Commutative Residual Algebra
motivation, decision, and applications

Vincent van Qostrom[0000—-0002—4818—7383]

University of Sussex, School of Engineering and Informatics, Brighton, UK
vvo@sussex.ac.uk

Abstract. Commutative residual algebras (CRAs) are algebras having
an axiomatised residuation operation. Key examples of CRAs are cut-off
subtraction (monus) on the natural numbers, set and multiset difference,
and cut-off division (dovision) on the positive natural numbers.

Here we revisit CRAs, showing the usual construction of a commutative
group (the integers) out of a monoid (the natural numbers) as pairs,
can be extended and generalised, by constructing the latter from CRAs
(the bits) as sequences (up to order), and yielding a commutative lattice-
ordered group. This then affords a decision procedure for CRAs, by em-
ploying results known from the literature.

We show CRAs arise from residual systems (going back to Stark and
unpublished work of Plotkin) by imposing a commutativity condition,
and we identify residuation as a Skolemised diamond property. Accord-
ingly, we let it together with its associated rewrite technique of tiling
take front and centre stage in our approach. We finally show that CRAs
are at the natural level of abstraction to state and prove some exam-
ples from the literature, in particular the inclusion—exclusion principle,
making the latter applicable to, among others, (measurable) multisets.

Keywords: residuation - diamond property - tiling - commutative resid-
ual algebras - commutative ¢-groups - multisets - inclusion—exclusion.

1 Introduction

A standard way to prove sets A, B the same is to show both inclusions A C B and
B C A. This can be reformulated as both differences being empty A — B =0 =
B— A. Similarly, natural numbers n, m may be proven distinct by showing one of
the cut-off subtractions (monus) n—m and m —n to be non-0. In this paper, we
further develop the theory of CRAs (commutative residual algebra [21]) enabling
this reasoning. CRAs are algebras (A4, 1, /) having a residuation operation / and
unit 1 and residuation laws that are so few that we can give them immediately:

a/l=a (1
(a/b)/(c/b) = (a/c)/(b]c) (4
(a/b)/a=1 (5
a/(a/b) = b/(b/a) (6

o~ ~—

2 V. van Oostrom

The above CRA laws are independent. We are interested in the equational theory
of CRAs (Sec. 3). Examples of derivable laws are:

afa=1 (2)
1/a=1 (3)

To show the equational theory is decidable we proceed in two steps. First, we
show (Sec. 4) CRAs embed in CRACs, CRAs with composition - satisfying:

¢/(a-b) = (c/a)/b (7)
(a-b)/c=(a/c)- (b/(c/a)) (8)
1-1=1 (9)

Next, we show (Sec. 5) CRACs embed in commutative ¢-groups (lattice-ordered)
having a suitable inverse ~!. By decidability of the latter [18,37] we conclude.

We proceed in such a way (as often done in analogous situations) since CRAs
are hard to work with directly, due to the contravariance of residuation (in its
second argument). Indeed, for many of the (equational) proofs in this paper we
employed an ATP (Prover9 and Mace4 [22]) to obtain and check them. On the
other hand, commutative ¢-groups are well-behaved and well-studied, cf. [15].

The first embedding generalises how the bits B := {0, 1} can be embedded in
the natural numbers N by viewing the latter as (non-empty) bitstrings modulo
0-contraction (which yields bitstrings having at most one 0), i.e. natural numbers
in unary, on which addition + is represented by string-concatenation.

The second embedding generalises the standard embedding of N in the in-
tegers Z, viewing the latter as pairs of natural numbers modulo normalisation
(yielding pairs where at most one component is non-0), i.e. integers as signed
natural numbers, on which unary minus — is represented by pair-swapping.

Further examples are given below and include the usual embedding of the
prime numbers first in the positive natural numbers (as multisets of prime num-
bers) and next in the (non-negative) rationals (as normalised fractions), and of
the embedding of sets as multisets first and in signed multisets next. The laws
of CRAs are sufficiently strong to enable both, generalising B — N «— Z.

We show CRAs are equivalent to cBCKrc’s (commutative BCK algebras with
relative cancellation [14]), which gives an alternative route to their embedding
in commutative ¢-groups via known results for cBCKrcs. Still, we present our
embeddings as they often can be seen as the untyped versions of known con-
structions for typed systems as explained in Sec. 2. This will allow us not only
to reuse, but also to present the embeddings in an intuitive diagrammatic way.

Sample problems we will tackle (Secs. 6) for the reader to ponder are:

Problem 1. Can we give a calculational proof of that for any two propositions,
one entails the other, (p—q)V (¢—p) = T, using only its operations {—,V, T}?

Problem 2 (EWD1313). The note [10] asks for a nice calculational proof of that
if ged(n, m) = 1, n and m are relatively prime, then ged(n,m - k) = ged(n, k).

Commutative Residual Algebra 3

Problem 3 (Mechanical Mathematicians). How to show [5] (ged(n,m) = 1and /¢ |
n-mandn’ = ged(4,n)andm’ = ged(¢,m)) = (n’'-m/ | Landl | n'-m')?

Problem 4 (Inclusion—Exclusion). | JM; = (LﬂﬂcJ@I ﬂMJ> - (L‘ﬂ@g}@] ﬂMJ>
for a finite family M; of multisets? Here W, —, U, N denote multiset sum, differ-
ence, union, intersection and @ / @ taking subsets of odd / even cardinality. For
instance, does it hold for I := {1,2,3}, M; := [a,b], Ms := [b,¢], M3 := [¢,a]?

Related work There is a vast literature on residuated lattices and on embedding
algebras in groups. Our vantage point, of starting with algebras with residuation
but without composition, we only found in the literature on ¢cBCKrc’s cited.
Traditional accounts are biased in that they focus on the loop, composition and
reverse operations with their (monoid and group) laws. We show that residuation
comes prior to them. (Indeed CRAs need neither have composition nor reverse;
the CRAs of bits and sets do not.) That then also explains the pervasiveness of
tiling techniques in the literature, since we identify residuation as the Skolem
function arising from the diamond property, i.e. from having tiles. We argue this
perspective, coming from rewriting, is novel, unifying and fruitful.

2 Intuition for residual from removal / rewriting

Our first take on CRAs is that one may think of their objects as being composite,
made up of components, such that the residual a/b of a after b is obtained by
removing b’s components from a’s (whence their name residual algebra). To
denote that nothing is left, a/b = 1, we write a < b (Def. 1). In the case of sets
and natural numbers this natural order < instantiates to the usual subset C and
less-than-or-equal < orders. The removing-idea immediately gives intuition for
the unit laws (1)—(3) and for (5) expressing monotonicity of removal. A way to
understand the two remaining laws (4) and (6) is as being designed to guarantee
< is a partial order, enabling the method of proving equality by two inequalities,
central to our endeavour. Indeed, we check that if a < b < ¢, then a < ¢:

afe'2 (a/)/1"E (a/0)/(b)e) 2 (a/b)/(c/b) "2 1/(c/b) L 1, and

a2 a/1™® a/(a/b) L b/0/a) ™2 /1Y b ifa<b<a

Our second, key, take is based on interpreting the carrier as comprising steps of

NN, I o oL

Fig. 1. Operations on steps: residuation, loop, composition, reverse

4 V. van Oostrom

a rewrite system — [25][36, Sec. 8.2].1 Operations must then be lifted to steps
in a way respecting sources and targets. Fig. 1, where ¢, ¥, x range over steps,
depicts how. Each operation can be seen as the Skolem function for the formula
depicted, where ordinary arrows denote universally quantified steps, and dashed
open-headed arrows ezistentially quantified steps. For instance, Skolemising the
formula V¢, if tgt(¢) = src(v)) then Iy with src(¢) = src(y) and tgt(yp) =
tgt(x) as depicted second-from-the-right, yields composition - mapping any pair
of consecutive steps to a step from the source of the former to the target of the
latter. Although maybe not usually perceived as Skolemisations, the operations
1,-,~1 are very well-known (in any case with additional laws making them units
(unit-laws), morphisms (associativity), and inverses (left/right-inverse laws)).
We focus on the odd one out, on residuation /, which comes prior to the others.

Residuation / arises from Skolemising the so-called diamond property [25, 3,
36] expressing that for any peak ¢, (a pair of co-initial steps, src(@) = src(v))),
there exists a valley ', ¢’ (a pair of co-final steps, tgt(v)') = tgt(¢’)), that is
composable to it, tgt(¢) = src(y)’) and tgt(v) = src(¢’). Skolemising this formula
a priori gives rise to two functions f, g, corresponding to mapping ¢, ¥ to the first
component ¢’ (by f(¢,)) respectively the second component ¢’ (by g(¢,w)) of
the pair ¢/, ¢’. But we may use a single one / as depicted in Fig. 1, as follows
from that we may set ¢/v := g(é,) if ¢ < ¢ and f(¢, ¢) otherwise, for some?
total order < on steps.

Now thinking of steps as being composite, made up of (parallel / indepen-
dent!) tasks, we may interpret ¢/v as those tasks of ¢ that remain to be done
after 1. The intuition for ¢/¢ and ¢ /¢ yielding a diamond, a tile, is that either
way a common reduct is reached by having performed the tasks of both ¢ and v,
removing double ones. This brings that we may reason (in)formally by means of
tiling, by repeatedly filling a peak ¢, by a tile, as we do below (Figs. 2 and 5).
Tiling is pervasive in the rewriting literature since its inception [8, 25,19, 23, 27].

Remark 1. If a (confluent) rewrite system — doesn’t have the diamond property,
we may try to build its diamond closure, a least extension having the diamond
property. To that end one may iteratively adjoin joining-reductions as steps [26,
Sec. 3.1].3 This often works, if only as intuition pump; in the A-calculus, from
B-steps iterative adjoining yields parallel 5-steps as diamond closure, in the limit.

