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Abstract. Commutative residual algebras (CRAs) are algebras having
an axiomatised residuation operation. Key examples of CRAs are cut-off
subtraction (monus) on the natural numbers, set and multiset difference,
and cut-off division (dovision) on the positive natural numbers.
Here we revisit CRAs, showing the usual construction of a commutative
group (the integers) out of a monoid (the natural numbers) as pairs,
can be extended and generalised, by constructing the latter from CRAs
(the bits) as sequences (up to order), and yielding a commutative lattice-
ordered group. This then affords a decision procedure for CRAs, by em-
ploying results known from the literature.
We show CRAs arise from residual systems (going back to Stark and
unpublished work of Plotkin) by imposing a commutativity condition,
and we identify residuation as a Skolemised diamond property. Accord-
ingly, we let it together with its associated rewrite technique of tiling
take front and centre stage in our approach. We finally show that CRAs
are at the natural level of abstraction to state and prove some exam-
ples from the literature, in particular the inclusion–exclusion principle,
making the latter applicable to, among others, (measurable) multisets.

Keywords: residuation · diamond property · tiling · commutative resid-
ual algebras · commutative ℓ-groups · multisets · inclusion–exclusion.

1 Introduction

A standard way to prove sets A,B the same is to show both inclusions A ⊆ B and
B ⊆ A. This can be reformulated as both differences being empty A−B = ∅ =
B−A. Similarly, natural numbers n,m may be proven distinct by showing one of
the cut-off subtractions (monus) n −̇m and m −̇n to be non-0. In this paper, we
further develop the theory of CRAs (commutative residual algebra [30]) enabling
this reasoning. CRAs are algebras ⟨A, 1, /⟩ having a residuation operation / and
unit 1 and residuation laws that are so few that we can give them immediately:

a/1 = a (1)
(a/b)/(c/b) = (a/c)/(b/c) (4)

(a/b)/a = 1 (5)
a/(a/b) = b/(b/a) (6)
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The above CRA laws are independent. We are interested in the equational theory
of CRAs (Sec. 3). Examples of derivable laws are:

a/a = 1 (2)
1/a = 1 (3)

To show the equational theory is decidable we proceed in two steps. First, we
show (Sec. 4) CRAs embed in CRACs, CRAs with composition · satisfying:

c/(a · b) = (c/a)/b (7)
(a · b)/c = (a/c) · (b/(c/a)) (8)

1 · 1 = 1 (9)

Next, we show (Sec. 5) CRACs embed in commutative ℓ-groups (lattice-ordered)
having a suitable inverse −1. By decidability of the latter [27,56] we conclude.

We proceed in such a way (as often done in analogous situations) since CRAs
are hard to work with directly, due to the contravariance of residuation (in its
second argument). Indeed, for many of the (equational) proofs in this paper we
employed an ATP (Prover9 and Mace4 [32]) to obtain and check them. On the
other hand, commutative ℓ-groups are well-behaved and well-studied, cf. [21].

The first embedding generalises how the bits B := {0, 1} can be embedded in
the natural numbers N by viewing the latter as (non-empty) bitstrings modulo
0-contraction (which yields bitstrings having at most one 0), i.e. natural numbers
in unary, on which addition + is represented by string-concatenation.

The second embedding generalises the standard embedding of N in the in-
tegers Z, viewing the latter as pairs of natural numbers modulo normalisation
(yielding pairs where at most one component is non-0), i.e. integers as signed
natural numbers, on which unary minus − is represented by pair-swapping.

Further examples are given below and include the usual embedding of the
prime numbers first in the positive natural numbers (as multisets of prime num-
bers) and next in the (non-negative) rationals (as normalised fractions), and of
the embedding of sets as multisets first and in signed multisets next. The laws
of CRAs are sufficiently strong to enable both, generalising B ↪→ N ↪→ Z.

We show CRAs are equivalent to cBCKrc’s (commutative BCK algebras with
relative cancellation [18]), which gives an alternative route to their embedding
in commutative ℓ-groups via known results for cBCKrcs. Still, we present our
embeddings as they often can be seen as the untyped versions of known con-
structions for typed systems as explained in Sec. 2. This will allow us not only
to reuse, but also to present the embeddings in an intuitive diagrammatic way.

Sample problems we will tackle (Sec. 6) for the reader to ponder are:

Problem 1. Can we give a calculational proof of that for any two propositions,
one entails the other, (p→q)∨ (q→p) = ⊤, using only its operations {→,∨,⊤}?

Problem 2 (EWD1313). The note [14] asks for a nice calculational proof of that
if gcd(n,m) = 1, n and m are relatively prime, then gcd(n,m · k) = gcd(n, k).
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Problem 3 (Mechanical Mathematicians). How to show [7] (gcd(n,m) = 1 and ℓ |
n ·m andn′ = gcd(ℓ, n) andm′ = gcd(ℓ,m)) =⇒ (n′ ·m′ | ℓ and ℓ | n′ ·m′)?

Problem 4 (Inclusion–Exclusion).
⋃
MI =

(⊎
∅⊂J o⊆I

⋂
MJ

)
−

(⊎
∅⊂J e⊆I

⋂
MJ

)
for a finite family MI of multisets? Here ⊎,−,∪,∩ denote multiset sum, differ-
ence, union, intersection and o⊆ / e⊆ taking subsets of odd / even cardinality. For
instance, does it hold for I := {1, 2, 3}, M1 := [a, b], M2 := [b, c], M3 := [c, a]?

Related work There is a vast literature on residuated lattices and on embedding
algebras in groups. Our vantage point, of starting with algebras with residuation
but without composition, we only found in the literature on cBCKrc’s cited.
Traditional accounts are biased in that they focus on the loop, composition and
reverse operations with their (monoid and group) laws. We show that residuation
comes prior to them. (Indeed CRAs need neither have composition nor reverse;
the CRAs of bits and sets do not.) That then also explains the pervasiveness of
tiling techniques in the literature, since we identify residuation as the Skolem
function arising from the diamond property, i.e. from having tiles. We argue this
perspective, coming from rewriting, is novel, unifying and fruitful.

2 Intuition for residuation from removal / rewriting

Our first take on CRAs is that one may think of their objects as being composite,
made up of components, such that the residual a/b of a after b is obtained by
removing b’s components from a’s (whence their name residual algebra). To
denote that nothing is left, a/b = 1, we write a ⩽ b (Def. 1). In the case of sets
and natural numbers this natural order ⩽ instantiates to the usual subset ⊆ and
less-than-or-equal ≤ orders. The removing-idea immediately gives intuition for
the unit laws (1)–(3) and for (5) expressing monotonicity of removal. A way to
understand the two remaining laws (4) and (6) is as being designed to guarantee
⩽ is a partial order, enabling the method of proving equality by two inequalities,
central to our endeavour. Indeed, we check that if a ⩽ b ⩽ c, then a ⩽ c:

a/c
(1)
= (a/c)/1

hyp
= (a/c)/(b/c)

(4)
= (a/b)/(c/b)

hyp
= 1/(c/b)

(3)
= 1, and

a
(1)
= a/1

hyp
= a/(a/b)

(6)
= b/(b/a)

hyp
= b/1

(1)
= b, if a ⩽ b ⩽ a.

Our second, key, take is based on interpreting the carrier as comprising steps of

ψ/ϕ

ϕ

ϕ−1

ϕ ψ

ϕ · ψ1a

a

ϕ ψ

ϕ/ψ

Fig. 1. Operations on steps: residuation, loop, composition, reverse
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a rewrite system → [37][54, Sec. 8.2].1 Operations must then be lifted to steps
in a way respecting sources and targets. Fig. 1, where ϕ, ψ, χ range over steps,
depicts how. Each operation can be seen as the Skolem function for the formula
depicted, where ordinary arrows denote universally quantified steps, and dashed
open-headed arrows existentially quantified steps. For instance, Skolemising the
formula ∀ϕ, ψ if tgt(ϕ) = src(ψ) then ∃χ with src(ϕ) = src(χ) and tgt(ψ) = tgt(χ)
as depicted second-from-the-right, yields composition · mapping any pair of con-
secutive steps to a step from the source of the former to the target of the latter.
Although not usually perceived as Skolemisations, but cf. [22], the operations
1, ·,−1 are very well-known (in any case with additional laws making them units
(unit-laws), morphisms (associativity), and inverses (left/right-inverse laws)).
We focus on the odd one out, on residuation /, which comes prior to the others.

Residuation / arises from Skolemising the so-called diamond property [37,4,54]
expressing that for any peak ϕ, ψ (a pair of co-initial steps, src(ϕ) = src(ψ)), there
exists a valley ψ′, ϕ′ (a pair of co-final steps, tgt(ψ′) = tgt(ϕ′)), that is compos-
able to it, tgt(ϕ) = src(ψ′) and tgt(ψ) = src(ϕ′). Skolemising this formula a
priori gives rise to two functions f, g, corresponding to mapping ϕ, ψ to the first
component ψ′ (by f(ϕ, ψ)) respectively the second component ϕ′ (by g(ϕ, ψ)) of
the pair ψ′, ϕ′. But we may use a single one / as depicted in Fig. 1, as follows
from that we may set ϕ/ψ := g(ϕ, ψ) if ϕ ≼ ψ and f(ψ, ϕ) otherwise, for some2

total order ≼ on steps.
Now thinking of steps as being composite, made up of (parallel / indepen-

dent! ) tasks, we may interpret ϕ/ψ as those tasks of ϕ that remain to be done
after ψ. The intuition for ϕ/ψ and ψ/ϕ yielding a diamond, a tile, is that either
way a common reduct is reached by having performed the tasks of both ϕ and ψ,
removing double ones. This brings that we may reason (in)formally by means of
tiling, by repeatedly filling a peak ϕ, ψ by a tile, as below (Figs. 2 and 5). Tiling
is pervasive in the rewriting literature since its inception [11,37,28,5,33,41].

Remark 1. If a (confluent) rewrite system→ doesn’t have the diamond property,
we may try to build its diamond closure, a least extension having the diamond
property. To that end one may iteratively adjoin joining-reductions as steps [39,
Sec. 3.1].3 This often works, if only as intuition pump; in the λ-calculus, from
β-steps iterative adjoining yields parallel β-steps as diamond closure, in the limit.

Remark 2. We will refer to the transitions between ordinary algebras and those
having steps as carrier and operations subject to Fig. 1, as typing / untyping. For
instance, we will refer to a category / groupoid as a typed monoid / group [49].
Note that though typed algebras could be handled at the ordinary algebraic level,

1 The structure of rewrite systems, of sets of objects and steps equipped with maps
src, tgt from the latter to the former, has been invented many times over; e.g. pro-
gramming language theorists might call them abstract machines, and mathematicians
may call them pre-categories, quivers, or multidigraphs depending on their area.

