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Abstract. The class of orthogonal rewriting systems (rewriting systems
where rewrite steps cannot depend on one another) is the main class
of not-necessarily-terminating rewriting systems for which confluence is
known to hold. Huet and Toyama have shown that for left-linear first-
order term rewriting systems (TRSs) the orthogonality restriction can
be relaxed somewhat by allowing critical pairs (arising from maximally
general ways of dependence between steps), but requiring them to be
parallel closed. We extend these results by replacing the parallel closed
condition by a development closed condition. This also permits to gener-
alise them to higher-order term rewriting, yielding a confluence criterion
for Klop’s combinatory reduction systems (CRSs), Khasidashvili’s ex-
pression reduction systems (ERSs), and Nipkow’s higher-order pattern
rewriting systems (PRSs).

1 Introduction

This paper is concerned with a method to prove confluence of rewriting systems.
It’s an extension of some confluence results in [CR36, Hue80, Toy88, Klo80,
Kha92, Raa93, Tak, MN94, Oo0s94, ORb] and we refer the reader to these pa-
pers and to the handbook chapters [DJ, Klo] for motivation and for standard
definitions as well. Here we will mainly be concerned with proving our result:

Left-linear development closed PRSs are confluent.

Let’s explain the terminology used. A rewrite system for which the rewrite rules
do not depend on one another is called orthogonal Formalising this notion can
be quite involved depending on the rewrite formalism it is applied to ([Hue80,
Klo80, HL, GLM, MN94, O0s94]), but the intuition to be captured is always the
same: an application of a rule replaces some substructure by another one, and
in orthogonal systems we moreover have that if two distinct substructures can
be replaced then these substructures are independent. Some (non)examples are:

1. The rules F — G and G — H are orthogonal (their left-hand sides F and G are
independent) hence confluent.
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2. The rules F — G and F — H are not orthogonal, since they both depend on
the symbol F, and for this reason they’re said to be ambiguous. The system
is not confluent since F can be rewritten to the normal forms G and H.

3. The rules ([Hue80])

EQ(x,x)—T
EQ(x,S(x)) — F

o0 — S(00)

are not orthogonal, since application of the third rule to FQ(c0, o0) destroys
the possibility of applying the first rule. The system 1s not confluent since the
term EQ(o0, 00) can be rewritten to both T and F'. The first and second rule
are said to be non-left-linear, because of the presence of a repeated variable
in its left-hand side.

A fundamental result in rewriting is that forbidding the kind of dependence in
the latter two items suffices for orthogonality of rewriting systems:

Left-linear, non-ambiguous term rewriting systems are confluent.

Our aim is to show that for the class of higher-order Pattern Rewriting Systems
(PRSs [MN94]), the non-ambiguity condition can be relaxed somewhat with-
out jeopardising confluence. The condition we name development closed and it
expresses that if two steps are dependent, then from the result of performing
the inner step, the result of performing the outer step can be reached by one
development step.

Remark. The notion of inner and outer are the usual ones obtained from viewing
terms as trees. Outer means closer to the root. Observe that steps in disjoint
subtrees cannot depend on each other.

1. Adding the rules G — H and H — G to the rewriting system in the second item
above makes 1t development closed. The results G and H of two dependent
steps can be rewritten to each other in one step, which is a special case of
a development step. (Note that in this case the dependent steps are both
inner and outer.)

2. The rewrite rules for ‘parallel or’:

por(z,T)—T
por(T,z) = T

are development closed since steps only depend on each other in the case of
por(T,T). The result then is T for either rewrite rule (so in fact the system
is weakly orthogonal [ORD]) and since the empty step is a special case of a
development step, the system is confluent.

Remark. Throughout the text there are many references to [Oo0s94]. This is only
meant for easy reference. Many of the results can be found at many other places.



2 Rewriting

We fix the no(ta)tions for the rewriting systems we’re interested in.

Definition1. An abstract rewriting system (ARS) — is a binary relation on
some set (a,b €)A. The denotation of the ‘repeated’ notation — is the transitive-
reflexive closure of the denotation of —. Similarly, the denotation of the ‘inverse’
notation < is the inverse of the denotation of — and the denotation of the ‘union
with the inverse’ notation < is the symmetric closure of the denotation of —.
We use infix notation for ARSs. If a — b, then we say that a (—-)rewrites to
b, and the structure (a, —,b) is called a —-step from a to b. A rewrite sequence
is a (finite or infinite) sequence of rewrite steps, such that for successive steps
the object to which the former rewrites is the same as the object from which
the latter rewrites. An ARS — has the diamond property, if —; — C —; —.
An ARS — is strongly confluent ([Hue80]), if —;— C —; «. An ARS — is
confluent, if — has the diamond property. An object is a (— )-normal form if no
rewrite steps are possible from it. An ARS is terminating if no infinite rewrite
sequences are possible.