Remark 2. We will refer to the transitions between ordinary algebras and those
having steps as carrier and operations subject to Fig. 1, as typing / untyping. For
instance, we will refer to a category / groupoid as a typed monoid / group [32].
Note that though typed algebras could be handled at the ordinary algebraic level,

! The structure of rewrite systems, of sets of objects and steps equipped with maps
src, tgt from the latter to the former, has been invented many times over; e.g. pro-
gramming language theorists might call them abstract machines, and mathematicians
may call them pre-categories, quivers, or multidigraphs depending on their area.

2 Existence may be assumed using the axiom of choice, even of a well-order.

3 We learned this process from Hans Zantema and facetiously dubbed it subcommufi-
cation [26], but nowadays call it faceting as one cuts diagrams into diamonds [27].

Commutative Residual Algebra 5

it would involve explicitly working with partial operations; one would lose the
typing-constraints implicit in Fig. 1, e.g. that composition requires consecutive
steps. Also note that any algebra can be trivially typed by taking a rewrite
system on a singleton object, having as steps the elements of the carrier.

The intuition conveyed is then that steps of a rewrite system having a residuation
can be thought of as being parallel, extended in space, and that composition is
sequential, extends them in time. This reinforces our point that residuation in
itself is interesting, parallel steps are / space is, and meshes well with the idea
underlying rewriting, to lift properties from steps to compositions thereof, i.e.
to reductions.

The idea to exploit typed algebras is that our embeddings, from CRAs
in CRACs in commutative {-groups, are ‘just commutative untyped’ versions
of known typed embeddings, say of simple braids in positive braids in (all)
braids [9], or of a reversible rewrite system — (both — and <+ are determinis-
tic) in reversible reductions — first and in reversible expansions and reductions
« U — next (due to affluence [30]), in each case enabled by having a residu-
ation satisfying the typable laws (1)—(4) (but not (5),(6), which are untypable
in that they make src = tgt forcing a collapse to a discrete / singleton carrier,
to algebra), enabling proof-by-tiling. (E.g. it is because sets have a residuation
(difference) that they embed in the CRAC of multisets, which then embeds in
the commutative ¢-group of signed multisets.)

3 Commutative Residual Algebras

We further intuitions by expanding our stock of example CRAs, deriving some
simple but interesting laws, defining a number of derived operations to see how
they instantiate on the example CRAs, recapitulating the multiset representation
theorem for well-founded CRAs, relating CRAs to ¢cBCKrc’s, and seeing how
CRAs arise by assuming commutativity and untyping residual systems [31, 35,
36|, rewrite systems satisfying the laws (1)—(4) depicted in Fig. 2.# Unless stated
otherwise we work with a CRA (4,1, /).

Ezample 1 (Some CRAs). The natural numbers (N, 0, —) with monus seen be-
fore; the positive natural numbers (Pos, 1, /) where -/ is cut-off division (dovision)
n+/m :=n/ged(n,m); the multisets over A (maps from A to N) (Mst(A), (), —)
with multiset difference; the non-negative reals (R>,0, =) with monus; the real
numbers > 1 (R>1,1,+), where + is truncated division z +y := z/min(z, y);
the subsets of A (Set(A),?, —) with set-difference. One checks laws (1)—-(6) hold.

Ezample 2 (sub-CRAs). Taking a dc-subset (downward-closed w.r.t. <) of A
induces a CRA again. For instance, B, or any initial segment of N, is a CRA.
Restricting Pos to the prime numbers yields a CRA Prm, but restricting for any
prime number p to its prime powers does so too, p". From Mst(A4) CRAs are

4 In Fig. 2 we use a, b, ¢ where ¢, 1, x would be more precise, but distracting. Colours
are there only to easily keep track of residuals (they have the same colour).

6 V. van Oostrom

obtained by restricting multiplicities to < 1 (Set(A)), to be bounded (Mstpng(A)),
and/or requiring supports to be finite (Mstg,(A)), where for a multiset M and
a € A, M(a) is the multiplicity of a and {a € A | M(a) > 0} the support of M.

To give a flavour of CRA reasoning we show two interesting laws (used in Thm. 2,
but also interesting to check on the example CRAs) whose proofs being easy
enough but not quite trivial, illustrates that CRA proofs are best left to ATPs
(for equational proofs that’s easy), as we will predominantly do below. The first
one says that the order of removing is irrelevant, and the second one captures that
the two parts a/b and b/a of the symmetric difference of a and b are disjoint.”

Proposition 1. (a/b)/c = (a/c)/b and (a/b)/(b/a) = a/b.
Proof. Abbreviating a/(a/b) to a A'b (cf. Def. 1), the former is seen to hold by

(a/b)/c "2 ((a/b)/e)/((e/b)e) L ((afe)/(ble)) /(e nb) L (afe)/b

where (i) and (ii) are derived as (instances of) respectively:

((a/b)/)/((c/b)/e) 2 ((a/b)/(c/b))/(c/ (c/b) ((a/e)/(b/e))/(c A b)

,def (5,

(@/(b/e)/(c Ab) Q2 (@ /(b)e)) /(b A) (@ /6)/((b)e)/b) 2 o fb

For the latter, saying parts a/b and b/a of the symmetric difference are disjoint:

(a/b)/(b/a) V= ((a/b)Aa)/((b/a) D) (a/(bAa))/ (] (bAa)) V2D ap,

Residuation only yields smaller elements making that composition is not a total
operation on CRAs in general. Still within the confines of a given CRA we can
determine whether or not an element would be a composition. For instance, for
B and Set({z,y, z}) the compositions of 1 and 1 respectively of {x,y} and {y, 2z}
do not exist, but those of 0 and 1 and of {z} and {z} do (1 resp. {x, 2}).

Definition 1 (Derived operations <, A, -, V).

(4),def
) =

def,(4)

def,(6)

natural order a <b:=a/b=1
meet aNb:=a/(a/b)
composition — a-b :=c¢ ifa/c=1 and c/a="b (partial)
join aVb:=a-(b/a) (partial)

By partial we mean that such an element need not exist, i.e. the expression may
not denote, but that if it does (as we may express by), then uniquely so. (For
f a partial function and expressions e, ..., e,, the expression e := f(e1,...,e,)
denotes v, if e; denotes v; and (vy,...,v,) is in the domain of f, and f applied
to it has value v.%) Kleene equality e ~ ¢’ asserts that if either of e, €’ denotes
then so does the other and then their denotations are equal.

See Tab. 1 for the derived operations and properties for some CRAs from
Ex. 1. Note that if a - b then a V b] but not necessarily the other way around.
The names of derived operations are justified by the next lemma, used in Sec. 6.

5 Cf. [33] for reasoning about distance based on the symmetric difference.
5 Denoting is strict; e.g. 0 - % does not denote as its sub-expression % doesn’t.

Commutative Residual Algebra 7

CRA| N |Rx>q|Mst(A)|Set(A) |Pos

unit 1 010 [} 0 1
residuation | / | = | = — — /
natural order| < | < | < - - |
total order? a4 X X X
well-founded? V| X |V (fin)|v/ (fin)| /
meet A |min|min| N N |ged
composition + | + WU @t -
join V |max|max| U U |lem

Table 1. Derived operations for some CRAs from Ex. 1

Lemma 1 (Algebraic structure of CRAs).

Proof. All proofs were done by ATP. See App. B for the Prover9 representation
we used, and its instantiation to a proof of the last item.

If composition is total CRAs are distributive lattices, not necessarily bounded
(N). We recall the representation theorem for well-founded CRAs [21, Sec. 5],
expressing that it’s not wrong to think of elements of such simply as multisets.

Definition 2 (Decomposition). Given a partial commutative monoid (A, 1, -).
Call a indecomposable” if a # 1 and a = b - ¢ implies b =1 or ¢ = 1, and say
a multiset [a1, ..., a,] is a decomposition of a if each a; is indecomposable and
a>~aj-...-ay,. Divisibility is defined by a < b if b~ a - ¢ for some c.

These notions apply to CRAs via the partial commutative monoid of their com-
position, and the natural order of the CRA then is the divisibility order. Having
unique decompositions means that decompositions exist uniquely.

Theorem 1 (Multiset representation [21]). Well-founded CRAs have unique
decomposition, and any well-founded CRA (A,1,/) is isomorphic to the CRA
(A’,0,—), with A’ the initial segment of finite multisets of indecomposables.
/—’L
For the CRA N the first item boils down to the triviality n =1+ ...+ 1, but for
Pos it corresponds to the Fundamental Theorem of Arithmetic (FTA) saying that
every positive natural number has a unique decomposition into prime numbers.
Though the CRA need not be finite (N is not), well-foundedness is essential
(unique decomposition fails for R>¢ in the absence of indecomposables).

7 For rings this is known as being irreducible.

8 V. van Oostrom

Next, we show CRAs have the same equational theory as ¢cBCKrc’s (com-
mutative BCK algebras with relative cancellation as introduced by Dvurecenskij
and Graziano [14]).8 BCK and BCI® algebras are algebraic structures introduced
in [17, 16, 2] unifying set difference and implication in propositional logic. Many
variations have been studied [14, 13,11, 12|, but we focus on ¢cBCKrc’s.

Definition 3. (A,1,/) is a ¢cBCKrc if for all a,b,c

(a/8)/(afc) < cfb (10)
a/(a/b) <b (11)
a<a (12)

a=b ifa<bandb<a (13)

1<a (14)
anNb=bAa (15)

b=c ifa<bcandb/a=c/a (16)

where, as for CRAs, a < b if a/b=1 and a A b abbreviates a/(a/b).
Theorem 2. (A,1,/) is a CRA iff it is a ¢cBCKre.