2 Existence may be assumed using the axiom of choice, even of a well-order.
3 We learned this process from Hans Zantema and facetiously dubbed it subcommufi-

cation [39], but nowadays call it faceting as one cuts diagrams into diamonds [41].
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it would involve explicitly working with partial operations; one would lose the
typing-constraints implicit in Fig. 1, e.g. that composition requires consecutive
steps. Also note that any algebra can be trivially typed by taking a rewrite
system on a singleton object, having as steps the elements of the carrier.

The intuition conveyed is then that steps of a rewrite system having a residuation
can be thought of as being parallel, extended in space, and that composition is
sequential, extends them in time. This reinforces our point that residuation in
itself is interesting, parallel steps are / space is, and meshes well with the idea
underlying rewriting, to lift properties from steps to compositions thereof, i.e.
to reductions.

The idea to exploit typed algebras is that our embeddings, from CRAs
in CRACs in commutative ℓ-groups, are ‘just commutative untyped’ versions
of known typed embeddings, say of simple braids in positive braids in (all)
braids [13], or of a reversible rewrite system → (both → and ← are determinis-
tic) in reversible reductions ↠ first and in reversible expansions and reductions
↞ ∪↠ next (due to affluence [46]), in each case enabled by having a residu-
ation satisfying the typable laws (1)–(4) (but not (5),(6), which are untypable
in that they make src = tgt forcing a collapse to a discrete / singleton carrier,
to algebra), enabling proof-by-tiling. (E.g. it is because sets have a residuation
(difference) that they embed in the CRAC of multisets, which then embeds in
the commutative ℓ-group of signed multisets.)

3 Commutative Residual Algebras

We further intuitions by expanding our stock of example CRAs, deriving some
simple but interesting laws, defining a number of derived operations to see
how they instantiate on the example CRAs, recapitulating the multiset rep-
resentation theorem for well-founded CRAs, relating CRAs to cBCKrc’s, and
seeing how CRAs arise by assuming commutativity and untyping residual sys-
tems [47,52,54], rewrite systems satisfying the laws (1)–(4) depicted in Fig. 2.4
Unless stated otherwise we work with a CRA ⟨A, 1, /⟩.

Example 1 (Some CRAs). The natural numbers ⟨N, 0, −̇⟩ with monus seen be-
fore; the positive natural numbers ⟨Pos, 1, /· ⟩ where /· is cut-off division (dovision)
n /· m := n/gcd(n,m); the multisets over A (maps from A to N) ⟨Mst(A), ∅,−⟩
with multiset difference; the non-negative reals ⟨R≥0, 0, −̇⟩ with monus; the real
numbers ≥ 1 ⟨R≥1, 1,÷⟩, where ÷ is truncated division x÷ y := x/min(x, y);
the subsets of A ⟨Set(A), ∅,−⟩ with set-difference. One checks laws (1)–(6) hold.

Example 2 (sub-CRAs). Taking a dc-subset (downward-closed w.r.t. ⩽) of A
induces a CRA again. For instance, B, or any initial segment of N, is a CRA.
Restricting Pos to the prime numbers yields a CRA Prm, but restricting for any
prime number p to its prime powers does so too, pN. From Mst(A) CRAs are
4 In Fig. 2 we use a, b, c where ϕ, ψ, χ would be more precise, but distracting. Colours

are there only to easily keep track of residuals (they have the same colour).
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obtained by restricting multiplicities to≤ 1 (Set(A)), to be bounded (Mstbnd(A)),
and/or requiring supports to be finite (Mstfin(A)), where for a multiset M and
a ∈ A, M(a) is the multiplicity of a and {a ∈ A |M(a) > 0} the support of M .

To give a flavour of CRA reasoning we show two interesting laws (used in Thm. 2,
but also interesting to check on the example CRAs) whose proofs being easy
enough but not quite trivial, illustrates that CRA proofs are best left to ATPs
(for equational proofs that’s easy), as we will predominantly do below. The first
one says that the order of removing is irrelevant, and the second one captures that
the two parts a/b and b/a of the symmetric difference of a and b are disjoint.5

Proposition 1. (a/b)/c = (a/c)/b and (a/b)/(b/a) = a/b.

Proof. Abbreviating a/(a/b) to a ∧ b (cf. Def. 1), the former is seen to hold by

(a/b)/c
(1,5)
= ((a/b)/c)/((c/b)/c)

(i)
= ((a/c)/(b/c))/(c ∧ b) (ii)

= (a/c)/b

where (i) and (ii) are derived as (instances of) respectively:

((a/b)/c)/((c/b)/c)
(4)
= ((a/b)/(c/b))/(c/(c/b))

(4),def
= ((a/c)/(b/c))/(c ∧ b)

(a′/(b/c))/(c ∧ b) (6),def
= (a′/(b/c))/(b ∧ c) def,(4)

= (a′/b)/((b/c)/b)
(5,1)
= a′/b

For the latter, saying parts a/b and b/a of the symmetric difference are disjoint:

(a/b)/(b/a)
(1),(5)
= ((a/b)∧a)/((b/a)∧b) def,(6)

= (a/(b∧a))/(b/(b∧a)) (4),(5),(1)
= a/b.

Residuation only yields smaller elements making that composition is not a total
operation on CRAs in general. Still within the confines of a given CRA we can
determine whether or not an element would be a composition. For instance, for
B and Set({x, y, z}) the compositions of 1 and 1 respectively of {x, y} and {y, z}
do not exist, but those of 0 and 1 and of {x} and {z} do (1 resp. {x, z}).
Definition 1 (Derived operations ⩽, ∧, ·, ∨).

natural order a ⩽ b := a/b = 1
meet a ∧ b := a/(a/b)
composition a · b := c if a/c = 1 and c/a = b (partial)
join a ∨ b := a · (b/a) (partial)

By partial we mean that such an element need not exist, i.e. the expression may
not denote, but that if it does (as we may express by ↓), then uniquely so. (For
f a partial function and expressions e1, . . . , en, the expression e := f(e1, . . . , en)
denotes v, if ei denotes vi and (v1, . . . , vn) is in the domain of f , and f applied
to it has value v.6) Kleene equality e ≃ e′ asserts that if either of e, e′ denotes
then so does the other and then their denotations are equal.

See Tab. 1 for the derived operations and properties for some CRAs from
Ex. 1. Note that if a · b↓ then a ∨ b↓ but not necessarily the other way around.
The names of derived operations are justified by the next lemma, used in Sec. 6.

5 Cf. [50, p. 71] for reasoning about distance based on the symmetric difference.
6 Denoting is strict ; e.g. 0 · 1

0
does not denote as its sub-expression 1

0
doesn’t.
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CRA N R≥0 Mst(A) Set(A) Pos

unit 1 0 0 ∅ ∅ 1

residuation / −̇ −̇ − − /·
natural order ⩽ ≤ ≤ ⊆ ⊆ |
total order? ✓ ✓ ✗ ✗ ✗

well-founded? ✓ ✗ ✓ (fin) ✓ (fin) ✓

meet ∧ min min ∩ ∩ gcd

composition · + + ⊎ ∪ (if ↓) ·
join ∨ max max ∪ ∪ lcm

Table 1. Derived operations for some CRAs from Ex. 1

Lemma 1 (Algebraic structure of CRAs).

– ⟨A,⩽⟩ is a partial order; enables proving a = b by inclusions a ⩽ band b ⩽ a;
– ⟨A,∧⟩ is a meet-semilattice; and a ⩽ b iff a ∧ b = a; and 1 ∧ a = 1;
– ⟨A, 1, ·⟩ is a partial commutative monoid; and a ⩽ b iff a · c ≃ b for some c;
– ⟨A,∨⟩ is a partial join-semilattice; and a ⩽ b iff a ∨ b ≃ b; and 1 ∨ a = a;
– ⟨A,⩽⟩ is a partial lattice; and a∨ (a∧ b) ≃ a and a∧ (a∨ b) ≃ a if (a ∨ b)↓;
– ⟨A,∧,∨⟩ is a partial distributive lattice; (a∨b)∧c ≃ (a∧c)∨(b∧c) if (a∨b)↓.

Proof. All proofs were done by ATP. See App. B for the Prover9 representation
we used, and its instantiation to a proof of the last item.

If composition is total CRAs are distributive lattices, not necessarily bounded
(N). We recall the representation theorem for well-founded CRAs [30, Sec. 5],
expressing that it’s not wrong to think of elements of such simply as multisets.

Definition 2 (Decomposition). Given a partial commutative monoid ⟨A, 1, ·⟩.
Call a indecomposable7 if a ̸= 1 and a = b · c implies b = 1 or c = 1, and say
a multiset [a1, . . . , an] is a decomposition of a if each ai is indecomposable and
a ≃ a1 · . . . · an. Divisibility is defined by a ⩽ b if b ≃ a · c for some c.

These notions apply to CRAs via the partial commutative monoid of their com-
position, and the natural order of the CRA then is the divisibility order. Having
unique decompositions means that decompositions exist uniquely.

Theorem 1 (Multiset representation [30]). Well-founded CRAs have unique
decomposition, and any well-founded CRA ⟨A, 1, /⟩ is isomorphic to the CRA
⟨A′, ∅,−⟩, with A′ the initial segment of finite multisets of indecomposables.

For the CRA N the first item boils down to the triviality n =

n︷ ︸︸ ︷
1 + . . .+ 1, but for

Pos it corresponds to the Fundamental Theorem of Arithmetic (FTA) saying that
every positive natural number has a unique decomposition into prime numbers.
Though the CRA need not be finite (N is not), well-foundedness is essential
(unique decomposition fails for R≥0 in the absence of indecomposables).
7 For rings this is known as being irreducible.
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Next, we show CRAs have the same equational theory as cBCKrc’s (com-
mutative BCK algebras with relative cancellation as introduced by Dvurečenskij
and Graziano [18]).8 BCK and BCI9 algebras are algebraic structures introduced
in [25,24,2] unifying set difference and implication in propositional logic. Many
variations have been studied [18,17,15,16], but we focus on cBCKrc’s.

Definition 3. ⟨A, 1, /⟩ is a cBCKrc if for all a, b, c

(a/b)/(a/c) ⩽ c/b (10)
a/(a/b) ⩽ b (11)

a ⩽ a (12)
a = b if a ⩽ b and b ⩽ a (13)
1 ⩽ a (14)

a ∧ b = b ∧ a (15)
b = c if a ⩽ b, c and b/a = c/a (16)

where, as for CRAs, a ⩽ b if a/b = 1 and a ∧ b abbreviates a/(a/b).