It is well-known that ARSs having the diamond property (or which are
strongly confluent) are confluent ([Hue80]).

Definition2. Let — be an ARS. An (—-)span is a pair ({a,—,b),(a,—,¢)),
which we will usually write as b — a — c.

For cultural reasons we employ the concrete class of higher-order pattern
rewriting systems (PRSs [MN94])? as a vehicle to present our ideas. The proof-
method will be seen to rely on two essential ingredients: trees and the notion of
substructure. In PRSs the substructures employed are called patterns and the
trees arise by viewing the objects of PRSs (A-terms) as trees in the usual way.
Our proofs could be stated in the general framework of HORSs (see [Raa96])
without difficulty, but this would not make them clearer. Stating them for PRSs
is a hassle already.

Definition3. 1. We first define the objects of a higher-order term rewriting
system. Simple types are defined by the grammar:

ocu=o|loc—o0

Preterms are objects s such that s: o for simple type o can be inferred from
(var) x%:¢ for termvariables ,
(app) sto— T, ti0 = s(t): 7.
(abs) s:7 = 27530 — 1.
2 Actually we employ a slight variation on PRSs as presented in [ORb] in which all
rules are closed, which we find technically and conceptually more convenient.
? We omit the usual ) in abstractions.



Higher-order terms are obtained from the preterms by quotienting by the
theory consisting of a, 8 and 9 (that is, An in [Bar84]). To make terms
concrete we use their f-normal forms as representatives (unique up to a-
conversion) of the equivalence classes. Here, the rewrite relations § and 7
are generated by the rules:

(2.5)(t) —p s[z:=1]
s — x.5(x)

where 77 1s not allowed to create S-redexes and z does not occur in s.

2. An alphabet of (simply typed) variables A is distinguished from the set of
all variables, and elements of A will be called function symbols. They will
be used as constants, 1.e. bound externally, in higher-order rewriting. To
stress the functional nature of function symbols we use functional notation
F(s1,...,5m) instead of applicative notation F(s1)...(sm) in case m > 1 (cf.
[MN94]).

3. A pattern rewrite rule Ris a pair [ — r of closed (note that function symbols
are considered bound already, as per the previous item) terms of the same
simple type o, where the lefi-hand side [ is a linear pattern. Here a linear
pattern is a term of the form x.s,* such that
(a) s:o. To understand this it is convenient to think of o as the set of terms.
(b) s is of the form F(s1, ..., $m), F is called the head-symbol of the term,
(¢) each x; among x occurs exactly once in s and has only (7-normal forms

of) pairwise distinct variables not among x as arguments.
We'll just say pattern instead of linear pattern and rewrite rule instead of
pattern rewrite rule. A higher-order pattern rewriting systems (PRS) is a
pair (A,R) consisting of an alphabet A and a set R of rewrite rules.

4. Let s =9 Clie im) t =def Clri,rm| be preterms, where R =4t =y

.., Ry, =% 1, — 1, are rewrite rules, and C is an m-ary precontext, i.e. a
preterm containing variables [;,. .. ,[],,. Then we say that ¢ can be obtained
from s by contracting the (complete) development redex C[Ri, . Rm]- % This
will be denoted by s -7t We use u, v, w to denote redexes, and
idenify them with their induced steps whenever convenient. This is extended
to (the unique representatives of) terms by defining a development step s ——
t if there exist preterms s’ and ¢’ in the same F7-equivalence classes as s and
t, respectively, such that s’ —e— ¢’. The ARS associated to the PRS H is
the relation on terms obtained by requiring the precontext employed in a
development step to be a unary contezt, i.e. a term containing exactly one
occurrence of [I. The so-obtained relation —# (or simply —) is called the
rewrite step relation.

Note that we’ve only defined the linear PRSs, but that suffices for our pur-
poses. For thorough investigations carried out using (also non-linear) PRSs we
refer the reader to [MN94, Pre95].