Proof. We factor our proof through the alternative equational specification of
c¢BCKrc’s as given in [11] comprising five laws: (2),(1),(6) and the two laws of
Prop. 1.!° That these laws hold for CRAs is then immediate. For the other
direction we employed Prover9. Only showing that the second law of Prop. 1
holds for ¢cBCKrc’s took substantial time, 1.5 hours; see App. B.

By the theorem, results for ¢cBCKrc’s can be transferred to CRAs and vice
versa, in particular that the former embed in commutative ¢-groups. We follow a
different route here, by untyping typed tiling constructions for residual systems
(not possible for cBCKrc’s’ laws; untyping them makes src = tgt). Toward that
goal observe that CRAs arise from residual systems by assuming commutativity.

Remark 3. They do, since that is how I constructed them: At the time (around
MM) for a Coq formalisation I needed properties of multisets that were lacking
from its libraries. Just having developed residual systems, I noted that since
those could be used for reasoning about lists [36, Intro of Sec. 8.7], adjoining
commutativity laws should be sufficient to reason about multisets. To obtain
the residuation-laws for commutativity, I took a peak spanned by both possible
orders of two consecutive steps, and took the laws arising from that tiling should
yield a valley comprising 1s only. Proceeding like this, as in the diagram depicted
at the bottom of Fig. 2, yields four laws along the top—right of the valley: each

of (b/a)/b, (a/(a/b))/(b/(b/a)), (b/(b/a))/(a/(a/b)), and (a/b)/a should be 1 (to

8 CRAs and cBCKrc’s were introduced independently, around the turn of the century.

9 BCT has the law a = 1 if a < 1 instead of (14).

19 On page 5 of [13] and also in the proof of Thm. 5.2.29 of [11], law (3) is given instead
of law (1); that is incorrect, as a 2-point model with / the constant-1-function shows.

Commutative Residual Algebra 9

c/(a-b)
(c/a)/b oA A
b/(c/a) ‘ (a/b)/(c/b) = (a/<)/(b]c)

V-

a-b
(a/c) - (b/(c/a))
" (7),(8 A A
(4) c/b

‘ 1/a ¢ a
¢ (1)(3) a/l:a 3 > (J,/b

! o/ Gla)fs (af(a/8)/ (/)
a | b/(b/a)

(2) o/ (5)‘(6)%})) _ (b/(b/a))/(a/(a/b))
’ > (o/b)/a
b a

Fig. 2. Visualisation of CRA laws (1)—(6) and CRAC laws (7),(8)

make both possible orders of the two steps the same). This gave rise to laws (5)
and (with anti-symmetry of <) (6).

The law (4) is known as (Lévy’s) cube law [20], for reasons clear from Fig. 2.
It captures causal independence of the trident (3-peak) a,b,c hence frequently
plays a pivotal role in fields where causality does [31], e.g. in the A-calculus [20],
concurrency [35], in Garside theory [9], and in Wolfram’s physics project, cf. [29].

We developed residual systems in [36] off Stark’s CT'Ss (concurrent transition
systems [35]), but they were introduced (without a name) by Plotkin already
in [31]. Concrete residual systems are omnipresent: e.g. parallel 3-steps in the
A-calculus [8,20], simple braids in algebra [9], left-convex sets of positions in
self-distributivity [34]; if one looks, one finds residual systems everywhere: From
the fact that A | B is read in probability as A after B, one may already suspect
residuation is at play, as indeed it is. Taking the event A | B as notation for a

7] N
A B P(A) P(B)
PO

BING, A8 PmIANG AL

ANB ANB

Fig. 3. Bayes’ Theorem as map P on residual systems: from events to fractions

step from B to AN B, and leaving B implicit if it’s the whole sample space (2, the
diamond property holds (Fig. 3 left; laws (1)—(4) hold by being a semilattice).
Bayes’ Theorem P(A)-P(B| A)=P(ANB)=P(BNA)=P(B)-P(A|B)is
then nothing but a map P from it to fractions (of the cardinalities; Fig. 3 right).

10 V. van Oostrom

4 Embedding CRAs in CRACs

Recall CRACs are CRAs satisfying the residuation laws for composition (7)—(9).
Laws (7) and (8) feature prominently in rewriting and concurrency theory [4,
31,35, 36] and are obtained by tiling as visualised in Fig. 2 (top—left): the laws
simply decree that tiling of a - b, ¢, so of the composition a - b and c, is the same
thing as tiling for its first component a, ¢ followed by tiling with its second b, ¢/a.

Remark 4. In CRAs with derived composition - partial versions of (7)—(8) hold:
¢/(a-b) = (c/a)/band (a-b)/c~(a/c)- (b/(c/a))if (a-b)),and 1-1=1.
Vice versa, composition - in CRACs satisfies the laws of derived composition

in CRAs: a/(a-b) = (a/a)/b=1and (a-b)/a=1-b=(1-b)/((1-b)/b) =b.

Asknown [31, 35, 36] residual systems, rewrite systems satisfying (typed) laws (1)—
(4), embed in residual systems with composition satisfying (typed) laws (7)—(9),
or in the terminology of [35]: concurrent transition systems embed in computa-
tion categories. This is shown in two phases: first residuation / is extended from
the steps of a rewrite system — to a residuation //on compositions thereof, i.e. to
reductions — [35, Lem. 2.3.1][36, Lem. 8.7.47] by means of tiling [35, Fig. 3|36,
Fig. 8.50]. Next, to regain that the natural order is a partial order, that it is
anti-symmetric, one quotients out projection equivalence =, where two reduc-
tions are projection equivalent if the result of tiling their peak yields a valley of
only 1s [35, Thm. 2.5|[36, Prop. 8.7.48|. To embed a CRA in a CRAC it now
suffices to untype that construction, giving lists (of objects) instead of reductions
(of steps), and then to impose commutativity yielding multisets instead of lists:

Theorem 3. C = (A, 1,/) embeds in CRAC C* = (Mstgn(A)/=, 0,/ W).

Proof. For a family ay with I finite we write [a7] to denote its multiset. Let
I:={0,...,n=1} and J := {0, ..., m = 1}. Define residuation [a;] /[bs] := [a}]
by tiling as in Fig. 4 putting family members in some order. (Residuation may

i = Qo

i

Fig. 4. Projection equivalence of multisets by tiling with CRA diamonds

bj = b()]

be computed by viewing (7)—(8) as rules and eliding units 1 of C.) By tiling with
the cube law (4) and commutativity, as at the bottom of Fig. 2, the resulting
multiset is seen to be independent of the chosen order, making /well-defined. On

Commutative Residual Algebra 11

such multisets projection equivalence is = := CNJ with C defined by [as] C [by]
if [as] /[bs] = 0; C is a quasi-order since laws (1)—(4) hold as inherited from the
same for residual systems, and laws (5)—(6) hold by the reasoning for them in
Fig. 2. Setting the unit to () and composition to multiset sum W, laws (7),(8) are
inherited from residual systems with composition, and (9) holds since § W@ = §.
C is embedded in C* by mapping objects to singletons, a — [a].

Projection equivalence is needed for the natural order to be a partial order:

Ezample 3. Let C := ({0,...,9},0, =) be the CRA of digits, a sub-ARS of N. Tt
has some compositions, e.g. 7= 3+4 (since 3 =7 =0 and 7= 3 = 4) but others
not, e.g. 7+ 6 and 9 + 4, are not defined in C. These are represented as [7, 6]
and [9,4] in C*, which therefore should be projection equivalent, and they are:

17,6] 719,4] 2 (17,6 f19)) 714] 2 [7 = 9,6 = (9 = 7)] 4] = [0,4] J[4] = O resp.
19,4 717,6) 2 (19,4] 717]) f116] 2 (9= 7,4~ (7= 9)] J[6] = [2,4] J][6] = 0.

Each of C* and (N, 0, =)* and (B, 0, ~)* is isomorphic to the CRAC (N, 0, -, +),
both (Pos, 1,-/)* and (Prm, 1,-/}* are isomorphic to the CRAC (Pos, 0, -/, -), and
(Set(A),0,—)* to the CRAC (Mstyng(A), 0, —, ¥).

Remark 5. P in Fig. 3 maps a residual system with composition to a CRAC.

Remark 6. A multiset can typically be seen as a multiset sum of sets in many
ways. Greedily decomposing / topologically multisorting [9,29], repeatedly se-
lecting a mazimal set, yields a unique representation (Fig. 6 left) analogous to the
Foata normal form in trace monoids; cf. Gross—Knuth reduction in A\B-calculus.

By refining the proof of Thm. 3, the embedding is seen to be downward closed,
in that the only objects in C* below an embedded object of C are other such.

Lemma 2. C embeds downward-closedly in C*, i.e. MJJb] =0 — Ja.M = [a].

Corollary 1. For CRA-expressions t,s, the universal statement Ya.t = s is
valid in CRAs iff it is valid in CRACS.

We show Lem. 3, entailing any CRAC C has left- and right-cancellation (as - is
commutative; Lem. 1) and the diamond property (by push-outs), used in Sec. 5.
Satisfying laws (1)—(4) and (7)—(9) makes a CRAC C a special case of a
residual system with composition [36, Def. 8.7.38| having a natural order that
is a partial order.!! These have many good properties [31,35][36, Tab. 8.5]. In
particular, for any such system (—,1,/,-), we have (—,1,-) is a typed monoid
(a category) that is left-cancellative (each x is epi: for all ¢, ¢, if x - = x - ¢
then ¢ = 1), gaunt (isomorphisms are 1) and has push-outs (in the standard
categorical sense). Calling these typed residuation monoids, we have [31, 35]:

Lemma 3. (—,1,-) is a typed residuation monoid iff (—,1,/,) is a residual
system with composition having a natural order that is a partial order and with

¢/ =& for every peak ¢, and its push-out i)', ¢’ .