Theorem 2. ⟨A, 1, /⟩ is a CRA iff it is a cBCKrc.

Proof. We factor our proof through the alternative equational specification of
cBCKrc’s as given in [15] comprising five laws: (2),(1),(6) and the two laws of
Prop. 1.10 That these laws hold for CRAs is then immediate. For the other
direction we employed Prover9. Only showing that the second law of Prop. 1
holds for cBCKrc’s took substantial time, 1.5 hours; see App. B.

By the theorem, results for cBCKrc’s can be transferred to CRAs and vice
versa, in particular that the former embed in commutative ℓ-groups. We follow a
different route here, by untyping typed tiling constructions for residual systems
(not possible for cBCKrc’s’ laws; untyping them makes src = tgt). Toward that
goal observe that CRAs arise from residual systems by assuming commutativity.

Remark 3. They do, since that is how I constructed them: At the time (around
MM) for a Coq formalisation I needed properties of multisets that were lacking
from its libraries. Just having developed residual systems, I noted that since
those could be used for reasoning about lists [54, Intro of Sec. 8.7], adjoining
commutativity laws should be sufficient to reason about multisets. To obtain
the residuation-laws for commutativity, I took a peak spanned by both possible
orders of two consecutive steps, and took the laws arising from that tiling should
yield a valley comprising 1s only. Proceeding like this, as in the diagram depicted
at the bottom of Fig. 2, yields four laws along the top–right of the valley : each
of (b/a)/b, (a/(a/b))/(b/(b/a)), (b/(b/a))/(a/(a/b)), and (a/b)/a should be 1 (to
8 CRAs and cBCKrc’s were introduced independently, around the turn of the century.
9 BCI has the law a = 1 if a ⩽ 1 instead of (14).

10 On page 5 of [17] and also in the proof of Thm. 5.2.29 of [15], law (3) is given instead
of law (1); that is incorrect, as a 2-point model with / the constant-1-function shows.
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a

a/a

b/(c/a)b

c/a
(7),(8)

a
a/1 = a

1

1/a

(1),(3)

a

c

a/c
(a/b)/(c/b) = (a/c)/(b/c)b/c

c/b

b

a/b

a

(4)

a · b
(a/c) · (b/(c/a))

c

a/a

(5),(6) b/(b/a)
a/(a/b)

(b/(b/a))/(a/(a/b))

(a/b)/a

(a/(a/b))/(b/(b/a))(b/a)/b

a/b

b/a

b

a/c

(c/a)/b

a

ab

c/(a · b)

(2)

a

Fig. 2. Visualisation of CRA laws (1)–(6) and CRAC laws (7),(8)

make both possible orders of the two steps the same). This gave rise to laws (5)
and (with anti-symmetry of ⩽) (6).

The law (4) is known as (Lévy’s) cube law [29], for reasons clear from Fig. 2. It
captures causal independence of the trident (3-peak) a, b, c hence frequently plays
a pivotal rôle in fields where causality does [47], e.g. in the λ-calculus [29], con-
currency [52], in Garside theory [13], and in Wolfram’s physics project, cf. [44].

We developed residual systems in [54] off Stark’s CTSs (concurrent transition
systems [52]), but they were introduced (without a name) by Plotkin already
in [47]. Concrete residual systems are omnipresent: e.g. parallel β-steps in the
λ-calculus [11,29], simple braids in algebra [13], left-convex sets of positions in
self-distributivity [51]; if one looks, one finds residual systems everywhere: From
the fact that A | B is read in probability as A after B, one may already suspect
residuation is at play, as indeed it is. Taking the event A | B as notation for a

B | A A | B

Ω

A

BA

B

A ∩B

A ∩B

P (B | A) P (A | B)

Ω

A

P (B)P (A)

B

A ∩B

P (A ∩B)

Fig. 3. Bayes’ Theorem as map P on residual systems: from events to fractions

step from B to A∩B, and leaving B implicit if it’s the whole sample space Ω, the
diamond property holds (Fig. 3 left; laws (1)–(4) hold by being a semilattice).
Bayes’ Theorem P (A) · P (B | A) = P (A ∩B) = P (B ∩A) = P (B) · P (A | B) is
then nothing but a map P from it to fractions (of the cardinalities; Fig. 3 right).
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4 Embedding CRAs in CRACs

Recall CRACs are CRAs satisfying the residuation laws for composition (7)–
(9). Laws (7) and (8) feature prominently in rewriting and concurrency the-
ory [6,47,52,54] and are obtained by tiling as visualised in Fig. 2 (top–left): the
laws simply decree that tiling of a · b, c, so of the composition a · b and c, is the
same as tiling for its first component a, c followed by tiling with its second b, c/a.

Remark 4. In CRAs with derived composition · partial versions of (7)–(8) hold:
c/(a · b) = (c/a)/b and (a · b)/c ≃ (a/c) · (b/(c/a)) if (a · b)↓, and 1 · 1 = 1.

Vice versa, composition · in CRACs satisfies the laws of derived composition
in CRAs: a/(a · b) = (a/a)/b = 1 and (a · b)/a = 1 · b = (1 · b)/((1 · b)/b) = b.

As known [47,52,54] residual systems, rewrite systems satisfying (typed) laws (1)–
(4), embed in residual systems with composition satisfying (typed) laws (7)–(9),
or in the terminology of [52]: concurrent transition systems embed in computa-
tion categories. This is shown in two phases: first residuation / is extended from
the steps of a rewrite system→ to a residuation( on compositions thereof, i.e. to
reductions ↠ [52, Lem. 2.3.1][54, Lem. 8.7.47] by means of tiling [52, Fig. 3][54,
Fig. 8.50]. Next, to regain that the natural order is a partial order, that it is
anti-symmetric, one quotients out projection equivalence ≡, where two reduc-
tions are projection equivalent if the result of tiling their peak yields a valley of
only 1s [52, Thm. 2.5][54, Prop. 8.7.48]. To embed a CRA in a CRAC it now
suffices to untype that construction, giving lists (of objects) instead of reductions
(of steps), and then to impose commutativity yielding multisets instead of lists:

Theorem 3. C = ⟨A, 1, /⟩ embeds in CRAC C∗ = ⟨Mstfin(A)/≡, ∅,(,⊎⟩.

Proof. For a family aI with I finite we write [aI ] to denote its multiset. Let
I := {0, . . . , n −̇ 1} and J := {0, . . . ,m −̇ 1}. Define residuation [aI ]( [bJ ] := [a′I ]
by tiling as in Fig. 4 putting family members in some order. (Residuation may

bi+1j := bij/aij

bij

ai := ai0 a′i := aimaij+1 := aij/bij
aij

b′j := bnj

cij := aij ∧ bij

bj := b0j

Fig. 4. Projection equivalence of multisets by tiling with CRA diamonds

be computed by viewing (7)–(8) as rules and eliding units 1 of C.) By tiling with
the cube law (4) and commutativity, as at the bottom of Fig. 2, the resulting
multiset is seen to be independent of the chosen order, making( well-defined. On
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such multisets projection equivalence is ≡ := ⊑∩⊒ with ⊑ defined by [aI ] ⊑ [bJ ]
if [aI ]( [bJ ] = ∅; ⊑ is a quasi-order since laws (1)–(4) hold as inherited from the
same for residual systems, and laws (5)–(6) hold by the reasoning for them in
Fig. 2. Setting the unit to ∅ and composition to multiset sum ⊎, laws (7),(8) are
inherited from residual systems with composition, and (9) holds since ∅ ⊎ ∅ = ∅.
C is embedded in C∗ by mapping objects to singletons, a 7→ [a].

Projection equivalence is needed for the natural order to be a partial order:

Example 3. Let C := ⟨{0, . . . , 9}, 0, −̇⟩ be the CRA of digits, a sub-ARS of N. It
has some compositions, e.g. 7 = 3+4 (since 3 −̇ 7 = 0 and 7 −̇ 3 = 4) but others
not, e.g. 7 + 6 and 9 + 4, are not defined in C. These are represented as [7, 6]
and [9, 4] in C∗, which therefore should be projection equivalent, and they are:

[7, 6]( [9, 4]
(7)
= ([7, 6]( [9])( [4]

(8)
= [7 −̇ 9, 6 −̇ (9 −̇ 7)]( [4] = [0, 4]( [4] = ∅ resp.

[9, 4]( [7, 6]
(7)
= ([9, 4]( [7])( [6]

(8)
= [9 −̇ 7, 4 −̇ (7 −̇ 9)]( [6] = [2, 4]( [6] = ∅.

Each of C∗ and ⟨N, 0, −̇⟩∗ and ⟨B, 0, −̇⟩∗ is isomorphic to the CRAC ⟨N, 0, −̇,+⟩,
both ⟨Pos, 1, /· ⟩∗ and ⟨Prm, 1, /· ⟩∗ are isomorphic to the CRAC ⟨Pos, 0, /· , ·⟩, and
⟨Set(A), ∅,−⟩∗ to the CRAC ⟨Mstbnd(A), ∅,−,⊎⟩.

Remark 5. P in Fig. 3 maps a residual system with composition to a CRAC.

Remark 6. A multiset can typically be seen as a multiset sum of sets in many
ways. Greedily decomposing / topologically multisorting [13,44], repeatedly se-
lecting a maximal set, yields a unique representation (Fig. 6 left) analogous to the
Foata normal form in trace monoids; cf. Gross–Knuth reduction in λβ-calculus.

By refining the proof of Thm. 3, the embedding is seen to be downward closed,
in that the only objects in C∗ below an embedded object of C are other such.

Lemma 2. C embeds downward-closedly in C∗, i.e. M([b] ≡ ∅ =⇒ ∃ a.M ≡ [a].

Corollary 1. For CRA-expressions t, s, the universal statement ∀α.t = s is
valid in CRAs iff it is valid in CRACs.

We show Lem. 3, entailing any CRAC C has left- and right-cancellation (as · is
commutative; Lem. 1) and the diamond property (by push-outs), used in Sec. 5.

Satisfying laws (1)–(4) and (7)–(9) makes a CRAC C a special case of a
residual system with composition [54, Def. 8.7.38] having a natural order that
is a partial order.11 These have many good properties [47,52][54, Tab. 8.5]. In
particular, for any such system ⟨→, 1, /, ·⟩, we have ⟨→, 1, ·⟩ is a typed monoid
(a category) that is left-cancellative (each χ is epi : for all ϕ, ψ, if χ · ϕ = χ · ψ
then ϕ = ψ), gaunt (isomorphisms are 1) and has push-outs (in the standard
categorical sense). Calling these typed residuation monoids, we have [47,52]:

Lemma 3. ⟨→, 1, ·⟩ is a typed residuation monoid iff ⟨→, 1, /, ·⟩ is a residual
system with composition having a natural order that is a partial order and with
ϕ/ψ := ϕ′ for every peak ϕ, ψ and its push-out ψ′, ϕ′.
11 Absent law (6), it only need be a quasi-order for residual systems (with composition).
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5 Embedding CRACs in commutative ℓ-groups

In turn, CRACs can be embedded in commutative ℓ-groups (ℓ = lattice-ordered).