* We employ boldface to denote sequences, i.e. X is a sequence of variables.
® This essentially amounts to replacing some derivation subtrees of a simply typed
lambda term (in the usual sense) by other ones.



The development rewrite relation defined above is somewhat overly general.
Without loss of generality the precontexts can be restricted to contexts, since
the precontext can be S7j-normalised, preserving that there’s a development step,
i.e. if CA] =~ C[x], then D] —— D[] where D is the f7-normal form of C' (cf.
[00s94, p. 68]). Furthermore, every step between terms s —5_ s —o— ' —%_ ¢
may be assumed of the form s «3 s’ —— t' —3 ¢, by confluence of 3 and the
fact that F-reduction preserves F-normal forms (cf. [O0s94, Prop. 3.2.10]). This
justifies restricting attention to S-reduction in the following.

Definition4. 1. If Ci]—3 s for some context C', pattern { and term s, then we
say that [ is a pattern (at C)in s. A set {1,... [, of patterns (at C1p,...,Cy,)
in s is said to be independent (at C'), if C' is an m-ary context such that
Clir, lm] —p s, and such that the head-symbol of [y descends to the same
symbol in s in both C[iy, 1] —p s and Ci[iu] —p s. Here, the descendant
relation on function symbols is the usual one for S-reduction ([Bar84, Hue93]
or [Oos94, Def. 3.2.12]). It’s important to note that due to the linearity of
patterns, each function symbol always has exactly one descendant along these
[F-reductions to s. Independence of sets of redexes is defined via their left-
hand sides. We use U, V, W to range over sets of independent redexes and
identify them with their induced development steps whenever convenient.

2. The descendant relation of a development step s «—g Cli1,..im] =m0
Clri, rm] =g t of a set of independent redexes is the relation composition
of the descendant relations of its three components, the F-expansion, the
replacement, and the g-reduction. ([O0s94, Def. 3.1.25]). In the replacement

descend to themselves. Function symbols in the left-(right-)hand sides are
said to be destroyed (created).

3. Having defined descendants of function symbols along steps, descendants
of patterns can be defined directly via their head-symbol and subsequently
descendants of redexes (so called residuals) via their left-hand sides ([O0s94,
sec. 3.1.1]). A pattern must be independent of the contracted redex to have a
descendant. The set of residuals of a set of (implicitly independent) redexes
V after a development step contracting U is written as V/U.

In the following sections we recapitulate some standard general abstract non-
sense about rewriting (in)dependent sets of redexes, paving the technical way
for the proof of our main corollaries.

3 Independence

We list the main ingredients of the confluence by developments method and do
some shopping in literature to get the results needed for the class of PRSs.

Theorem 5 Prism. 1. Lelt «e—y s —o—y 1 be a development span contracting
the sets of independent redexes U C V. Then t —e=y v and the descendant
relations induced by —e—y; ; ——y ¢ and —e—y are the same.



2. IfU UV is independent, then V/U is independent again.

3. Every development step can be serialised, t.e. if s —o—> t, then there exists
a rewrite sequence s — t consisting of rewrite steps, inducing the same
descendant relation.

Proof. 1. This is the Prism Theorem as stated in [Hue93] for the untyped
lambda calculus with beta reduction. We will illustrate our proof for PRSs
in the case of a set of two rules [ — r and ¢ — d.

Cld] Clrgl Cra]
N A A4
g D —~ Dir] g E[g] -~ EM] 8
//ﬁ e //"/ﬁ o 7
S S

The diagram represents contraction of two independent redexes ({ and g) in
the term s. The top-line going from Cfi,4] to C[r,d] corresponds to contracting
both in one step, while the middle lines from Dfi] to D[r] and from Efg] to E[d]
correspond to first contracting ! and then the residuals of g. The left-part of
the diagram shows how the development step contracting D[f] can be lifted
into a context (C') where also the g-redex is made explicit (we called this
the Envelop Lemma [O0s94, Lem. 3.1.42]). Now from this lifted step, it is
obvious what should be done next: just contract the residual g in C[rg]. The
problem then is that C[r,]is not a context, only a precontext, but to get
the development step we want, we only need to reduce the precontext to its
g-normal form E, possibly erasing or duplicating ¢ on the way, and we are
done (this we called the Develop Lemma [O0s94, Lem. 3.1.43]). Of course,
one needs to check that the descendant relations behave well, but that’s a
matter of routine and can be found in [O0s94].