11 Absent law (6), it only need be a quasi-order for residual systems (with composition).

12 V. van Oostrom

5 Embedding CRACs in commutative £-groups

In turn, CRACs can be embedded in commutative £-groups (£ = lattice-ordered).

Definition 4. (A, 1,71 - A, V) is a commutative {-group if (A, A, V) is a lattice
and (A,1,71,.) a commutative group and - preserves order, a < b = a-c < b-c.
Then the lattice (A, A, V) is distributive. Generalising N — Z we embed a CRAC
C in a commutative {-group C by means of pairs called fractions here, written ¢,
we proceed in two phases. The first works for residual systems with composition:

Lemma 4. (4,1,-,71) is an involutive monoid if % - & := Z:gg?i’;, (a)=1.=2

b

=4

Proof. Reciprocal ! is clearly an involution and anti-automorphic by (%‘;—:)‘1 =

’ -1 ’ ’ , /
(;A,((Z/{ﬁ))) — Qbja) _ b b _ (%)~1- ($)7!. Associativity is Fig. 5.

a-(a’/b) — a a

Fig. 5. Associativity of composition of fractions by tiling

Though this works, numerators and denominators of fractions often contain com-
mon factors that should be taken into account to obtain a group. By Ore’s Theo-
rem |9, Prop. 11.3.11] the diamond property and left- and right-cancellation must
hold for that. Though only the former two are guaranteed for residual systems
with composition by Lem. 3,2 for CRACs all three hold by commutativity of -:

Theorem 4. Any CRAC C=(A,1,/,) embeds in a commutative {-group C.

Proof. As carrier of C we take (formal) fractions § with a,b € A that are

normalised: a AN\b = 1. Unit and reciprocal are as for the involutive monoid, both

preserve being normalised. But composition does not, so must be normalised,

where the normalisation'3 of a fraction ¢ is 2%, Normalising the above ;:EZ;Q,

b b/a
assuming both ¢ and § are normalised and using Prop. 1, now yields % as

definition of the composition § - 5. The lattice operations are meet § A § := ‘;\//\5
irg- The embedding ~ of C in C proceeds by a +— ¢ and

mapping operations to ‘themselves’ except a/b+— (a - (?)\)_1) V 1. This works.

and join ¢V £ = &L

12 Right-cancellation fails for the residual system with composition for the AS-calculus.

13 This normalisation operation cannot be typed; ¢, form a valley not a peak in %

Commutative Residual Algebra 13

Ezample 4. Applying this construction to (N,0,~,+) gives the (signed) inte-
gers with the standard order on them with lattice operations minimum and
maximum. (Pos, 1,/,-) gives (normalised) fractions 2. For instance, - 2 = 3,
SAZ =15 and 2V 35 =32 Applied to (Mst(A),0, —, &) we obtain signed mul-
tisets!'* ordered via the pointwise less-than—or—equal of integer multiplicities.

Lemma 5. C embeds in the positive cone C;l (elements > 1) of C.

Proof. By definition % < ¢ iff % = % NG = }AT‘; = %7 hence iff 1 = b, but then

the element is in the image of the embedding.

Corollary 2. The universal statement Ya.t = s for CRA-expressions t,s, is
valid in CRACs iff Vo € G>1.t = § is valid in commutative £-group G, for ™ such

that 7“//71, = (7 (W)~') V 1. This problem is decidable and in co-NP.

Proof. By Cor. 1, Va.t = s is valid in CRAs iff it is so in CRACs. Since %\/% =1
and § - (?_1) = a—/b, evaluating (the “-image of) residuation on the embedding of
elements in the positive cone, is the same as the embedding of their residuation.
By Lem. 5 quantifying over the elements of the CRAC, embeds as quantifying
over the elements of the positive cone. It remains to show the formula is of shape
Vo (/\:’;1 ti = % = t= %) as required for the decidability / complexity result

1

of [37]. Writing the domain-constraints and equation as + Ao = 1, t=1,

6 Solutions

Solution 1 (of Problem 1). The set of operations {V,—, T} is not functionally
complete as negation can’t be expressed. However, the operations do give rise to
the CRA ({T,L},1,/) when defining 1 := T and p/q := ¢—p; it is isomorphic to
the CRA ({0,1},0,). Note that T is the least element in the <-order, and that
boolean or therefore corresponds to the meet A in the CRA. Thus the problem is
naturally stated for CRAs as (a/b) A (b/a) = 1, which is the purport of Prop. 1.

Solution 2 (of Problem 2). The problem is an instance of that a A b =1 entails
aA(b-c)=aAcfor CRACs. Setting d := b - c. We conclude by a 4eL(5) (a/b) -
(a/(a/b)) L (a/b) - (anb) "2 a/b, hence and Y a/(ajd) 2 a/((a/d)/1) "2
a/((a/d)/(b/d)) 2 a/((a/b)/(d/b)) = a/(a/(d/b)) "*= @ A c. Whether this is
nice depends on what laws one accepts, but calculational it is. Note the analysis
in [10] was inconclusive, suggesting a way forward via FTA not used here.

Solution 8 (of Problem 3). We restate it for CRAs: if aAb =1 and (a - b){ and
d < a-b,then (dAa)-(dAb) ~d. It is left to readers to check it can be proven.

4 Those of [6, Sec. 7] arise by restricting to having finite support.

14 V. van Oostrom

We devote the remainder of this section to discussing the solution of Problem 4
and its ramifications, since we think it gives interesting novel results. We are
interested in both stating and proving in CRAs / CRACs / commutative ¢-groups
versions of the Inclusion—Exclusion principle (IE) for a finite family A; := (A4;)ier
of finite sets. Since CRAs don’t have ‘inverses’, in the CRA version of IE we
separate the positive (O odd-sized index-sets) from the negative (E even-sized
index-sets) contributions maintaining the invariant that O is at least as large as
FE, we take the residuation of the former after the latter. Taking into account
that composition and join are partial operations we obtain, where the o and e
inscribed on the C express restriction to odd- and even-sized subsets respectively:

Theorem 5 (CRA version of Inclusion—Exclusion for finite family ay).

0:= H /\aJ } and E:= H /\aJ ¢:>\/a120/EandE<O

pcJcerI DCcJICI

Proof. Lem. 1 and the derived CRA laws (easily shown by ATP / Prover9):

(b/a) A(cfa) = (c/a)/(c/b) = (bAc)/(aNc)
(a-b)/(c-d)= (a/c)/(d]b) ifc<a,b<dand (a-b)l, (c-d)
(a-b)Ac~(aNnc)-(bA(c/a)) if (a-b)]

allow to mimic every step of the standard proof by induction on |I], splitting off
1 element at the time from I, by reasoning within CRAs only.

This TE applies to all CRAs encountered, natural numbers, multisets, etc.. For
instance, for a1 := 6, as := 15, and ag := 10 in (N, 0, =):

max (6,15,10) = 64+15+104min (6, 15, 10)=min (6, 15)=min (15, 10)=min (10, 6)

Note that it is simpler than the usual IE for sets, by doing away with the cardi-
nalities, but that the latter can be regained from the instantiation for multisets,
which we illustrate now for measurable multisets and sets, a novel result as far as
we know. Consider the following simple case of the notion of algebra in measure
theory (usually the stronger closure under countable unions is assumed).

Definition 5. A collection of sets A is an algebra if A C p(A), A€ A and A is
closed under union and complement (sub-algebra of the Boolean algebra p(A)).

Definition 6. A multiset M is A-measurable if:

— M€ A for each i, with M* := {a | M(a) =i} (set at height i of M)
— M>" =0 for some i, with M>" := ;. ;M7 = {a | M(a) > i} (with the least
such i the height of M; so multisets are assumed bounded (Fx. 2))

Lemma 6. — the sets M* at height i partition A;
— M is the support (Ex. 2) of M (may be infinite!); M empty iff height 0;
— (Mst(A),D, —) of A-measurable multisets is a CRA (is closed under —).

Commutative Residual Algebra 15

15

4 +
1+4

3 +
03

2 +

262

1 +
11

O a b ¢ d e f =
[a,a,b,b,bb.c.ee.e.e.e.ffl] 14

I O+ 24+ 0+ 0+ =

O a b ¢ d e f
[a,ab,b,bb.c.eee.e.effl]

T

Fig. 6. Measuring horizontally / set-wise = measuring vertically / element-wise

Definition 7. A function p from algebra A to non-negative reals is a measure
if w(@) =0 and p(AUB) = u(A)+u(B) for A, B € A and disjoint. j is extended
to measurable multisets by (M) := 3, u(M>") = 32, j - p(L7) (see Fig. 6).

Corollary 3 (IE for finite family of measurable multisets / sets).

UMI - (H-chJQI ﬂM‘]) B (H-J(Z)CJQ’—I mM‘])
nJan = (ZQCJQI “(ﬂAJ>) - (Z@cJ@ MﬂA‘]))

Proof. For measurable multisets: instance of Theorem 5. For sets: via the mul-
tiset result, viewing sets as multisets and using pu(M W N) = u(M) + p(N).

7 Conclusion

It should be interesting to build in support for the main result, Cor. 2, in proof
assistants, in some user-friendly (qua proofs produced) way, cf. [15]. In particular,
support for algebraic reasoning about multisets seems desirable.

We have extended the usual embedding N < Z by supplying the extra layer
of bits, into B <— N < Z, on which we have based its generalisation CRA —
CRAC < commutative ¢-group. Having a residuation at the lower level of CRAs
enabled constructing the CRAC and commutative £-group at the higher level via
embeddings.

We have identified residuation as the Skolemised diamond property at the
basis of tiling, coming prior to other operations such as composition and inverse.
Since the rewriting technique of (in)formal proving by tiling is pervasive both
in the rewriting literature and in other fields such as higher categories [1] and
algebra [9], we also expect residuation to become more prominent in those areas
(where it is currently seen mainly as a tool, not as key notion as in [31, 35, 36]).