Definition 4. ⟨A, 1,−1, ·,∧,∨⟩ is a commutative ℓ-group if ⟨A,∧,∨⟩ is a lattice
and ⟨A, 1,−1, ·⟩ a commutative group and · preserves order, a ⩽ b =⇒ a·c ⩽ b·c.

Then the lattice ⟨A,∧,∨⟩ is distributive. Generalising N ↪→ Z we embed a CRAC
C in a commutative ℓ-group Ĉ by means of pairs called fractions here, written a

b ,
we proceed in two phases. The first works for residual systems with composition:

Lemma 4. ⟨AA ,
1
1 , ·,

−1⟩ is an involutive monoid if a
b ·

c
d := a·(c/b)

d·(b/c) , (
a
b )

−1 := b
a .

Proof. Reciprocal −1 is clearly an involution and anti-automorphic by (ab ·
a′

b′ )
−1 =(

a·(a′/b)
b′·(b/a′)

)−1

= b′·(b/a′)
a·(a′/b) = b′

a′ ·
b
a = (a

′

b′ )
−1 · (ab )

−1. Associativity is Fig. 5.

(ψ′ · (ψ/ϕ′))/ϕ′′

ϕ ψ ϕ′ ψ′ ϕ′′ ψ′′

ϕ
ψ · ϕ′

ψ′ · ϕ′′

ψ′′

ψ/ϕ′ ψ′/ϕ′′

(ψ/ϕ′)/(ϕ′′/ψ′)

(ψ′/ϕ′′) · (ψ/(ϕ′ · (ϕ′′/ψ′)))

(7),(8)
=

Fig. 5. Associativity of composition of fractions by tiling

Though this works, numerators and denominators of fractions often contain com-
mon factors that should be taken into account to obtain a group. By Ore’s The-
orem [13, Prop. II.3.11] the diamond property and left- and right-cancellation
must hold for that. Though only the first 2 are guaranteed for residual systems
with composition by Lem. 3,12 for CRACs all 3 hold by commutativity of ·:

Theorem 4. Any CRAC C=⟨A, 1, /, ·⟩ embeds in a commutative ℓ-group Ĉ.

Proof. As carrier of Ĉ we take (formal) fractions a
b with a, b ∈ A that are

normalised : a∧ b = 1. Unit and reciprocal are as for the involutive monoid, both
preserve being normalised. But composition does not, so must be normalised,
where the normalisation13 of a fraction a

b is a/b
b/a . Normalising the above a·(c/b)

d·(b/c) ,

assuming both a
b and c

d are normalised and using Prop. 1, now yields (a/d)·(c/b)
(d/a)·(b/c) as

definition of the composition a
b ·

c
d . The lattice operations are meet a

b ∧
c
d := a∧c

b∨d
and join a

b ∨
c
d := a∨c

b∧d . The embedding ̂ of C in Ĉ proceeds by a 7→ a
1 and

mapping operations to ‘themselves’ except a/b 7→ (â · (̂b)−1) ∨ 1. This works.
12 Right-cancellation fails for the residual system with composition for the λβ-calculus.
13 This normalisation operation cannot be typed; ϕ, ψ form a valley not a peak in ϕ

ψ
.
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Example 4. Applying this construction to ⟨N, 0, −̇,+⟩ gives the (signed) inte-
gers with the standard order on them with lattice operations minimum and
maximum. ⟨Pos, 1, /· , ·⟩ gives (normalised) fractions n

m . For instance, 6
5 ·

5
2 = 3

1 ,
6
5 ∧

5
2 = 1

10 , and 6
5 ∨

5
2 = 30

1 . Applied to ⟨Mst(A), ∅,−,⊎⟩ we obtain signed mul-
tisets14 ordered via the pointwise less–than–or–equal of integer multiplicities.

Lemma 5. C embeds in the positive cone Ĉ⩾1 (elements ⩾ 1
1) of Ĉ.

Proof. By definition 1
1 ⩽ a

b iff 1
1 = 1

1 ∧
a
b = 1∧a

1∨b = 1
b , hence iff 1 = b, but then

the element is in the image of the embedding.

Corollary 2. The universal statement ∀a.t = s for CRA-expressions t, s, is
valid in CRACs iff ∀α ∈ G⩾1.t̂ = ŝ is valid in commutative ℓ-group G, for ̂ such
that r̂/u := (r̂ · (û)−1) ∨ 1

1 . This problem is decidable and in co-NP.

Proof. By Cor. 1, ∀α.t = s is valid in CRAs iff it is so in CRACs. Since a
b ∨

1
1 = a

1

and a
1 ·(

b
1

−1
) = a/b

... , evaluating (the ̂-image of) residuation on the embedding of
elements in the positive cone, is the same as the embedding of their residuation.
By Lem. 5 quantifying over the elements of the CRAC, embeds as quantifying
over the elements of the positive cone. It remains to show the formula is of shape
∀α.

(∧m
i=1 ti =

1
1 =⇒ t = 1

1

)
as required for the decidability / complexity result

of [56]. Writing the domain-constraints and equation as 1
1 ∧ α = 1

1 , t̂
ŝ = 1

1 , it is.

6 Solutions

Solution 1 (of Problem 1). The set of operations {∨,→,⊤} is not functionally
complete as negation can’t be expressed. However, the operations do give rise to
the CRA ⟨{⊤,⊥}, 1, /⟩ when defining 1 := ⊤ and p/q := q→p; it is isomorphic to
the CRA ⟨{0, 1}, 0, −̇⟩. Note that ⊤ is the least element in the ⩽-order, and that
boolean or therefore corresponds to the meet ∧ in the CRA. Thus the problem is
naturally stated for CRAs as (a/b)∧ (b/a) = 1, which is the purport of Prop. 1.

Solution 2 (of Problem 2). The problem is an instance of that a ∧ b = 1 entails

a ∧ (b · c) = a ∧ c for CRACs. Setting d := b · c. We conclude by a
def,(5)
= (a/b) ·

(a/(a/b))
def
= (a/b) · (a ∧ b) hyp

= a/b, hence a ∧ d def
= a/(a/d)

(1)
= a/((a/d)/1)

hyp
=

a/((a/d)/(b/d))
(4)
= a/((a/b)/(d/b)) = a/(a/(d/b))

hyp,def
= a ∧ c. Whether this is

nice depends on what laws one accepts, but calculational it is. Note the analysis
in [14] was inconclusive, suggesting a way forward via FTA not used here.

Solution 3 (of Problem 3). We restate it for CRAs: if a ∧ b = 1 and (a · b)↓ and
d ⩽ a · b, then (d∧ a) · (d∧ b) ≃ d. It is left to readers to check it can be proven.

14 Those of [8, Sec. 7] arise by restricting to having finite support.
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We devote the remainder of this section to discussing the solution of Problem 4
and its ramifications, since we think it gives interesting novel results. We are
interested in both stating and proving in CRAs / CRACs / commutative ℓ-groups
versions of the Inclusion–Exclusion principle (IE) for a finite familyAI := (Ai)i∈I
of finite sets. Since CRAs don’t have ‘inverses’, in the CRA version of IE we
separate the positive (O odd-sized index-sets) from the negative (E even-sized
index-sets) contributions maintaining the invariant that O is at least as large as
E, we take the residuation of the former after the latter. Taking into account
that composition and join are partial operations we obtain, where the o and e
inscribed on the ⊆ express restriction to odd- and even-sized subsets respectively:

Theorem 5 (CRA version of Inclusion–Exclusion for finite family aI).

O :=

 ∏
∅⊂J o⊆I

∧
aJ

 ↓ and E :=

 ∏
∅⊂J e⊆I

∧
aJ

 ↓ =⇒
∨
aI ≃ O/E and E ⩽ O

Proof. Lem. 1 and the derived CRA laws (easily shown by ATP / Prover9):

(b/a) ∧ (c/a) = (c/a)/(c/b) = (b ∧ c)/(a ∧ c)
(a · b)/(c · d) = (a/c)/(d/b) if c ⩽ a, b ⩽ d and (a · b)↓, (c · d)↓

(a · b) ∧ c ≃ (a ∧ c) · (b ∧ (c/a)) if (a · b)↓

allow to mimic every step of the standard proof by induction on |I|, splitting off
1 element at the time from I, by reasoning within CRAs only.

This IE applies to all CRAs encountered, natural numbers, multisets, etc.. For
instance, for a1 := 6, a2 := 15, and a3 := 10 in ⟨N, 0, −̇⟩:

max (6, 15, 10) = 6+15+10+min (6, 15, 10)−̇min (6, 15)−̇min (15, 10)−̇min (10, 6)

Note that it is simpler than the usual IE for sets, by doing away with the cardi-
nalities, but that the latter can be regained from the instantiation for multisets,
which we illustrate now for measurable multisets and sets, a novel result as far as
we know. Consider the following simple case of the notion of algebra in measure
theory (usually the stronger closure under countable unions is assumed).

Definition 5. A collection of sets A is an algebra if A ⊆ ℘(A), A ∈ A and A is
closed under union and complement (sub-algebra of the Boolean algebra ℘(A)).

Definition 6. A multiset M is A-measurable if:

– M i ∈ A for each i, with M i := {a |M(a) = i} ( set at height i of M)
– M>i = ∅ for some i, with M>i :=

⋃
j>iM

j = {a |M(a) > i} (with the least
such i the height of M ; so multisets are assumed bounded (Ex. 2))

Lemma 6. – the sets M i at height i partition A;
– M>0 is the support (Ex. 2) of M (may be infinite!); M empty iff height 0;
– ⟨Mst(A), ∅,−⟩ of A-measurable multisets is a CRA (is closed under −).
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=
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2
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1
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0 a b dc e f
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0 3

41

51

+

+

+

+

6

5

4

3

2

1

0 a b c d e f

14

=

1 1

22

Fig. 6. Measuring horizontally / set-wise = measuring vertically / element-wise

Definition 7. A function µ from algebra A to non-negative reals is a measure
if µ(∅) = 0 and µ(A∪B) = µ(A)+µ(B) for A,B ∈ A and disjoint. µ is extended
to measurable multisets by µ(M) :=

∑
iµ(M

>i) =
∑
j j · µ(Lj) (see Fig. 6).