2. This 1s intuitively obvious, since the union being independent, the contrac-
tion of a subset may only lead to erasure or duplication of the others. Tech-
nically, we’ve already used this in the proof of the previous item (consider
what happened to g in the right-hand side of the diagram above) and is a
consequence of the Develop Lemma in [O0s94, Lem. 3.1.43]. Cf. also Section
6.2 in [Hue93], where his compatibility corresponds to our independence.

3. This follows from the Prism Theorem if we can find a particular strategy
which decreases the size of the set of independent redexes in every step. This
1s easy: always contract an innermost redex. This cannot lead to duplication
of other redexes. ®

From the first two items of the theorem it follows immediately that devel-
opments of mutually independent sets of redexes satisfy the diamond property.
From serialisation it moreover follows that confluence of —e— is the same as
confluence of — (cf. [Hue80]).



Note that like [Hue93], we didn’t employ the finiteness of developments the-
orem (FD, i.e. that any serialisation of a development step is finite). How the
techniques employed above can be slightly strengthened to yield FD as a bonus
can be found in [O0s94], but since we don’t need it here we omit it. Moreover,
taking development steps for the multi-step derivations in [HL] there’s no prob-
lem 1n setting up the theory of permutation equivalence. Again, since we don’t
need that part of the general abstract theory of independence here, we don’t
develop it.

In general steps need of course not be independent, but if steps operate on
disjoint subterms, they are.

Definition6. Let [, ¢ be patterns at C', D in s. The patterns are related to
each other via the positions (in the usual tree representation, see [O0s94, Def.
3.2.6] for a formal definition of this) of the descendants of their head-symbols in
s. If [ is on the path to the root of ¢, then [ is outside g, or also g is inside . If
neither is outside the other, then they’re said to be disjoint. Redexes are related
to each other via their left-hand sides. A redex is said to be innermost among
a set of (not necessarily independent) redexes if all redexes in the set are either
outside or disjoint from it.

In [Hue80] the notation - was introduced to denote the development of a
set of disgjoint (‘parallel’) redexes.

Lemma 7. Sets of disjoint redexes are independent.

Proof. Trivial from the restriction to trees. ©

4 Dependence

After having sketched the behaviour of independent steps, we briefly recapitulate
some basic theory of dependent steps as known from e.g. [Mil91, Pfe, MN94,
Pre95]. The basic results ([Mil91, Pre95]) we need are:

1. Matching for patterns is decidable. This yields that the rewrite relation —
of a PRS is decidable.

2. Unification of patterns is decidable as well, and most general unifiers do
exist.

This yields that one can compute so-called critical pairs and that this pre-
serves decidability of matching and unification. Basically, patterns allow you to
carry over the techniques from first- to higher-order.

Definition8. Let t «—cp=7 s —p[z=q) " be a span of PRS-steps.

1. An intersector of the span is a pattern p at C’ in [ and at D’ in g, such that
C' at C and D' at D are patterns in the same term (context). This expresses
that p is a substructure on which both redexes operate.



2. The intersector is called critical, if there does not exist an intersector p’ at
C" and D", such that p is at £ in p/, and E is a pattern (context) at ¢/
in C’ and at D" in D’. The term p is said to be the critical intersection of
the span, denoted sloppywise by { M ¢g. This expresses that p is the maximal
substructure on which both redexes operate.

3. The span is dependent if an intersector exists for it, that is there is some
substructure on which both operate.

4. The dependent span is critical, if there does not exist a dependent span
t —cp= ¢ — D/r=a] r’ such that s’ is at £ in s, and ¢’ in C and D’ in
D are both at E. The term s’ is said to be the critical unification of the
span, (imprecisely) denoted by { U g. The critical unification is the largest
substructure on which either of the steps operate.

That patterns are closed under all these operations and critical unifications
and intersections exist in case of dependent steps follows from results in [Mil91,

Pfe, MN94, Pre95].

Lemma9. 1. A set of redexes is independent if and only if its elements are
pairwise independent.

2. Two redezes are independent if and only if they don’t form a dependent span.

3. Buvery dependent span is obtained by putting a critical span in a context.

Proof. This is tedious. The first item was shown in [O0s94, Prop. 3.1.49]. The
second and third item can be dug out from Section 4 in [MN94]. ®

Lemma 10. If two steps u, u' (with left-hand sides 1, ') are both not inside v
(with left-hand side g) and do both depend on v, then they depend on each other.