As an illustration of the interest of the algebras considered, CRAs, CRACsS,
and commutative f-groups, we discussed some examples that could be both
stated and proven using them (and their laws). They arguably constitute the
natural level of abstraction to state and prove the Inclusion—Exclusion principle,
and as a testimony to that we gave a novel instance for measurable multisets.

16

V. van Oostrom

Acknowledgments. This work was done in small steps. Thanks to Albert Visser for
early collaboration on CRAs while at Utrecht University. Research on the Inclusion—
Exclusion principle was performed while at the University of Innsbruck, on decidabil-
ity via the embedding while at the University of Bath (supported by EPSRC Project
EP/R029121/1 Typed lambda-calculi with sharing and unsharing) and on residua-
tion as the Skolemised diamond property while self-supported. Integrating them was
performed at the University of Sussex.

Disclosure of Interests. The author has no competing interests to declare that are

relevant to the content of this article.

References

10.

11.

12.

13.

Ara, D., Burroni, A., Guiraud, Y., Malbos, P., Métayer, F., Mim-
ram, S.. Polygraphs: From rewriting to higher categories (2023).
https://doi.org/10.48550 /arXiv.2312.00429

Arai, Y., Iséki, K., Tanaka, S.: Characterizations of BCI, BCK-algebras. Proc.
Japan Acad. 42(2), 105-107 (1966). https://doi.org/10.3792/pja/1195522126
Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics, Studies in Logic
and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam, 2nd
revised edn. (1984)

Bentkamp, A., Blanchette, J., Nummelin, V., Tourret, S., Vukmirovié¢, P., Wald-
mann, U.: Mechanical mathematicians. Communications of the ACM 66(4), 80-90
(mar 2023). https://doi.org/10.1145/3557998

Blanchette, J., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets, and
syntactic ordinals in Isabelle/HOL. In: Miller, D. (ed.) 2nd International Confer-
ence on Formal Structures for Computation and Deduction, FSCD 2017, September
3-9, 2017, Oxford, UK. LIPIcs, vol. 84, pp. 11:1-11:18. Schloss Dagstuhl - Leibniz-
Zentrum fir Informatik (2017). https://doi.org/10.4230/LIPIcs.FSCD.2017.11,
https://doi.org/10.4230 /LIPIcs. FSCD.2017.11

Chen, C.H., Sabry, A.: A computational interpretation of compact closed cate-
gories: reversible programming with negative and fractional types. Proc. ACM
Program. Lang. 5(POPL) (Jan 2021). https://doi.org/10.1145/3434290

Church, A., Rosser, J.: Some properties of conversion. Transactions of the American
Mathematical Society 39, 472-482 (1936)

Dehornoy, P., alii: Foundations of Garside Theory. European Mathematical Society
(2015). https://doi.org/10.4171/139

Dijkstra, E.: The gcd and the minimum. Tech. Rep. 1313, Department
of Computer Sciences, The University of Texas at Austin (Nov 2001),
https://www.cs.utexas.edu/users/EWD /transcriptions/ EWD13xx/EWD1313.html
Dvurecenskij, A., Pulmannova, S.: BCK-algebras, pp. 293-377. Springer Nether-
lands, Dordrecht (2000). https://doi.org/10.1007,/978-94-017-2422-7 6
Dvurecenskij, A., Pulmannova, S.: BCK-algebras in Applications, pp. 379-446.
Springer Netherlands, Dordrecht (2000). https://doi.org/10.1007/978-94-017-2422-
T

Dvureéenskij, A.: On categorical equivalences of commutative BCK-algebras (Jun
1998), preprint 16/1998

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Commutative Residual Algebra 17

Dvurecenskij, A., Graziano, M.: Commutative BCK-algebras and lat-
tice ordered groups. Mathematica japonicae 49(2), 159-174 (Mar 1999),
https://ci.nii.ac.jp/naid/10010236889 /en/

Galatos, N., Metcalfe, G.: Proof theory for lattice-ordered groups.
Annals of Pure and Applied Logic 167(8), 707-724 (2016).
https://doi.org/10.1016 /j.apal.2016.04.004

Imai, Y., Iséki, K.: On axiom systems of propositional calculi, xiv. Proc. Japan
Acad. 42(1), 19-22 (1966). https://doi.org/10.3792/pja/1195522169

Iséki, K.: An algebra related with a propositional calculus. Proc. Japan Acad.
42(1), 26-29 (1966). https://doi.org/10.3792/pja/1195522171

Khisamiev, N.: Universal theory of lattice-ordered abelian groups. Algebra i Logika
5(3), 71-76 (1966)

Klop, J.: Combinatory Reduction Systems. Ph.D. thesis, Rijksuniversiteit Utrecht
(1980)

Lévy, J.J.: Réductions correctes et optimales dans le A-calcul. Thése de doctorat
d’état, Université Paris VII (1978)

Luttik, S., van Oostrom, V.: Decomposition orders—another generalisation of the
fundamental theorem of arithmetic. Theoretical Computer Science 335(2), 147—
186 (2005). https://doi.org/https://doi.org/10.1016/j.tcs.2004.11.019

McCune, W.: Prover9 and mace4 (2005-2010), http://www.cs.unm.edu/ mc-
cune/prover9, http://www.cs.unm. edu/ “mccune/prover9/

Melliés, P.A.: Description Abstraite des Systémes de Réécriture. Thése de doctorat,
Université Paris VII (Dec 1996), http://www.irif.fr/ mellies/phd-mellies.pdf
Melliés, P.: Axiomatic rewriting theory VI residual theory revisited. In: Ti-
son, S. (ed.) Rewriting Techniques and Applications, 13th International Con-
ference, RTA 2002, Copenhagen, Denmark, July 22-24, 2002, Proceedings.
Lecture Notes in Computer Science, vol. 2378, pp. 24-50. Springer (2002).
https://doi.org/10.1007/3-540-45610-4\ 4

Newman, M.: On theories with a combinatorial definition of “equivalence”. Annals
of Mathematics 43, 223-243 (1942). https://doi.org/10.2307/2269299

van Oostrom, V. Course notes on braids (1998),
http://www.javakade.nl/research/pdf/braids.pdf

van Qostrom, V.: Some symmetries of commutation diamonds. In: 9th IWC. pp. 1-
7 (2020), http://www.javakade.nl/research/talk/iwc300620.pdf

van Qostrom, V.: Multi-redexes and multi-treks induce residual systems; least up-
per bounds and left-cancellation up to homotopy. In: IWC 2021. pp. 1-7 (Jul 2021),
http://www.javakade.nl /research/pdf/axrs-iwc-2021.pdf

van Qostrom, V.: On causal equivalence by tracing in string rewriting. In: Grab-
mayer, C. (ed.) Proceedings Twelfth International Workshop on Computing with
Terms and Graphs, Technion, Haifa, Israel, 1st August 2022. Electronic Proceed-
ings in Theoretical Computer Science, vol. 377, pp. 27-43. Open Publishing Asso-
ciation (2023). https://doi.org/10.4204/EPTCS.377.2

van Qostrom, V., Zantema, H.: Triangulation in rewriting. In: RTA. LIPIcs,
vol. 15, pp. 240-255. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2012).
https://doi.org/10.4230,/LIPIcs.RTA.2012.240

Plotkin, G.: (19807), handwritten unpublished notes (communicated to me by J.W.
Klop in September 2022)

Pous, D.: Untyping typed algebraic structures and colouring proof nets of cyclic
linear logic. In: Dawar, A., Veith, H. (eds.) Computer Science Logic, 24th Interna-
tional Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech

18

33.

34.

35.

36.
37.

V. van Oostrom

Republic, August 23-27, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6247, pp. 484-498. Springer (2010). https://doi.org/10.1007/978-3-642-15205-
4\ 37

Potacik, T., Ruitenburg, W.: Simple axioms that are obviously true in N. Review
of Modern Logic 9(1-2), 67-79 (2003). https://doi.org/rml/1081173835

Schikora, R.: On Orthogonality of Self-Distributivity. Master’s thesis, University
of Innsbruck (2022), https://diglib.uibk.ac.at/download /pdf/8160517.pdf

Stark, E.: Concurrent transition systems. Theoretical Computer Science 64, 221—
269 (1989)

Terese: Term Rewriting Systems. Cambridge University Press (2003)
Weispfenning, V.. The complexity of the word problem for
abelian l-groups. Theoretical Computer Science 48, 127-132 (1986).
https://doi.org/https://doi.org/10.1016 /0304-3975(86)90089-7

A Selected proofs and remarks omitted from main text

Proof (of Lem. 2). Note that b = (a A D) - (b/a), for all a,b. In particular, b;; =
(@ij Abij) - b1y, hence by = ([[cz;) - b; for column j in Fig. 4.

Embedding being trivial (¢ = b iff a/b =1 and b/a = 1), to show downward-

closedness assume M [/[b] = () for some M = [a;]. Setting b = by the before gives
bo = ([[cro) - by and a; = ¢;o for each ¢ € I. Hence by = ([] ar) - bf,, showing
that ([] ar){ from which M = [[] as], i.e. M is indeed a singleton.

Proof (of Lem. 3).