Corollary 3 (IE for finite family of measurable multisets / sets).⋃
MI =

(⊎
∅⊂J o⊆I

⋂
MJ

)
−
(⊎

∅⊂J e⊆I

⋂
MJ

)
µ(
⋃
AI) =

(∑
∅⊂J o⊆I

µ(
⋂
AJ)

)
−̇

(∑
∅⊂J e⊆I

µ(
⋂
AJ)

)
Proof. For measurable multisets: instance of Theorem 5. For sets: via the mul-
tiset result, viewing sets as multisets and using µ(M ⊎N) = µ(M) + µ(N).

7 Conclusion

It should be interesting to build in support for the main result, Cor. 2, in proof
assistants, in some user-friendly (qua proofs produced) way, cf. [21]. In particular,
support for algebraic reasoning about multisets seems desirable.

We have extended the usual embedding N ↪→ Z by supplying the extra layer
of bits, into B ↪→ N ↪→ Z, on which we have based its generalisation CRA ↪→
CRAC ↪→ commutative ℓ-group. Having a residuation at the lower level of CRAs
enabled constructing the CRAC and commutative ℓ-group at the higher level via
embeddings.

We have identified residuation as the Skolemised diamond property at the
basis of tiling, coming prior to other operations such as composition and inverse.
Since the rewriting technique of (in)formal proving by tiling is pervasive both
in the rewriting literature and in other fields such as higher categories [1] and
algebra [13], we also expect residuation to become more prominent in those areas
(where it is currently seen mainly as a tool, not as key notion as in [47,52,54]).

As an illustration of the interest of the algebras considered, CRAs, CRACs,
and commutative ℓ-groups, we discussed some examples that could be both
stated and proven using them (and their laws). They arguably constitute the
natural level of abstraction to state and prove the Inclusion–Exclusion principle,
and as a testimony to that we gave a novel instance for measurable multisets.
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∏
cIj) · b′j for column j in Fig. 4.
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closedness assume M( [b] ≡ ∅ for some M = [aI ]. Setting b = b0 the before gives
b0 = (

∏
cI0) · b′0 and ai = ci0 for each i ∈ I. Hence b0 = (

∏
aI) · b′0, showing

that (
∏
aI)↓ from which M ≡ [

∏
aI ], i.e. M is indeed a singleton.

Proof (of Lem. 3).

– Only–if-direction: In general, push-outs are only defined up to isomorphism,
but here they are unique by isos being units, making / well-defined as a
function, which per construction witnesses the diamond property. As is well-
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(1) For a peak ϕ, 1 and valley 1, ϕ, we have ϕ · 1 = 1 · ϕ by 1 being the unit.
That 1, ϕ is universal among all valleys ψ′′, ϕ′′ such that ϕ · ψ′′ = 1 · ϕ′′
is witnessed by the step ψ′′ which is unique by 1 being the unit. This
shows law (1) holds;

(2) For a peak ϕ, ϕ and valley 1, 1, we have ϕ ·1 = ϕ ·1. That 1, 1 is universal
among all valleys ψ′′, ϕ′′ such that ϕ · ψ′′ = ϕ · ϕ′′, follows since for such
valleys ψ′′ = ϕ′′ by left-cancellation, hence we may take that as witness,
which is unique by 1 being the unit, showing laws (2) holds;

(3) That law (3) holds follows immediately from the reasoning in item (1);
(4) By the above observation that push-out valleys compose, we have that

if for three co-initial steps ϕ, ψ, χ we consider the peaks between ϕ and
the lhs respectively rhs of ψ · (χ/ψ) = χ · (ψ/χ) obtained by pushing-out
ψ, χ, we obtain that (ϕ/ψ)/(χ/ψ) = ϕ/(ψ · (χ/ψ)) = ϕ/(χ · (ψ/χ)) =
(ϕ/χ)/(ψ/χ) showing law (4) holds;

(7) That law (7) holds follows immediately by the observation;
(8) That law (8) holds follows immediately by the observation;
(9) Law (9) is an instance of the assumption that 1 is a unit for composition.
Finally, since ⩽ is a quasi-order as follows from ⟨→, 1, /⟩ being a residual
system, it suffices to show ⩽ is anti-symmetric. But ϕ ⩽ ψ and ψ ⩽ ϕ is
equivalent to saying that the push-out valley ψ/ϕ, ϕ/ψ for the peak ϕ, ψ is
the valley 1, 1, entailing that ϕ = ϕ · 1 = ψ · 1 = ψ.

– If-direction: Since by assumption ⩽ is a partial order, we may and often will
show equality of steps ϕ and ψ, by proving both ϕ ⩽ ψ and ψ ⩽ ϕ. We first
check ⟨→, 1, ·⟩ is a category:
• ϕ ≡ ϕ · 1 as ϕ/(ϕ · 1) = (ϕ/ϕ)/1 = 1/1 = 1 and (ϕ · 1)/ϕ = (ϕ/ϕ) ·

(1/(ϕ/ϕ)) = 1 · 1 = 1;
• ϕ ≡ 1 · ϕ since ϕ/(1 · ϕ) = (ϕ/1)/ϕ = ϕ/ϕ = 1 and (1 · ϕ)/ϕ = (1/ϕ) ·
(ϕ/(ϕ/1)) = 1 · (ϕ/ϕ) = 1 · 1 = 1; and

• (ϕ ·ψ) ·χ ≡ ϕ · (ψ ·χ) since ((ϕ ·ψ) ·χ)/(ϕ · (ψ ·χ)) = (((ϕ ·ψ) ·χ)/ϕ)/(ψ ·
χ) = (((ϕ · ψ)/ϕ) · (χ/(ϕ/(ϕ · ψ))))/(ψ · χ) = (((ϕ/ϕ) · (ψ/(ϕ/ϕ))) ·
(χ/((ϕ/ϕ)/ψ)))/(ψ ·χ) = ((1·(ψ/1))·(χ/(1/ψ)))/(ψ ·χ) = (ψ ·(χ/1))/(ψ ·
χ) = (ψ · χ)/(ψ · χ) = 1 and (ϕ · (ψ · χ))/((ϕ · ψ) · χ) = ((ϕ · (ψ · χ))/(ϕ ·
ψ))/χ = (((ϕ · (ψ · χ))/ϕ)/ψ)/χ = (((ϕ/ϕ) · ((ψ · χ)/(ϕ/ϕ)))/ψ)/χ =
((1 · ((ψ · χ)/1))/ψ)/χ = ((ψ · χ)/ψ)/χ = ((ψ/ψ) · (χ/(ψ/ψ)))/χ =
(1 · (χ/1))/χ = χ/χ = 1, using the second item repeatedly.

Next, we check the category is left-cancellative, gaunt, and has push-outs.
1. To see that composition is left-cancellative, i.e. that every step χ is epi,

suppose χ · ϕ = χ · ψ. for some ϕ, ψ. Then ϕ ⩽ ψ follows from 1
(2),hyp

=

(χ · ϕ)/(χ · ψ) (7)
= ((χ · ϕ)/χ)/ψ (8),(2)

= (1 · (ϕ/1))/ψ (1)
= ϕ/ψ also using

we have a category in the last equation. Since symmetrically ψ ⩽ ϕ, we
conclude to ϕ = ψ as desired;

2. To prove the category is gaunt, it suffices by item 1 and Remark ??

to show ϕ · ψ = 1 implies ϕ = 1, which follows from ϕ
(1)
= ϕ/1

hyp
=

ϕ/(ϕ · ψ) (7)
= (ϕ/ϕ)/ψ

(2)
= 1/ψ

(3)
= 1; and
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3. We claim ψ/ϕ, ϕ/ψ is a push-out-valley for a peak ϕ, ψ. To verify that
ϕ · (ψ/ϕ) = ψ · (ϕ/ψ) it suffices by symmetry and by ⩽ being a par-
tial order, to show the lhs to be ⩽-related to the rhs. This follows
from (ϕ · (ψ/ϕ))/(ψ · (ϕ/ψ)) (7)

= ((ϕ · (ψ/ϕ))/ψ)/(ϕ/ψ) (8)
= ((ϕ/ψ) ·

((ψ/ϕ)/(ψ/ϕ)))/(ϕ/ψ)
(2)
= ((ϕ/ψ) · 1)/(ϕ/ψ) (2)

= 1 also using we have
a category in the last equation.
Having shown the valley completes the peak into a commuting dia-
gram, it remains to show that it is least among such. To that end, as-
sume to have ϕ · χ = ψ · ω. By reasoning as above, the peaks χ, ψ/ϕ
and ϕ/ψ are seen to be completed into commuting diagrams by valleys

(ψ/ϕ)/χ, χ/(ψ/ϕ) respectively ω/(ϕ/ψ), (ϕ/ψ)/ω. Since (ψ/ϕ)/χ
(7)
= ψ/(ϕ·

χ)
hyp
= ψ/(ψ · ω) (7)

= (ψ/ψ)/ω
(2),(3)
= 1 and symmetrically (ϕ/ψ)/ω =

1, the commuting diagrams give χ = (ψ/ϕ) · (χ/(ψ/ϕ)) and (ϕ/ψ) ·
(ω/(ϕ/ψ)) = ω. (Such mediating steps must in fact be unique, e.g., if
χ = (ψ/ϕ) · χ′, then χ′ = χ/(ψ/ϕ) by left-cancellation in item ??.)
We conclude by computing that both mediating steps are the same:
χ/(ψ/ϕ)

(7),(8),(2),(1)
= (ϕ·χ)/(ϕ·(ψ/ϕ)) hyp

= (ψ ·ω)/(ψ ·(ϕ/ψ)) (7),(8),(2),(1)
=

ω/(ϕ/ψ).

Proof (details (some) of Thm. 4). As before, we checked properties using Prover9,
proceeding as follows.

Commutativity of composition holds exploiting the symmetry in its defini-
tion, by the same for the composition of C.

By Lem. 4 it suffices to show that having the same normalisation ≡, is a
congruence to obtain an involutive monoid again. Next, one checks the inverse
law f−1 · f ≡ 1 holds using that all and only fractions of shape a

a normalise to
the unit, so we have a group.

For the lattice operations, note that we may work exclusively with normalised
fractions since these are preserved by joins and meets, hence all sub-expressions
of the lattice laws yield normalised fractions as well. Next note that these laws,
commutativity, associativity, idempotence, and absorption, for fractions, follow
from the same laws for their numerators and denominators separately, above.