Proof. Since both steps do not depend on v, by Lemma 7 they cannot be disjoint
from v and since they’re also not inside v, they must be both outside v. Now,
because of the tree restriction if some pattern [ is outside another one g on which
it depends, the head-symbol of § must be in In g. In particular both / M ¢ and
I’ M g must contain the head-symbol of g, so [ I {’ is non-empty. ®

For PRSs at least one of the contexts in a critical span must be of the
form x.[J(s), since if not the contexts would have a common head contradicting
minimality ([MN94],[00s94, p. 102]). A context of the form x.[](s) is called a
substitution context. Then, the symmetry in the notion of critical span can be
avoided by requiring that D is a substitution context, in the definition above.
For such critical spans the pair (¢,r) is called a critical pair.® A critical pair is
called trivial, if t = r. The only symmetric case remaining is when both C' and
D are substitution contexts. In that case the critical pair is called a root critical
pair, giving rise to a critical overlay when both elements of the pair are put into
the same context.

Definition11. A critical pair (¢,r) is development closed, if t —— r.

® This notion of critical pair is (apart from the initial binder) the usual one! Cf. [Hue80].



5 Development Closed

Huet studied confluence of (first-order) term rewriting systems (TRSs) in [Hue80].
He showed that parallel closed left-linear TRSs, 1.e. TRSs such that for every
critical pair (s,t), we have that s 4 ¢, are confluent ([Hue80, Lem. 3.3], see the
left-hand side of Figure 1).

N /RN

t . A t
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Fig. 1. Parallel closed and Development closed
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We show that if a PRS is development closed, i.e. for all critical pairs (s,t),
s —o— 1 (see the right-hand side of Figure 1), confluence can be concluded. Since
sets of disjoint redexes are independent by Lemma 7, this extends Huet’s re-
sult. Since left-linear TRSs are PRSs, this moreover generalises it to the higher-
order case. Note that our result holds for Klop’s combinatory reduction systems
([Klo80]) and Khasidashvili’s expression reduction systems ([Kha90]) as well,
since these can be embedded into PRSs in a natural way (see [ORa, Raa96]).

Frample 1. Consider a PRS having function symbols app: 0 — (0 —0), abs: (0 —

0) — 0,0r:0 — 0 — 0, tt: 0 and rewrite rules’

y-z.app(abs(z.y(x)), 2) —veta ¥.2.9(2)
y.abs(z.app(y, ) —eta Y-Y
z.or(tt,x) —ier .tt

z.or(r,tt) —por .1t

Rewrite steps in this system need not be independent. Critical pairs arise from
different ways to unify left-hand sides of rules (cf. [MN94]). The critical pair
(app(s,t),app(s,t)) arises from the critical unification app(abs(z.app(s,z)),?)
of beta and eta, (abs(y.s(y)),abs(z.s(x))) arises from the critical unification
abs(z.app(abs(y.s(y)), z)) of eta and beta, and (tt,tt) arises from the critical
unification or(tt,tt) of lor and ror (and vice versa). All the critical pairs are
trivial so surely development closed, hence the system is confluent.

" The beta and eta rules are just the usual beta ((Az.M)N — M[z := N]) and
eta (Az.Mz — M, if = not free in M) rules of lambda calculus using higher-order
notation (cf. [MN94]).



5.1 Huet

We proceed with our adaptation of the proofmethod in [Hue80].

Lemma12. Let H be a development closed PRS. Then —e— satisfies the dia-
mond property.

Proof. The structure of the proof is the same as Huet’s and is by induction on
the ‘critical intersection’ between the sets in a development span. Let ¢ «o—y
s —e—y r be a development span.

1. If YV UU is independent, then the result follows from Theorem 5.

2. If VUU is not independent, then let |s,V,U| denote the number of function
symbols in all critical intersections between steps in V and U. By Lemma 9
this number 1s greater than zero. We will transform the development span
into another one t «e—y: s’ —e—z 7, such that |s',)V’ U’| is smaller than
|s,V,U|. The idea is to do this by removing an innermost dependency using
the assumption of development closedness. For that purpose consider among
all the dependent steps between V and U an innermost one (not necessar-
ily unique), say (wlog) v =% D=7 € V and s —, t. By the innermost
assumption, Lemma 10, and the assumption that ¢/ is independent, there
exists a unique step s —, 7/, depending on v, with u =9 Efy=d) € U. The
resulting dependence span: ' <, s —, r’ can be written as an Fy-instance of
a critical span tp «p, =7 50 — Eoz=a] 0 for some context Fy, by Lemma 9.
By assumption the critical pair (t(% is development closed, so ty —e—¢, 70
for some set Cy of independent redexes. By the Prism Theorem 5, this de-
velopment can be put inside the context Fy giving rise to a development
t' —o=c /. Define U~ =T Yf — {u} and V= =T Y — v} then we can make
the following claim.