— Only—if-direction: In general, push-outs are only defined up to isomorphism,

but here they are unique by isos being units, making / well-defined as a
function, which per construction witnesses the diamond property. As is well-
known (and easy to show) push-out-diagrams compose. Here, since push-out
valleys are unique, we observe that the push-out valley (¥ - x)/o,¢/(¢ -
x) for the peak ¢, - x is (componentwise) the same as the valley (¢¥/¢) -
(x/(d/¥)), (/1) /x constructed from the push-out valleys 1/, ¢/ for the
peak ¢, first, and x/(¢/v), (¢/1)/x for the peak ¢/, x second. That is,
we then have (v - X)/6 = (1/9) - (x/(6/)) and ¢/(¥ -) = (&/1)/x. We

now check the laws of residual systems with composition (1)- (4) and (7)—(9)

hold:

(1) For a peak ¢,1 and valley 1, ¢, we have ¢-1 =1-¢ by 1 being the unit.
That 1, ¢ is universal among all valleys 1", ¢" such that ¢ - " =1-¢"
is witnessed by the step " which is unique by 1 being the unit. This
shows law (1) holds;

(2) For a peak ¢, ¢ and valley 1,1, we have ¢-1 = ¢-1. That 1, 1 is universal
among all valleys 9", ¢ such that ¢ - " = ¢ - ¢", follows since for such
valleys "' = ¢" by left-cancellation, hence we may take that as witness,
which is unique by 1 being the unit, showing laws (2) holds;

(3) That law (3) holds follows immediately from the reasoning in item (1);

Commutative Residual Algebra 19

(4) By the above observation that push-out valleys compose, we have that
if for three co-initial steps ¢, ¥, x we consider the peaks between ¢ and
the lhs respectively rhs of ¥ - (x/v¥) = x - (¢/x) obtained by pushing-out
¥, X, we obtain that (¢/v)/(x/¥) = ¢/(¥ - (x/¥)) = ¢/(x - (¥/X)) =
(¢/x)/(¥/x) showing law (4) holds;

(7) That law (7) holds follows immediately by the observation;

(8) That law (8) holds follows immediately by the observation;

(9) Law (9) is an instance of the assumption that 1 is a unit for composition.

Finally, since < is a quasi-order as follows from (—,1,/) being a residual

system, it suffices to show < is anti-symmetric. But ¢ < ¥ and ¥ < ¢ is

equivalent to saying that the push-out valley ¥/¢, ¢/1 for the peak ¢, is
the valley 1,1, entailing that ¢ = ¢ -1 =1 -1 =1).

If-direction: Since by assumption < is a partial order, we may and often will

show equality of steps ¢ and v, by proving both ¢ < ¢ and ¢ < ¢. We first

check (—,1,) is a category:

co=0-Lasg/(6-1) = (6/9)/1 = 1/l = L and (6-1)/$ = (¢/6) -
(1/(6/8)) =11 =14

6= Lo since 6/(1:9) = (6/1)/6 = 66 = L and (1-6)/6 = (1/9):
(6/(8/1)) =1+ (/@) =11 = 1; and

o (6-1)x = & (% x) sinee (6-6) x)/ (6 (@) = (6 5) - x)/#)/ (-
x) = (((@-9)/¢) - (x/(¢/(d-)/ (W - x) = (((¢/9) - (¥/(8/9))) -
(X/((¢/¢)/¢)D/(x) = ((1-(/1))-(x/ (/) / (-x) = (¢ (x/lﬂ/(
X)=-x)/(@-x)=1and (¢-(¥-x))/((6-9¥)-x) = ((¢-(¥-x))/ (¢
V)/x = (((¢- (- x))/)/)/x = (((¢/9) - (¢)/(¢/¢)D/¢0/
(- (@ -x)/))/)/x = (¥ -x)/¢)/x = ((1/)/111) (xX/(®/¥)))/x

(1-(x/1))/x = x/x = 1, using the second item repeatedly.
Next, we check the category is left-cancellative, gaunt, and has push-outs.
1. To see that composition is left-cancellative, i.e. that every step x is epi,
(2),hyp

H”@@V@

suppose x - ¢ = x - ¥. for some ¢,1. Then ¢ < 1 follows from 1

7 8),(2 1 .
(/0 0) B (0 a)0/e P2 (1 (@/0)/6 2 6/ also using
we have a category in the last equation. Since symmetrically ¥ < ¢, we
conclude to ¢ = v as desired;

2. To prove the category is gaunt, it suffices by item 1 and Remark 77

to show ¢ w = 1 implies ¢ = 1 which follows from (b = ¢/ L

6/(6-v) 2 (0/8)/0 2 179 2 1; and

3. We claim ¢ /¢, ¢/1 is a push-out- valley for a peak ¢, 1. To verify that
(W/p) = - (¢/v) it suffices by symmetry and by < being a par-
tlal order, to show the lhs to be -related to the rhs. This follows

from (¢ - (1/9))/ (v <<z>/w>> (6 W/e)/0)/(@/w) € (¢/9) -
(0/0)/ W/ /(6/8) E ((6/v) - 1)/(8/¥) 2 1 also using we have

a category in the last equation.

Having shown the valley completes the peak into a commuting dia-
gram, it remains to show that it is least among such. To that end, as-
sume to have ¢ - x = ¥ - w. By reasoning as above, the peaks x, 1 /¢

20 V. van Oostrom

and ¢/ are seen to be completed into commuting diagrams by valleys

(/) /x> x/ (1]) respectively w/(¢/1), (¢/1) w. Since (1/¢) /x 2 v/ (-

02 9/ w) D @) P 1 and symmetrically (¢/¢)/w =
1, the commuting diagrams give x = (¢¥/¢) - (x/(¥/®)) and (¢/) -
(w/(¢/¥)) = w. (Such mediating steps must in fact be unique, e.g., if

x = (¥/¢) - X', then X' = x/(¥/¢) by left-cancellation in item ?7?.)
We conclude by computing that both mediating steps are the same:

X?EZ% DEOLD (/0 /0) " () (-0 T

Remark 7 (On Lem. 3). In [28] we gave direct constructions of residual systems
with composition from the (two sets of) azioms on residuals put forward by
Melliés in [24]. Since in [24] it was shown that his axioms gave rise to a category
having push-outs and left-cancellation, Lem. 3 gives a much quicker route to the
same: it suffices to note that the category constructed in [24] is gaunt, to obtain
a residual system with composition having a natural order that is a partial order.

One may specialise Lem. 3 to CRACs, by untyping the notions to algebraic ones:
Definition 8. Call a monoid (A,1,-) a residuation monoid if it

— s left-cancellative, if c-a = c- b then a = b;

— 14s invertible-free, if a-b=1 thena=1=b;

— has lem’s (least common multiples), where a pair ¢,d is a ¢m (common
multiple) of the pair a,b if a- ¢ =b-d, and the em b, a’ is least if ¥ < ¢
holds for all cm’s ¢, d of a,b.

where a < b if a-e = b for some e.

That b',a’ is an lem of a,b in the above also entails a’ < d since if ' - e = ¢,
thenb-a'-e=a-b -e=a-c=>b-dhence a’-e = d by left-cancellation. Being
gaunt untypes to being invertible-free, and having push-outs to having lem’s. If
the monoid is commutative, then in the above it is sufficient to have a = 1 for
being invertible-free, to also entail b = 1, and being left-cancellative coincides
with being right-cancellative.

Lemma 7 (Lem. 3 untyped). (4,1,-) is a commutative residuation monoid
iff (A,1,/,-) is a CRAC with a/b:=a’ for every pair a,b and its least cm V', a’.

Proof. Everything is an immediate consequence of Lem. 3, except that for the
if-direction we need to verify that the monoid is commutative, which we already
know from Lem. 1 and Rem. 4, and for the only-if-direction we need to verify
that laws (5) and (6) hold. That follows by tiling as depicted at the bottom in
Fig. 2 and by the reasoning in Rem. 3: By commutativity the cm of a-b, b-a is 1, 1.
Hence by tiling we obtain both (b/a)/b- (a/(a/b))/(b/(b/a)) = 1 and (a/b)/a -
(b/(b/a))/(a/(a/b)) = 1, as depicted in Fig. 2. From the assumption that the
monoid is invertible-free, we thus get that each of (b/a)/b, (a/(a/b))/(b/(b/a)),
(b/(b/a))/(a/(a/b)), and (a/b)/a is 1 as in Rem. 3. From the first (or fourth), the

Commutative Residual Algebra 21

law (5) follows immediately. From the second and third we get by definition of
/that the pair 1,1 is an lem of the pair b/(b/a), a/(a/b), from which the law (6)
follows.

Proof (details (some) of Thm. 4). As before, we checked properties using Prover9,
proceeding as follows.

Commutativity of composition holds exploiting the symmetry in its defini-
tion, by the same for the composition of C.

By Lem. 4 it suffices to show that having the same normalisation =, is a
congruence to obtain an involutive monoid again. Next, one checks the inverse
law f=! - f = 1 holds using that all and only fractions of shape £ normalise to
the unit, so we have a group.

For the lattice operations, note that we may work exclusively with normalised
fractions since these are preserved by joins and meets, hence all sub-expressions
of the lattice laws yield normalised fractions as well. Next note that these laws,
commutativity, associativity, idempotence, and absorption, for fractions, follow
from the same laws for their numerators and denominators separately, above.

Since composition is commutative to verify the group is <-ordered it suffices
to show ¢ - ? < g ? if # < 7. This can be reduced to checking CRAC properties
of the numerators and denominators separately. M

a a

Qua embeding, one computes that “T'b =1 % and that a/b embeds as .

The positive cone of a commutative ¢-group constitutes a CRAC, via Lem. 7.

Lemma 8. If G := (A, 1,71 - A, V) is a commutative {-group, then its positive
cone Gz1 = (A>1,1,-) is a commutative residuation monoid.

Proof. First note that trivially 1 € A>; and Ay, is closed under - by orderedness
and 1 being the unit. Also the lattice-structure is preserved on A, since if
1<a,bthen1<aAbandifa,b<cthen 1< c That G54 is (left-)cancellative
follows from G being cancellative, by being a group. By definition a < b in the
commutative residuation monoid G, if a-c = b from some c in A>1, but this is
the same as in A, since we may define for a, b in the positive cone such that a-c = b
we must have 1 < ¢ since c:= (b-a"!)V1in G works: a-c=(a-b-a"})Va=1b
and c is in the positive cone. It follows from the same that G, is invertible-free
since if a-b = 1 for a,b > 1 then b = ¢~ ' V1 = 1. Finally, since the natural order
on G coincides with that on G, the lem of a,b > 1is just aVvbin G.