Since composition is commutative to verify the group is ⩽-ordered it suffices
to show a

b ·
e
f ⩽ c

d ·
e
f if ab ⩽ c

d . This can be reduced to checking CRAC properties
of the numerators and denominators separately.

Qua embeding, one computes that a·b
1 = a

1 ·
b
1 and that a/b embeds as a/b

1 .

Proof (of Cor. 3 for sets via multiset result). We use µ(M ⊎N) = µ(M)+µ(N)
and O +⊇ E and

µ(
⋃
AI) = µ(

(⊎
∅⊂J o⊆I

⋂
AJ

)
−
(⊎

∅⊂J e⊆I

⋂
AJ

)
)

=
(∑

∅⊆J o⊆I
µ(
⋂
AJ)

)
−̇

(∑
∅⊂J e⊆I

µ(
⋂
AJ)

)
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where the first equality is by viewing the measured set in the lhs as a multiset,
which we replace by the IE for measurable multisets, after which we can dis-
tribute the measure over the multiset sum using µ(M ⊎ N) = µ(M) + µ(N),
to yield the desired result noting that the intersections inside the measures are
sets.

B Selected Prover9 proofs

In this appendix we provide a few Prover9 [32] proofs of results from the main
text, indicative of how we proceeded.15 All our Prover 9 proofs were generated
without further guidance. The proofs provided here should allow interested read-
ers to reconstruct the other proofs omitted from the main text by means of ATP
themselves. To that end, we provide the input-file used as an example for the
first, trivial, proposition below. For the two others, similar representations of
the statements were used, and only the resulting proofs are given. In each case
the initial part of the output allows to reconstruct (the assumptions used of)
the input. To keep proofs, relatively, short and proving fast we typically added
already derived (useful) equations to the assumptions.

To illustrate the Prover9 input and output we make use the following proposi-
tion that was omitted from the main text, but has a short and easy to understand
proof.

Proposition 2. ⩽ is transitive in BCI algebras.

Proof. To prove the statement we supplied Prover9 a file with contents:
formulas(sos).

((x / y) / (x / z)) / (z / y) = 1.
(x / (x / y)) / y = 1.
x / x = 1.
-(x / y = 1) | -(y / x = 1) | x = y.
-(x / 1 = 1) | x = 1.
-P(x,y) | x / y = 1.
-(x / y = 1) | P(x,y).

end_of_list.

formulas(goals).

-P(x,y) | -P(y,z) | P(x,z).

end_of_list.

upon which Prover9 provided the following proof:16

15 To be precise, we used Prover9 version LADR-2009-11A compiled and run on a 2018
MacBook Pro with macOS Catalina 10.15.4 with a 2.2 GHz 6-core Intel Core i7
processor and 32GB of memory (but Prover9 only used 1 core and memory was not
an issue).

16 The main operations applied in the proofs here are paramodulation, hyperresolution,
and rewriting. See the literature on Prover9 for more on these. Positions in expres-
sions are represented as lists of positive natural numbers; as equality (=) is taken as
a binary function symbol, positions in paramodulation of two equations start with
1 (usually; the lhs) or 2 (the rhs). E.g., in this proof the identity (x/1)/x = 1 on the
line numbered 24 is obtained by unifying the lhs of that at line numbered 4 with
the subterm at position 1.2, i.e. the subterm x/y, in the lhs of the identity at line
numbered 3.
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============================== PROOF =================================

% Proof 1 at 0.01 (+ 0.00) seconds.
% Length of proof is 22.
% Level of proof is 6.
% Maximum clause weight is 13.000.
% Given clauses 32.

1 -P(x,y) | -P(y,z) | P(x,z) # label(non_clause) # label(goal). [goal].
2 ((x / y) / (x / z)) / (z / y) = 1. [assumption].
3 (x / (x / y)) / y = 1. [assumption].
4 x / x = 1. [assumption].
5 x / y != 1 | y / x != 1 | x = y. [assumption].
6 x / 1 != 1 | x = 1. [assumption].
7 x / 1 != 1 | 1 = x. [copy(6),flip(b)].
8 -P(x,y) | x / y = 1. [assumption].
9 x / y != 1 | P(x,y). [assumption].
10 P(c1,c2). [deny(1)].
11 P(c2,c3). [deny(1)].
12 -P(c1,c3). [deny(1)].
24 (x / 1) / x = 1. [para(4(a,1),3(a,1,1,2))].
27 x / (x / 1) = 1. [hyper(7,a,3,a),flip(a)].
31 c1 / c2 = 1. [hyper(8,a,10,a)].
32 c2 / c3 = 1. [hyper(8,a,11,a)].
33 c1 / c3 != 1. [ur(9,b,12,a)].
71 ((x / c3) / (x / c2)) / 1 = 1. [para(32(a,1),2(a,1,2))].
82 x / 1 = x. [para(24(a,1),5(a,1)),rewrite([27(6)]),xx(a),xx(b)].
85 (x / c3) / (x / c2) = 1. [back_rewrite(71),rewrite([82(7)])].
173 c1 / c3 = 1. [para(31(a,1),85(a,1,2)),rewrite([82(5)])].
174 $F. [resolve(173,a,33,a)].

============================== end of proof ==========================

Proof (of last item of Lem. 1). Meet distributes over join in CRAs.
============================== PROOF =================================

% -------- Comments from original proof --------
% Proof 1 at 0.09 (+ 0.00) seconds.
% Length of proof is 38.
% Level of proof is 7.
% Maximum clause weight is 27.
% Given clauses 43.

1 x ^ (y v z) = (x ^ y) v (x ^ z) # label(non_clause) # label(goal). [goal].
2 x / 1 = x. [assumption].
4 x / x = 1. [assumption].
5 (x / y) / (z / y) = (x / z) / (y / z). [assumption].
6 (x / y) / x = 1. [assumption].
7 x ^ y = x / (x / y). [assumption].
9 x ^ y = y ^ x. [assumption].
10 x / (x / y) = y / (y / x). [copy(9),rewrite([7(1),7(3)])].
13 (x ^ y) / z = (x / z) ^ (y / z). [assumption].
14 (x / (x / y)) / z = (x / z) / ((x / z) / (y / z)). [copy(13),rewrite([7(1),7(6)])].
15 x v y = x * (y / x). [assumption].
16 x v x = x. [assumption].
17 x * 1 = x. [copy(16),rewrite([15(1),4(1)])].
18 x v y = y v x. [assumption].
19 x * (y / x) = y * (x / y). [copy(18),rewrite([15(1),15(3)])].
22 (x * y) / z = (x / z) * (y / (z / x)). [assumption].
23 (x / y) * (z / (y / x)) = (x * z) / y. [copy(22),flip(a)].
24 x / (y * z) = (x / y) / z. [assumption].
25 (x / y) / z = x / (y * z). [copy(24),flip(a)].
26 (x / y) / z = (x / z) / y. [assumption].
27 (c1 ^ c2) v (c1 ^ c3) != c1 ^ (c2 v c3). [deny(1)].
28 (c1 / (c1 / c2)) * ((c1 / (c1 / c3)) / (c1 / (c1 / c2))) != c1 / ((c1 / c2) / (c3 / c2)). [copy(27),rewrite([7(3),7(8),15(11),15(21),7(24),25(25,R)])].
32 (x / (y / z)) / (y / (y / z)) = x / y. [para(6(a,1),5(a,1,2)),rewrite([2(3)]),flip(a)].
33 ((x / y) / (z / y)) / (x / z) = 1. [para(5(a,1),6(a,1,1))].
34 (x / y) / ((x / z) / (y / z)) = (x / y) / ((x / y) / (z / y)). [para(5(a,1),7(a,2,2)),rewrite([7(3)]),flip(a)].
37 (x / (y / z)) / (z / (z / y)) = x / y. [para(10(a,1),5(a,1,2)),rewrite([6(8),2(8)])].
39 x / (x / (x / y)) = x / y. [para(6(a,1),10(a,1,2)),rewrite([2(3)]),flip(a)].
93 (x * y) / y = x. [para(10(a,1),15(a,2,2)),rewrite([15(2),19(4),6(2),17(2),23(4)]),flip(a)].
121 (x / (x / y)) * z = (x * z) / (x / y). [para(6(a,1),23(a,1,2,2)),rewrite([2(4)])].
136 (c1 * ((c1 / (c1 / c3)) / (c1 / (c1 / c2)))) / (c1 / c2) != c1 / ((c1 / c2) / (c3 / c2)). [back_rewrite(28),rewrite([121(17)])].
203 (x / y) / ((x / y) / (z / y)) = (x / y) / (x / z). [para(26(a,1),14(a,1)),flip(a)].
247 (x / y) / ((x / z) / (y / z)) = (x / y) / (x / z). [back_rewrite(34),rewrite([203(10)])].
352 (c1 * ((c1 / c2) / (c1 / c3))) / (c1 / c2) != c1 / ((c1 / c2) / (c3 / c2)). [para(26(a,1),136(a,1,1,2)),rewrite([39(8)])].
353 (c1 * ((c1 / c2) / (c1 / c3))) / (c1 / c2) != c1 / ((c1 / c3) / (c2 / c3)). [para(5(a,1),352(a,2,2))].
661 (x * (y / z)) / y = x / (y / (y / z)). [para(93(a,1),32(a,1,1)),flip(a)].
675 c1 / ((c1 / c3) / (c2 / c3)) != c1 / ((c1 / c2) / ((c1 / c2) / (c1 / c3))). [back_rewrite(353),rewrite([661(13)]),flip(a)].
1150 x / ((y / z) / ((y / z) / (y / u))) = x / ((y / u) / (z / u)). [para(33(a,1),37(a,1,1,2)),rewrite([2(2),247(6)])].
1151 $F. [resolve(1150,a,675,a(flip))].

============================== end of proof ==========================

Proof (that the second law of Prop. 1 holds for cBCKrc.). This took Prover9 a
bit more than one and a half hour to conclude:
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============================== PROOF =================================

% Proof 1 at 5810.83 (+ 33.71) seconds.
% Length of proof is 43.
% Level of proof is 10.
% Maximum clause weight is 36.000.
% Given clauses 2350.