Cram Let s' =det ¢/ Y/ =det Y= /4y and Y’ =9 C'U (U~ /v). Then ¢ +o—y
s' —e—4 7 is a development span for which m/ =9¢f |s/ V' 1{'| is smaller than
m =4t |5V, U| (see Figure 2).

ProOOF OF cLAIM By independence of V= and the Prism Theorem, s’ —e—y
t. By independence of /= and the Prism Theorem, v’ ——,~/,, r. The critical
unification ! U ¢ of u and v at context F' in s is independent from U~
by construction (and since independence is preserved by unification). This
means by the Prism Theorem that the descendant relation is obtained from
combining the ones on F' and [ U g. Since performing ‘u’ from [ U ¢ induces
the same (empty) descendant relation as performing ‘v ; C” this entails that
U™ /(v;C) = U™ Ju, hence also (C'U (U™ /v))/C = U™ /u. Note that the
union here is independent since it is obtained by combining independent
sets of redexes in independent terms. Using this the result follows from the
Prism Theorem since the sequence C'; (U~ /u) is a complete development of
the set C'U (U™ /v).

It remains to show that m’ < m. By the innermost assumption redexes inside
v are all independent, and by the Prism Theorem their residuals after v are
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Fig. 2. proof of the claim (only patterns of steps having overlap with u are shown)

independent again. Critical intersections independent from v must therefore
be outside or disjoint it, so have unique descendants after v. The only thing
which could happen is that they’re not longer critical intersections. This can
happen when they were critical intersections between redexes in W C V
and u. But since every intersection between a redex in C' and W is also
an intersection between u and W, per construction, the measure cannot
have increased for these intersections either. We conclude by noting that
the critical intersection between u and v was non-empty by assumption,
contributing to m, but not to m’. ©

As remarked above, the diamond property for —e— implies its confluence,
which in turn implies confluence of —, so we have our main result:

Corollary 13. Development closed PRSs are confluent.

5.2 Toyama

The main result of Toyama’s [Toy88] is an improvement of Huet’s result by
weakening the condition on a critical pair (s,?) in case of overlay (i.e. root overlap)
to the existence of a term r such that s 4/ r « ¢. Analogous to the above



extension of Huet’s result, Toyama’s result can be extended to only requiring
s —e— r «— t in case of overlay.

Lemma 14. Let 'H be an almost development closed PRS, that is,

1. s —=1, or
2. (s,t) is a root critical pair and s —— ; « 1,

for every critical pair (s,t). Then —e— is strongly confluent.

Proof. The second part of the proof of Lemma 12 can be essentially followed,
proving strong confluence instead of the diamond property (note that this part
of the proof does not depend on the conclusion only the hypothesis of strong
confluence) for development steps and changing the measure defined above by
not counting the function symbols in critical intersections for overlays.

The base case then has to show strong confluence for sets ¢ and V which are
independent except for some possible overlays. We prove strong confluence for
such cases, by induction of the size of i in a development span ¢ «e—y s —o—/ 7.
Consider an innermost step u € .

1. if u 1s independent from any step in V), strong confluence follows as in the
diagram

s 5/ r

u 1 u/u 1
/

t -—o- t! oo e

u/V

By the innermost assumption u cannot duplicate other redexes, so U /u has
one element less than I.

2. 1f u has overlay overlap with some step v € V, the following diagram can be
constructed

where V= =9t Y — {y} and Ass refers to the overlay case of the definition
of almost development closedness. One can construct the critical unification
I U g of uand v at context F' in s. Since u and v are overlays, V™ is
independent from both of them, hence also from their critical unification
[ U g. From this and since the descendant relations induced by the rewrites
‘u; W and ‘v ; d’ from the almost development closedness condition are



both empty, the rewrites from s obtained by putting them in context F
induce the same descendant relation, like in the proof of Lemma 12. Hence
V> /(u; W) =V~ /(v;d) and (WU (V™ /u))/W = V™ /(v;d), and again
we see that the sequential composition of the two development steps W and
V= /(v ;d) can be combined into one development step contracting the set
WU (V™ /u) of independent redexes, and the induction hypothesis can be
indeed applied for the right part of the diagram, for the same reason as in
the previous case. ®

As remarked above, strong confluence of —e— implied its confluence, which
in turn implies confluence of H, thereby extending and generalising Toyama’s

[Toy88, Cor. 3.2].
Corollary 15. Almost development closed PRSs are confluent.