At the end of Sec. 2 it was stated that our embeddings are ‘just commutative
untyped’ versions of known typed embeddings, and we gave two examples of the
latters, of braids and of reversible rewrite systems, cf. e.g. [9] resp. [7]. We add a
bit more detail to that, showing that in fact both give rise to the commutative
{-group Z.

Ezxample 5. Consider braids as at the end of Sec. 2.

Positive braids over 3 strands are presented by generators {a, b} with equation
aba = bab. Forcing commutativity on these ab = ba makes aba = abb, hence in
the group a = b by cancellation making it collapse to positive and negative

22 V. van Oostrom

exponents of a, isomorphic to Z. The same reasoning pertains to any number of
strands, confirming the analogy suggested for it at the end of Sec. 2.

Ezample 6. Consider reversible rewrite systems as at the end of Sec. 2.
Instantiating the notion of affluence of [30] for a pair of rewrite systems, by
taking the rewrite system — for both components of the pair, yields — is one-step
affluent if - — C < U— and affluent if its reductions — are one-step affluent.
Now — being deterministic entails one-step affluence of its reflexive closure —=,
hence by [30, Lem. 2.4] affluence of —. By tiling we even have that "« - —™ C
e ifm < nand "-—" C 5" " if n < m (Lemma star_step_diamond in
CompCert!9). If — is reversible also < is deterministic (i.e. — is co-deterministic
in the sense of [30]), so =™ - "« C =" "™ if m < n and =" - M C M
if n < m. This makes the set of expansions,reductions {"+,—" | n € N} into
(the carrier of) a typed group; untyping it gives Z. The group is lattice-ordered
in the same way Z is, via min, max on exponents when thinking of "+ as —~".

Remark 8. As noted in [30], each component of the graph of a codeterministic
rewrite system — consists of a number (possibly 1) of trees branching off (if at all)
from pairwise distinct objects lying at a (possibly empty) cycle; cf. [30, Fig. 6].
(The trees may be infinite: both infinitely branching and non-rooted trees are
allowed.) Hence if — is reversible, so — is also deterministic, then components
classify as being either straight lines (infinite or finite to either side) or cycles.
Thinking of the latter as straight lines too via their infinite unfolding, justifies
picturing computation-trees in reversible rewrite systems as straight lines all
parallel to each other; neither forward nor backward branching; of course.

We fix the Inclusion—Exclusion principle we based ourselves on, by giving a
standard version of it and standard slick / inductive proofs of it, for a finite

family A; := (A;);es of finite sets:

Theorem 6 (de Moivre, da Silva, Sylvester @18th).

‘UAI‘ - chJgI (=M=t ‘mAJ‘

Proof (slick, of Thm. 6). Count for each individual z € |JA; depending on
#(x) =i |z € Ai}l:

1=1 if #(z) = 1
1=2-1 if #(z) = 2
1=3-3+1 if #(z) = 3
1= YigienD7 () i @) =n
by double counting: Zogjgn(_Dj (?) < (1-D"=0 (‘eritical peak)

!5 https://compcert.org/doc/html/compcert.common.Determinism.html.

Commutative Residual Algebra 23

Proof (by induction, of Thm. 6). we only show the step case I U {k} of the
standard proof by induction #sets |I| of Inclusion—Exclusion for finite sets

U] = U]+~ (U

__Undistre ‘UA1’ 4| Ax] - ’UieI(Ai ﬁAk)’
_2xIH (Z@CJCI (—1)lI=L. ‘mAJD + | Ag| -
ZQ)CJCI IJI 1 ‘ﬂ A " Ak ’
__Nsemil,cgroup (Z@CJQI (71 \J*l . ‘ﬂAJD + ‘Akl +
Z{k}cJQIU{k} ()Mt ‘mAJ’
= Z@c.fgu{k} S ’mAJ‘

Proof (of Cor. 3 for sets via multiset result). We use y(MWN) = p(M)+ pu(N)
and O 2 E and

“(UAI) = M((LﬂchQI mAJ) B (H-J(OCJ@ mA‘]))
- (Z@g@ ”(mAJ)) N (megl ”(mAJ))

where the first equality is by viewing the measured set in the lhs as a multiset,
which we replace by the IE for measurable multisets, after which we can dis-
tribute the measure over the multiset sum using u(M W N) = pu(M) + p(N),
to yield the desired result noting that the intersections inside the measures are
sets.

Lemma 9. For u a measure and multisets M, N, u(M W N) = p(M) + p(M).
Proof. Based on that Y, u(M>") = >0 (L 7), see Fig. 6, we conclude by

p(M @ N) ZZM(jﬂLk)-u(M’ﬁNk) = (M) + (M)

Remark 9. Tt is easy to state and prove a version of IE for commutative ¢-groups.

Theorem 7 (Ordered ¢-group version of Inclusion—Exclusion for finite
family a;). Let G := (A, 1,71, A, V) be a commutative {-ordered group. Then

Var= T (Aan=""

0pcJCI

B Selected Prover9 proofs
In this appendix we provide a few Prover9 [22] proofs of results from the main
text, indicative of how we proceeded.'® All our Prover 9 proofs were generated

16 To be precise, we used Prover9 version LADR-2009-11A compiled and run on a 2018
MacBook Pro with macOS Catalina 10.15.4 with a 2.2 GHz 6-core Intel Core i7

24 V. van Oostrom

without further guidance. The proofs provided here should allow interested read-
ers to reconstruct the other proofs omitted from the main text by means of ATP
themselves. To that end, we provide the input-file used as an example for the
first, trivial, proposition below. For the two others, similar representations of
the statements were used, and only the resulting proofs are given. In each case
the initial part of the output allows to reconstruct (the assumptions used of)
the input. To keep proofs, relatively, short and proving fast we typically added
already derived (useful) equations to the assumptions.

To illustrate the Prover9 input and output we make use the following proposi-
tion that was omitted from the main text, but has a short and easy to understand
proof.

Proposition 2. < is transitive in BCI algebras.

Proof. To prove the statement we supplied Prover9 a file with contents:
formulas(sos) .

(x/y)/ &x/2)/(z/y =1.

x/ &/y) /y=1.

x/x=1.
~x/y=D 1 -(y/x=11x=y.
-x/1=1) 1 x=1.
PGxy) I x/y=1.

-x /y=1 1 P&y,
end_of _list.

formulas (goals) .

-P(x,y) | -P(y,2) | P(x,2).
end_of list.

upon which Prover9 provided the following proof:”

PROOF

% Proof 1 at 0.01 (+ 0.00) seconds
% Length of proof is 22.

% Level of proof is 6.

% Maximum clause weight is 13.000.
% Given clauses 32.

-P(x,y) | -P(y,z) | P(x,2z) # label(non_clause) # label(goal). [goall.
(x/y)/ x/2)/(z/y) =1. [assumption].
(x/ (x/y)/y=1. [assumption].

1. [assumption].

/ x'=11] x=y. [assumption].
1. [assumption].

x. [copy(6),flip(b)].

-P(x,y) | x / y=1. [assumption].
9x/y!'=11P(x,y). [assumption].

10 P(c1,c2). [deny(1)].

11 P(c2,c3). [deny(1)].

12 -P(c1,c3). [deny(1)].

24 (x /1) / x=1. [para(4(a,1),3(a,1,1,2))].

27 x / (x / 1) = 1. [hyper(7,a,3,a),flip(a)]l.

o
o

N W

x /
x /
x /
x /

e

Iy
| x
|1

@

processor and 32GB of memory (but Prover9 only used 1 core and memory was not
an issue).

The main operations applied in the proofs here are paramodulation, hyperresolution,
and rewriting. See the literature on Prover9 for more on these. Positions in expres-
sions are represented as lists of positive natural numbers; as equality (=) is taken as
a binary function symbol, positions in paramodulation of two equations start with
1 (usually; the lhs) or 2 (the rhs). E.g., in this proof the identity (z/1)/x = 1 on the
line numbered 24 is obtained by unifying the lhs of that at line numbered 4 with
the subterm at position 1.2, i.e. the subterm x/y, in the lhs of the identity at line
numbered 3.

17

Commutative Residual Algebra 25

31 ¢l / c2=1. [hyper(8,a,10,a)].
32 c2 / c3 = 1. [hyper(8,a,11,a)].
33 ¢l /c3!=1. [ur(9,b,12,a)].

71 ((x / ¢3) / (x/ c2) /1=1. [para(32(a,1),2(a,1,2))].

82 x / 1 =x. [para(24(a,1),5(a,1)),revrite([27(6)1),xx(a),xx(b)].
85 (x / c3) / (x/ c2) = 1. [back_rewrite(71),rewrite([82(7)1)].
173 c¢1 / ¢3 = 1. [para(31(a,1),85(a,1,2)),reurite([82(5)1)].

174 $F. [resolve(173,a,33,2)].

end of proof ===

Proof (of last item of Lem. 1). Meet distributes over join in CRAs.

PROOF

% --- Comments from original proof --
% Proof 1 at 0.09 (+ 0.00) seconds

% Length of proof is 38.

% Level of proof is 7.

% Maximum clause weight is 27.

% Given clauses 43.

1x " (yvaz)=(x"y) v (x" 2z)# label(non_clause) # label(goal). [goall.
2x /1 =x. [assumption].

4 x/ x=1. [assumption].

5 x/y)/(z/y) =(&«/2)/ (y/2z). [assumption].

6 (x/y)/x=1. [assumption].

7x-~y=x/(x/y). [assumption].

9x "~ y=y " x. [assumption].

10x/ (x/y)=y/ (y/x. [copy(9),rewrite([7(1),7(3)N].