1 (x / y) / (y / x) = x / y # label(non_clause) # label(goal). [goal].
2 x / x = 1. [assumption].
3 1 / x = 1. [assumption].
4 x ^ y = x / (x / y). [assumption].
5 x ^ y = y ^ x. [assumption].
6 x / (x / y) = y / (y / x). [copy(5),rewrite([4(1),4(3)])].
7 (x / y) / z = (x / z) / y. [assumption].
8 x / y != 1 | x / z != 1 | y / x != z / x | y = z. [assumption].
9 x / 1 = x. [assumption].
10 (c1 / c2) / (c2 / c1) != c1 / c2. [deny(1)].
11 x / (y / (y / x)) = x / (x / (x / y)). [para(6(a,1),4(a,2,2)),rewrite([4(2)]),flip(a)].
12 (x / y) / x = 1. [para(2(a,1),7(a,1,1)),rewrite([3(2)]),flip(a)].
14 (x / y) / ((x / z) / y) = z / (z / (x / y)). [para(7(a,1),6(a,1,2))].
15 (x / (x / y)) / z = (y / z) / (y / x). [para(6(a,1),7(a,1,1))].
16 ((x / y) / z) / u = ((x / u) / y) / z. [para(7(a,1),7(a,1,1)),flip(a)].
24 x / (y / z) != 1 | x / u != 1 | (y / x) / z != u / x | y / z = u. [para(7(a,1),8(c,1))].
28 x / (y / (y / x)) = x / y. [para(11(a,2),6(a,1)),rewrite([12(6),9(6)])].
32 x / (x / (x / (y / z))) = x / (y / z). [para(7(a,1),11(a,1,2)),rewrite([7(4),28(5)]),flip(a)].
40 x / (x / (x / y)) = x / y. [para(11(a,1),11(a,2,2,2)),rewrite([7(5),2(5),9(4),28(3),32(5)]),flip(a)].
46 ((x / y) / z) / x = 1. [para(12(a,1),7(a,1,1)),rewrite([3(2)]),flip(a)].
47 ((x / y) / z) / (x / z) = 1. [para(7(a,1),12(a,1,1))].
52 x / (x / ((x / y) / z)) = (x / y) / z. [para(46(a,1),6(a,1,2)),rewrite([9(4)]),flip(a)].
53 ((x / (x / y)) / z) / y = 1. [para(6(a,1),46(a,1,1,1))].
54 (x / y) / (x / (y / z)) = 1. [para(6(a,1),46(a,1,1)),rewrite([7(4)])].
90 ((x / (x / y)) / z) / (y / z) = 1. [para(6(a,1),47(a,1,1,1))].
113 (x / y) / (x / (z / (z / y))) = 1. [para(6(a,1),53(a,1,1)),rewrite([7(5)])].
124 (x / (x / y)) / (y / ((y / x) / z)) = 1. [para(6(a,1),54(a,1,1))].
213 (x / (x / (y / z))) / (y / (z / u)) = 1. [para(54(a,1),15(a,2,1)),rewrite([3(10)])].
531 ((x / (x / (y / z))) / u) / ((y / u) / z) = 1. [para(7(a,1),90(a,1,2))].
551 ((x / (x / y)) / (y / z)) / (z / (y / x)) = 1. [para(15(a,2),90(a,1,1))].
557 ((x / y) / (z / y)) / (x / z) = 1. [para(90(a,1),16(a,2))].
583 (x / (x / (y / z))) / (y / (u / (u / z))) = 1. [para(113(a,1),15(a,2,1)),rewrite([3(11)])].
2967 x / (y / ((y / x) / z)) != 1 | x / u != 1 | z / (z / (y / x)) != u / x | y / ((y / x) / z) = u. [para(6(a,1),24(c,1))].
3237 x / (y / ((y / x) / z)) = x / y. [para(124(a,1),14(a,1,2)),rewrite([9(6),54(11),9(7)])].
3280 x / y != 1 | x / z != 1 | u / (u / (y / x)) != z / x | y / ((y / x) / u) = z. [back_rewrite(2967),rewrite([3237(4)])].
5206 ((x / y) / (z / y)) / (x / (z / u)) = 1. [para(557(a,1),213(a,1,1,2)),rewrite([9(5)])].
21101 (x / (y / (z / u))) / (x / ((y / w) / (z / w))) = 1. [para(5206(a,1),113(a,1,2,2,2)),rewrite([9(8)])].
27486 (x / (y / z)) / (x / ((u / (u / y)) / (z / (y / u)))) = 1. [para(551(a,1),531(a,1,2)),rewrite([7(9),9(11)])].
28777 (x / (x / (y / (z / u)))) / (y / ((z / w) / (u / w))) = 1. [para(557(a,1),583(a,1,2,2,2)),rewrite([9(9)])].
75243 (x / (x / ((y / (y / z)) / (u / z)))) / (z / (u / y)) = 1. [para(28777(a,1),27486(a,1,2)),rewrite([9(11)])].
81865 x / ((x / y) / (y / x)) = y / ((y / x) / (x / y). [hyper(3280,a,75243,a,b,21101,a,c,7,a),rewrite([2(1),9(2),2(1),9(2),

2(1),9(2),2(1),9(2),28(3),2(2),9(3),2(2),9(3),40(4),2(5),9(6),2(5),9(6),40(7),2(6),9(7),2(6),9(7),2(6),9(7),28(8)])].
81872 (x / y) / (y / x) = x / y. [para(81865(a,1),4(a,2,2)),rewrite([4(4),52(5),3237(8)])].
81873 $F. [resolve(81872,a,10,a)].

============================== end of proof ==========================

C Remarks elaborating the main text

C.1 Faceting (Rem. 1)

In Rem. 1 faceting refers to the process of, that when given a peak ϕ, ψ in
a rewrite system → and a composable valley ψ′, ϕ′ of reductions-that-are-not-
steps, we may adjoin ψ′, ϕ′ as steps to → yielding a new rewrite system →′,
and start over, until we obtain a rewrite system having the diamond property.
This is what we call faceting. Let’s refer for the moment to the result of this
process (if successful) as the multistep rewrite system ◦−→. Per construction ◦−→
has the diamond property, and presents the same quasi-order as →, so enables
the method of proving by tiling for →-reductions.

Obviously, if → is confluent, then adjoining all →-reductions as steps to →,
yields a rewrite system having the diamond property. So eventually faceting then
must stop. Leaving it as an interesting open question after how many steps it
stops for various (well-known) rewrite systems, we will be satisfied here with
presenting some examples.
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Example 5. (i). The rewrite system → defined by a → b does not have the di-
amond property: the peak a → b, a → b cannot be completed into a tile by
a valley of steps, only by means of empty reductions. But adjoining those
empty reductions-as-steps (loops on b) to→, yields a rewrite system ◦−→ hav-
ing the diamond property, whose multisteps can be thought of as performing
either 0 or 1 step of the original system.

(ii). The rewrite system of braids having 3 strands [13] has as objects words over
{a, b} modulo aba = bab and steps w →c wc for c ∈ {a, b} and (equivalence
classes of) words w. The peak w →a wa,w →b wb can be completed by
the valley wa →b wab →a waba,wb →a wba →b wbab of reductions, each
comprising exactly 2 steps. Adjoining these and the empty string ε yields
steps {ε, a, b, ba, ab}, and a rewrite system ◦−→ having the diamond property,
as seen by tiling, whose multisteps can be thought of as crossing any number
of strands in parallel (but no sequential crossings like aa crossing the first
two strands twice).
This generalises to braids on arbitrary numbers of strands as was shown
in [39] in each case yielding a rewrite system ◦−→ whose steps may cross
an arbitrary number of strands in parallel but not sequentially, i.e. simple
braids [13].

(iii). The rewrite system →β having λ-terms as objects and β-contractions as
steps, does not have the diamond property, not just because empty steps
are missing as in the previous examples, but also because β-contractions
may replicate other β-redexes; e.g. consider the β-steps from the λ-term
(λx.x x) (I y). In the limit faceting will stop though with a rewrite system
◦−→, whose multisteps can be thought of as contracting an arbitrary number

of β-redexes in parallel, sometimes called parallel β-reduction in the litera-
ture on the λ-calculus.17

(iv). Given the rewrite sysem → of an orthogonal TRS (term rewrite system), its
diamond-closure is a rewrite system again reached in the limit, comprising
(a subsystem of17 the) parallel →-steps, now meaning parallel in the TRS
sense, namely of redexes being at parallel positions.

(v). We refer the reader to [51] for characterisations of the multisteps of the
associativity and self-distributivity rules, written in applicative notation as
x y z→ x (y z) respectively x y z→ x z (y z).

The interesting observation about each of the above systems18 is that the re-
sulting rewrite system ◦−→ of multisteps having the diamond property, is much
smaller than the rewrite system of arbitrary reductions, and in each case a multi-
step can be thought of as contracting a number of redexes at arbitrary positions
in the initial object in parallel. (Each can be easily, finitely, characterised.) This

17 This is not exact, since e.g. in the term x (I y) (I z) the β-redexes cannot replicate
each other and no parallel β-steps will be generated. What is true though is that all
◦−→-steps are parallel β-steps. All such would be generated when constructing the

triangle-closure instead of the diamond-closure; cf. [43].
18 This need not hold for arbitrary rewrite systems, e.g. typically not for those that are

confluent only because of local confluence and Newman’s Lemma [37].
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was the basis for our suggestion in Sec. 2 to think of steps of rewrite systems
(without composition) having the diamond property, as parallel steps extended
in space.

Indeed, in many cases the resulting multisteps not only have the diamond
property, but constitute a residual system allowing to think of multisteps as
composed of steps that are orthogonal to independent of one another [52], and
that therefore can be performed in parallel in the multistep.

Remark 7. In contrast to Knuth–Bendix completion where one strives to resolve
the critical peaks of a rewrite system, in higher rewriting one strives to make
them disappear, by moving to a system in higher dimension that is orthogonal,
that has no critical peaks / overlap. The idea is roughly that any overlap in
the original system was more apparent than real, only caused by projection;
e.g. crossing two strands makes them overlap in 2D, but intersections can be
made to disappear by moving to 3D (from which the overlapping 2D system
arises by projection). It should be interesting to see whether faceting / residual
systems give a fruitful perspective on that, e.g. by showing that such systems
are orthogonal in the formal sense associated to them.

C.2 Tait–Martin-Löf vs. residuation for the λβ-calculus

One still frequently finds texts on the λβ-calculus stating something to the extent
of that residuals / residuation are avoided because they are too complicated, but
that instead the notion of parallel β-step as in the proof of confluence by Tait–
Martin-Löf proof is employed. Such statements are misleading. First of all, from
that having the diamond property is the same as having a residuation as was
shown in Sec. 2, it follows that one can’t have one without the other, one can’t
prove confluence (a diamond property) without having a residuation, so it’s not
even clear what could be meant by such a text. But also concretely, there is
nothing to be avoided; parallel β-steps are directly modelled as terms of the
multistep PRS for the λβ-calculus (higher-order pattern rewrite system [31]) on
which residuation can be directly defined by induction:

Example 6. Adjoin to the signature of the PRS for modelling the untyped λ-
calculus [31, Ex. 3.4][54, Ex. 11.2.6(i)], a symbol for representing the β-rule (a
rule-symbol in the sense of [54, Ch. 8]). This yields the multistep PRS having a
signature comprising apart from application app and abstraction abs now also
β, with as source and target maps src and tgt on terms the homomorphic ex-
tensions of mapping β(x.M(x), N) to app(absx.M(x), N) respectively M(N),
having proper λ-terms without the rule-symbol β in their range.

