂

↪→ = a

↪→ = ĉ

↪→ = ĉ26

by the claim. We show the claim by well-founded induction on a w.r.t. ←. It being trivial27

for normal forms, suppose a→ a′ ↠ b. Then a ↪→ b′ =← a′ for some b′ by assumption (ii)28

and we conclude to a

↪→ = b′ ↪→ = a′ ↪→ = b

↪→ by a ↪→ b′ and the IH for a′ ↠ b′ and a′ ↠ b.29

The if-direction holds since if b←←↩ a ↪→→ c then b̂←←↩ b←←↩ a ↪→→ c ↪→→ ĉ for normal forms30

b̂ = ĉ of b and c, existing by assumptions (iv) and (i), and equal since then b̂ ↞ a ↠ ĉ by31

assumption (i) and b̂, ĉ are normal forms, equal by the assumed confluence of →. ◀32

▶ Theorem 2. →i is confluent if −→i is, and the converse holds if → is terminating, for →i33

the innermost, cf. [1, Rem. 1] and −→i the full parallel innermost strategies of a TRS, with34

−→i defined as the full strategy for the (non-empty, i.e. contracting at least 1 redex) parallel35

innermost strategy q−→i [5], contracting the full (i.e. maximal) set of innermost redexes.136

Proof. We claim the respective assumptions of Lemma 1 hold for → := q−→i (non-empty)37

and ↪→ := −→i. We then conclude by the lemma since confluence of q−→i and→i coincide by38

→i ⊆ q−→i ⊆↠i. We prove the claim. (i) holds by −→i being a special case of q−→i; (ii) holds39

1 The notation should suggest that −→ is a full version of q−→, in the same way that full multisteps •−→
are a full version of multisteps ◦−→, contracting a maximal set of (non-overlapping) redex-patterns [2].
The analogy goes (much) further, cf. [5, Sect. 8.7]. E.g. just like •−→ is deterministic for TRSs without
critical pairs, −→ is deterministic for systems without overlay critical pairs.
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since if t q−→i,P s with P its set of (pairwise parallel) positions of contracted redexes, then40

s q−→i,T −P u and t −→i u, obtained by contracting (in arbitrary ways) in s the innermost41

redexes of t at positions not in P (still innermost redex-positions in s);2 (iii) holds since42

t q−→i s −→i u means t q−→i,P s q−→i,S u for some P ⊆ T . If P = T we conclude; otherwise43

the consecutive parallel steps constitute a loath pair [3, Sect. 4]: the innermost redexes44

contracted in s q−→i,S u at positions in T − P can be permuted up front into (as residuals of45

innermost redexes in t not contracted in) t q−→i,P s giving t q−→i,T s′ q−→i,S−(T −P ) u; (iv) if46

→ is terminating, then so is (non-empty) q−→i by q−→i ⊆ →+. ◀47

The theorem allows to reduce the study of confluence of full parallel innermost rewriting48

−→i to that of more local, hence easier to analyse (qua properties), innermost rewriting →i;49

in part: without termination,3 confluence of →i need not entail confluence of −→i due to the50

usual out-of-sync problem: for the trivially confluent TRS with rules b← a→ c and b↔ c,51

the full parallel innermost steps f(a, a) −→i f(b, c), f(b, b) are not −→i-joinable.52

Termination of full parallel innermost rewriting follows from that of innermost rewriting53

since −→i ⊆ →+
i . The quantitative version of this, using the framework of [4], states that54

for every −→i-reduction of measure µ, there is a co-initial →i-reduction of measure ν such55

that µ ≤ ν, measuring a q−→i,P -step by #P . It immediately follows from q−→i,P ⊆ →#P
i56

and has the original qualitative statement as a consequence since it entails that if there were57

an infinite −→i-reduction, so with measure µ = ⊤, there would be a co-initial →i-reduction58

with µ ≤ ν, hence ν = ⊤, so the →i-reduction would be infinite too.4 To see also the59

converse quantative (and hence the (known) qualitative) statement holds, i.e. that for every60

→i-reduction from t of measure µ, there is a co-initial −→i-reduction of measure ν such61

that µ ≤ ν, it suffices to instantiate (the statement in the proof of) [1, Thm. 5]5 with62

▶ := ▷ :=→i, setting p to the successive pi of2 T = {p1, . . . , pn}, yielding an →i-reduction63

of shape t→i,p1 . . .→i,pn
s→i . . .. with measure ν ≥ µ, from which we conclude by iterating64

on s as then t −→i s.65

The above gives a handle on also reducing (or simply relating) the study of quantitative66

termination of full parallel innermost rewriting (macro steps, in the terminology of [4]) to67

that of innermost rewriting (micro steps).668
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