13 (x~y)/z=(x/2z) " (y/z. [assumption].

14 &/ &/y))/z=&/2)/ (x/2)/ (y/2). [copy(13),rewrite([7(1),7(6)1)].
15 xvy=x%(y/ x). [assumption].

16 x v x = x. [assumption].

17 x * 1 = x. [copy(16),rewrite([16(1),4(1)1)].

18 xvy=yvx. [assumption].

19 x* (y/ x) =y * (x/y). [copy(18),rewrite([15(1),15(3)1)].

22 (x*xy) /z=(x/2) *(y/ (z/x). [assumption].

28 /Y *(z/(y/)= (x*2) /y. [copy(22),flip(a)l.

24 x / (y *x 2z) (x /y) / z. [assumption].

25 (x/y) /z=x/(y*z). [copy(24),flip(a)].

26 (x /y) /z=(x/2) /y. [assumption].

27 (c1 =~ c2) v (c1 =~ ¢3) !'=cl = (c2 v ¢3). [deny(1)].

28 (c1 / (c1 / ¢2)) * ((c1 / (c1 / e3)) / (et / (el / ¢2))) '=c1 / ((c1 / c2) / (e3 / ¢2)). [copy(27),rewrite([7(3),7(8),156(11),15(21),7(24),25(25,R)1)].
32 &/ (/2 / G/ /2)=x/y. I[para(6(a,1),5(a,1,2)),rewrite([2(3)]1),flip(a)].

B(&x/y)/(=z/y))/ x/2)=1. I[para(s(a,1),6(a,1,1))].

MG/ /S x/2)/ G /l2)=&/y /&7y / (/7). [para(6(a,1),7(a,2,2)),revrite([7(3)]1),flip(a)].

37 (x/ (y/2)/ =/ (@z/y) =x/y. I[para(10(a,1),5(a,1,2)),reurite([6(8),2(8)1)].

39x/ (x/ (x/y)=x/y. I[para(6(a,1),10(a,1,2)),rewrite([2(3)]),flip(a)].

93 (x *y) / y=x. [para(10(a,1),15(a,2,2)),rewrite([156(2),19(4),6(2),17(2),23(4)]1),flip(a)].

121 (x / (x / y)) *z=(x*x2) / (x/y). I[para(6(a,1),23(a,1,2,2)),rewrite([2(4)1)].

136 (c1 * ((c1 / (c1 / ¢3)) / (et / (el / e2)))) / (el / ¢2) '=cl / ((c1 / c2) / (c8 / c2)). [back_rewrite(28),rewrite([121(17)1)].
203 (x /) / (x/)/ (=z/y)=(&/y / x/2. [para(26(a,1),14(a,1)),flip(a)]l.

247 (x /y) / (x/2) / (y/2) =(/7y / (x/z). [back rewrite(34),rewrite([203(10)1)].

352 (c1 * ((c1 / ¢c2) / (c1 / ¢3))) / (1 / c2) '=c1 / ((c1 / c2) / (3 / c2)). |[para(26(a,1),136(a,1,1,2)),rewrite([39(8)1)].
3563 (c1 * ((c1 / ¢2) / (c1 / e3))) / (el / c2) '=c1 / ((c1 / e3) / (c2 / ¢3)). [para(5(a,1),352(a,2,2))].

661 (x *x (y /2) /y=x/(y/ (y/=2). I[para(93(a,1),32(a,1,1)),flip(a)].

675 c1 / ((c1 / ¢3) / (c2 / c3)) '=c1l / ((c1 / c2) / ((c1 / c2) / (c1 / ¢3))). [back rewrite(353),rewrite([661(13)]1),flip(a)]l.
1180 x / ((y /2 / Gy /2) / (y/ W) =x/ y/w /(z/w). I[para(33(a,1),37(a,1,1,2)),rewrite([2(2),247(6)])].

1151 $F. [resolve(1150,a,675,a(flip))].

end of proof ===

Proof (that the second law of Prop. 1 holds for ¢cBCKre.). This took Prover9 a
bit more than one and a half hour to conclude:

PROOF

Proof 1 at 5810.83 (+ 33.71) seconds.
Length of proof is 43.

Level of proof is 10.

Maximum clause weight is 36.000.
Given clauses 2350.

oo e

1 (x/y)/ (/x)=x/y# label(non_clause) # label(goal). [goall.
2x/x=1. [assumption].

31/x=1. [assumption].

4x"~y=x/(x/y). [assumption].

§x "~ y=y "~ x. [assumption].

6x/ (x/y) =y / (y/x. [copy(5),reurite([4(1),4(3)1)].
7&«/y)/z=(x/z)/y. [assumption].
8x/yt!=1lx/z'=11y/x'=2z/x|y=z [assunption]
9x/1=x. [assumption].

10 (c1 / ¢2) / (c2 / c1) '=c1 / c2. [deny(1)].

Mx/ G/ G/x)=x/ &/ &/y). I[para(6(a,l),4(a,2,2)),rewrite([4(2)]1),flip(a)].
12 (x / y) / x =1. [para(2(a,1),7(a,1,1)),rewrite([3(2)1),flip(a)].

14 /9 / (&x/72)/y)=2/ @/ &x/y). [para(7(a,1),6(a,1,2))].

16 x/ x/y) /z=(G /=2 /(G /x. I[para(6(a,1),7(a,1,1))].

26 V. van Oostrom

16 ((x/y)/2z)/u=((x/w /y /z [para(7(a,1),7(a,1,1)),flip(a)].

2x/ (/2 =1 1x/ut=11(/x/z!=u/x|y/z=u [para(7(a,1),8(c,1)].

28x/ (G / G/) =x/y. I[para(i1(a,2),6(a,1)),reurite([12(6),9(6)1)].

32x/ &/ &/ G/2D))=x//z. [para(7(a,1),11(a,1,2)),revrite([7(4),28(5)1),flip(a)].

40x/ (x/ (x/y)=x/y. I[para(11(a,1),11(a,2,2,2)),rewrite([7(5),2(5),9(4),28(3),32(5)]),flip(a)].

46 ((x / y) / 2) / x =1. [para(12(a,1),7(a,1,1)),rewrite([3(2)]),flip(a)].

a7 (x / y) / 2) / (x/ 2z) =1. [para(7(a,1),12(a,1,1))].

52x / (x/ (x/y)/2)=(/y) /z [para(46(a,1),6(a,1,2)),revrite([9(4)]1),flip(a)].

83 (x/ (x/y)) /2)/y=1. [para(6(a,1),46(a,1,1,1))].

84 x/y)/ (x/ (y/ 2) =1. [para(6(a,1),46(a,1,1)),rewrite([7(4)1)].

9 (x/ x/y) /2 / (y/ 2z =1. I[para(6(a,1),47(a,1,1,1))].

13 (x/y) / (x/ (z/ (z/ y))) =1. [para(6(a,1),53(a,1,1)),rewrite([7(5)1)].

12 x/ x/y)) / (y/ (y/ x)/2) =1 [para(6(a,1),54(a,1,1))].

213 (x / (x / (y/ 2)) / (y/ (z/ w) =1. [para(54(a,1),15(a,2,1)),rewrite([3(10)1)].

831 ((x/ (x/ (y/2))/w / ((y/w /2z) =1 I[para(7(a,1),90(a,1,2))].

551 ((x / (x/y)) / (y/=2)/(z/ (y/x) =1 I[para(15(a,2),90(a,1,1))].

557 ((x /' y) / (z/) / (x/2z)=1. I[para(90(a,1),16(a,2))].

583 (x / (x / (y/2)) / (y/ (w/ (/=2)) =1 [para(113(a,1),15(a,2,1)),revrite([3(11)1)].

2067 x / (y/ (y/x)/2)) =1 lx/ut=11z/(z/(G/x)'=u/xly/ (y/x)/z)=nu I[para(6(a,1),24(c,1))].

3237 x / (y / (y /%) / 2)) = y. [para(124(a,1),14(a,1,2)),rewrite([9(6),54(11),9(7)1)].

3280 x/y'=1lx/z!'=1] w/ @/ x)t=z/x|ly/ ((y/x)/ v =2z [back rewrite(2967),rewrite([3237(4)1)].

6206 ((x /y) / (z/y)) / (x/ (z/w) =1. [para(657(a,1),213(a,1,1,2)),rewrite([9(5)])].

21101 (x / (y / (z/ W) / (x/ gy /w) / (z/ w)) =1. [para(5206(a,1),113(a,1,2,2,2)),rewrite([9(8)])].

27486 (x / (y / 2) / (x/ ((u/ G/ y) / (z/ (y/ w))) =1. [para(651(a,1),531(a,1,2)),rewrite([7(9),9(11)])].

28777 (x / (x / (y/ (z/w))) / g/ (z/w / (u/w)) =1. [para(557(a,1),583(a,1,2,2,2)),rewrite([9(9)])].

75243 (x / (x / ((y / (y / 2)) / (u/ 2)))) / (z/ (/y) =1. [para(28777(a,1),27486(a,1,2)),rewrite([9(11)1)].

81865 x / ((x /y) / (y/ x)) =y / ((y / x) / (x/y). [hyper(3280,a,75243,a,b,21101,a,c,7,a) ,rewrite([2(1),9(2),2(1),9(2),
2(1),9(2),2(1),9(2),28(3),2(2),9(3),2(2),9(3) ,40(4) ,2(5) ,9(6) ,2(5) ,9(6) ,40(7) ,2(6) ,9(7) ,2(6) ,9(7) ,2(6),9(7) ,28(8)1)] .

81872 (x / y) / (y / x) =x / y. [para(81865(a,1),4(a,2,2)),rewrite([4(4),52(5),3237(8)1)].

81873 $F. [resolve(81872,a,10,a)].

x /
u/

end of proof ===