Although our results don’t seem to have a great number of killer-applications,
they do support our feeling that many first-order techniques based on orthogo-
nality carry over to the higher-order case.

FEzample 2. 1. Consider the non-orthogonal, non-terminating, non-right-linear,
highly-artificial TRS having rules:

K—A

This TRS is confluent by Lemma 14.

2. A more useful higher-order example to which the lemma also applies, but not
immediately since the system is not a PRS (because the pattern condition
is violated) is the following definitional expansion rule:

y.z.app(abs(x.y(l‘, $)), Z) “betadelta y~Z~aPP(abS(l’~y(l’a Z))a Z)

This rule allows to ‘expand’ some ‘abbreviations’ # to their ‘definition’ z in
the ‘text’ y.

6 Conclusion

In this paper we have proven all development closed PRSs to be confluent,
thereby obtaining a critical pair based confluence result, for non-terminating
higher-order term rewriting systems.

The idea of our confluence proof for development closed rewriting system is
the same as in [Hue80, Toy88], but for the refined measure function. The reason



for this adaptation is that the confluence results obtained in those papers were
based on the diamond property for ‘parallel rewriting’. Since parallel rewriting
doesn’t satisfy the diamond property for higher-order rewriting systems, not even
for such simple ones as the lambda calculus, it has to be replaced by the notion
of ‘development rewriting’. Trying this back in 1992, I only observed that the
measure function used by Huet didn’t work. It took two years before looking at
it again and realising that a straightforward adaptation of the measure function
did the trick.

The proof 1s modular in the following sense. The basis of the result is formed
by a more or less abstract theory of independence of redexes as found at many
places ([CR36, Klo80, HL, Kha92, Hue93, Oo0s94, Mel95]) and briefly recapit-
ulated here. For orthogonal systems this immediately yields confluence. The
development closed condition requires on top of that also a term structure of the
objects of the rewriting system.

The known relaxation of orthogonality to weak orthogonality (having only
trivial critical pairs, [ORb]) puts weaker demands on the structure of objects
than the development closed condition does and in particular it doesn’t require
them to be trees. So, for term rewriting, development closedness is better, but
for graph rewriting our proof fails and weak orthogonality is the strongest result
available at this moment. Of course, this should be formalised in some formal
system, and we believe that the framework as introduced in [O0s94, ORb, Raa96]
i1s appropriate for that purpose.

One can also choose not to work with a notion of descendants at all, and to
prove the diamond property directly for an inductively defined notion of complete
development, by induction over that definition. This method (and variations) one
can find described in [Acz78, Raa93, Tak, Nip, MN94, Raa96] and in many ad
hoc confluence proofs in literature as well.

The advantages of keeping the descendants around is that it yields such nice
byproducts as the theory of permutation equivalence. The advantage of not using
descendants is that it yields short confluence proofs. A paper displaying both
for weakly orthogonal rewriting system in a general setting is [ORb].

Some random questions remaining are:

1. Can the Tait & Martin-Lof method be employed to yield our main results?
This is a methodological question (there’s no sense an sich in reproving
known results by known methods).

2. Do the results carry over to the term graph rewriting world? From the ab-
stract nature of the proof I expect the answer to be affirmative. The problem
is more that existing notions of term graph rewriting and concepts such as
‘critical pairs’ for these are rather ad hoc.

3. This brings us immediately to an important issue: unlike the theory of inde-
pendence there’s not much been done for dependence. We expect that our
setting is convenient for formulating such a theory.

4. Can the requirement for development closedness that for each critical pair
(s,t), t can be reached from s by a complete development of some set of re-



dexes can be relaxed by omitting the completeness requirement?® I would say

yes, but could imagine an out-of-sync phenomenon as in the counterexample
against confluence of non-ambiguous TRSs as well.

5. There’s no reason why one should restrict attention to critical pairs. It seems
worthwhile to study such intuitive notions as critical clusters.
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