The terms of the multistep PRS then are exactly the parallel β-steps of
Tait and Martin-Löf [6], we call them multisteps, and residuation / is trivially
inductively proven to have the diamond property for multisteps, after defining
residuation between co-initial multisteps ς, ζ inductively by:
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ς ζ ζ/ς
app(absx.ϕ(x), ψ) β(x.χ(x), ω) app(absx.(χ(x)/ϕ(x)), ω/ψ)
β(x.ϕ(x), ψ) β(x.χ(x), ω) app(absx.(χ(x)/ϕ(x)), ω/ψ)
β(x.ϕ(x), ψ) app(absx.χ(x), ω) β(x.(χ(x)/ϕ(x)), ω/ψ)

The unit laws (laws (1)–(3); in their typed form for steps) and the diamond
property are then shown by easy inductions on terms (i.e. on multisteps), with
residuation on multisteps witnessing the usual Tait–Martin-Löf construction.

Within typical proof assistants (say Coq or Agda) one could proceed in the
same way as above but using the language of the proof assistant directly, and this
is what is typically done [55, Ch. Confluence], giving some kind of ad hoc direct
inductive definition of parallel β-step. The above is independent of it. Rephrasing
the above, one notes that e.g. the proof of par-diamond in [55, Ch. Confluence]
for their notion of parallel β-reduction, amounts to nothing but the definition of
a residuation on such. (The authors could have but do not continue to show the
cube law.)

For showing the cube law (4) it is profitable to directly define the join oper-
ation ∨ and conclude from (ϕ/ψ)/(χ/ψ) = ϕ/(ψ ∨ χ) and commutativity of ∨,
both shown by induction; cf. [23].

C.3 Symmetric difference as a distance (Footnote 5)

We add some detail to footnote 5 where we stated that the symmetric difference
can be used as the basis for defining a metric when having a residuation, along
the lines of [50, p. 71] (see that paper for more ideas).

In any CRAC we may define a distance function d(a, b) := (a/b) · (b/a). Note
that by Prop. 1 the two parts of the symmetric difference are disjoint so that
d(a, b) = (a/b) ∨ (b/a), and one could alternatively define the distance via the
join instead of composition. One checks that d has the properties required of
a metric: d(a, a) = (a/a) · (a/a) (2)

= 1 · 1 (9)
= 1; if a ̸= b then by ⩽ being a

partial order a/b ̸= 1 or b/a ̸= 1, hence 1 ̸= (a/b) · (b/a) = d(a, b) by all residual
systems with composition being gaunt / CRACs being invertible-free (Lem. 7);
d(a, b) = (a/b) · (b/a) = (b/a) · (a/b) = d(b, a) by commutativity of · (Lem. 1

and Rem. 4). finally, since a/c ⩽ (a/b) · (b/c) by (a/c)/((a/b) · (b/c)) com,(7)
=

((a/c)/(b/c))/(a/b)
(4)
= ((a/b)/(c/b))/(a/b)

(5)
= 1 we have the triangle equality

by d(a, c) = (a/c) · (c/a) ⩽ ((a/b) · (b/c)) · ((c/b) · (b/a)) assoc,com
= d(a, b) · d(b, c).

The function d is a function to the carrier of the CRAC, so (in general) not to
the non-negative real numbers R≥0. Then one can try to define a (strict monoid)
homomorphism to the latter with addition, to obtain a proper metric. E.g. if ⩽
is well-founded one may map elements of the CRAC to the cardinality of the
multiset of their unique decomposition.

Note that the distance d is not immediately untypable since for ϕ, ψ a peak in
a rewrite system, ψ/ϕ, ϕ/ψ is not a peak, so can’t be composed via their sources.
However, note that they do constitute a valley, meaning that if we in fact have
a typed ℓ-group, (ψ/ϕ)−1, (ψ/ϕ)−1 is a peak that can be composed / measured.
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C.4 The multiset representation theorem for well-founded CRAs

In [30] we showed the multiset representation theorem (Thm. 1) holds for well-
founded CRAs by showing that its natural order, the divisibility order of its
induced partial commutative monoid (see the main text; Lem. 1), then consti-
tutes a so-called decomposition order [30]. We recapitulate that notion and the
key ingredients of the proof it applies to well-founded CRAs.

Definition 8. A partial order ≼ is a decomposition order if

(well-founded) there are no infinite descending ≺-chains;
( least) 1 ≼ a for all a;
( strictly compatible) if a ≺ b and b·c denotes, then a·c denotes and a·c ≺ b·c;
(Riesz decomposition) if a ≼ b · c, then a = b′ · c′ for some b′ ≼ b and c′ ≼ c;
(Archimedean) if an defined and an ≺ b for all n, then a = 1.

Recall that having unique decompositions means decompositions exist uniquely.

Theorem 6 ([30]). Unique decomposition holds iff there exists a decomposition
order, in particular if divisibility is well-founded, strictly compatible, and has
Riesz decomposition.

Having a partial commutative monoid suffices; neither a ring structure, nor hav-
ing cancellation as in the standard abstract algebraic approach to the fundamen-
tal theorem of arithmetic (FTA; for unique factorisation domains), nor totality
of products, are needed. As a consequence the proof of Thm. 6 is very different
from the usual proofs of the FTA (it is based on Milner’s technique).

Decomposition orders were designed, and have been applied, to show that
every process can be uniquely decomposed as the parallel composition of sequential
processes for process calculi such as BPP, ACPϵ, and the π-calculus (see [30]
for pointers) but, as they are complete, they also cover the FTA, separation
algebras,19, and well-founded CRAs:

Proof (of Thm. 1). For the first part, note that by Thm. 6 and Lem. 1 well-
foundedness is immediate; strict compatibility holds since if b · c denotes and
a < b, then a · c denotes and a · c ⩽ b · c by compatibility, so a · c < b · c as (b ·
c)/(a·c) com,(7),(8),(2),(1)

= b/a ̸= 1 by assumption; and finally Riesz decomposition
holds since if a ≼ b · c setting b′ := b/d and c′ := c/(d/b) where d := (b · c)/a is

seen to work; e.g., a hyp
= a/(a/(b · c)) (6)

= (b · c)/d (8)
= b′ · c′.

For the second part, let h map a ∈ A to the finite multiset h(a) = [a1, . . . , an]
of indecomposables ai such that a ≃ a1 · . . . · an. Observe that for any a, b we
have a ≃ (a/b) · (a/(a/b)), so if a is indecomposable then a/b is 1 if a = b,
and a otherwise.20 Hence if h(a) = [a1, . . . , an] and h(b) = [b1, . . . , bm], then
h(a/b) = [a1, . . . , an] − [b1, . . . , bm] is seen to hold by repeated cancellation,
using (7),(8), of the bj occurring among the ai in (a1 · . . . · an)/(b1 · . . . · bm).
19 Substate is well-founded for the partial functions with finite domain in [9]; indecom-

posables are singletons.
20 That is, indecomposables are orthogonal letters in the sense of [54, Example 8.7.13].
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Remark 8. The binary (composition) operation of separation algebras [9, Def. 1]
being partial it could maybe be interesting to investigate them from the per-
spective of CRAs, e.g. whether (and if so how) residuation could be employed
to reason about separation, with the idea that a, b being disjoint is naturally
expressed in CRAs as a ∧ b = 1 without having to resort to the (partial) com-
position operation (alternatively, disjointness can be expressed just assuming to
have joins as a ∨ b = (a/b) ∨ (b/a)).

Remark 9. Residual systems could have applications in probabibility theory be-
yond allowing to factor Bayes’ Theorem through them (see Fig. 3 and Rem. 5).
The identification of | as a residuation at the basis of the factorisation, allows it
to be separated from probability P . For instance, the statement P ((A | B) | (C |
B)) = P ((A | C) | (B | C)) makes sense (and is true). Other laws require to have
more structure than just CRAs. For instance, to express the law of total proba-
bibility one employs that both the CRA of events and that of fractions have meets
with respect to the natural order given by taking the union (AC ∧

B
C := A∪B

C )
respectively the maximum (nk ∧

m
k := max(n,m)

k ) of the numerators.

C.5 (Un)typing

Our notions of typing / untyping [49]21 are based on the algebraic account
expounded in [13]. The main difference is that here we do not (explicitly) aim
to have an algebra extending a monoid, nor do we automatically want to lift
algebras to categories, i.e. to rewrite systems → having (in our terminology,
Fig. 1) loop and composition operations on steps satisfying the typed monoid
laws. That would be incompatible with the very goal of this paper. Thus, we
start with structures prior to monoids. These structures are just as interesting
in our opinion, and even more so from a rewriting perspective [4,54]; categories
corresponding to quasi-orders, makes clear that none of the notions crucial for
rewriting, normal form, termination, non-empty reduction, infinite reduction can
be expressed naturally for them, because they can’t for quasi-orders.

Remark 10. We are here not directly interested in categorification, but e.g.
whether some notion of monoidal rewrite system would be suitable to model
faceting (Sec. C.1) could be interesting for further research.

In Tabs. 2 and 3 we have included for easy reference and convenience, both
untyped and typed versions of the classical algebras playing a rôle in this pa-
per, namely the untyped monoids, involutive monoids and groups and the corre-
sponding typed versions going under their conventional names categories, dagger
categories and groupoids.

We stated the laws for them as 2-rewrite rules, since they can be perceived
as rewrites of rewrites. The laws we give are complete, i.e. terminating and con-
fluent, for each (typed) algebra as one can easily check by means of completion
21 Before, we have called the lifting process gradification (from gradus, step in Latin)

but that and also basing (based on βάσις, step in Greek) seem too fanciful. In this
paper we employ typing / untyping [49] for want of a better name.
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tools [57]. For instance, the leftmost 6 rules in Tab. 2 serve to yield unique
normal forms for the free involutive monoid over a carrier A [20, App. A], in
1–1 correspondence with what we there dubbed French strings,22 strings over
backward á and forward à versions of elements a ∈ A, mapped to each other by
−1.For the typed laws in Tab. 3 one checks that the laws in Tab. 2 are typable.

lifted carrier monoid involutive monoid group
a, b, c, . . ., 1 composition a · b reverse a−1

1 · a⇒ a 1−1 ⇒ 1 a · a−1 ⇒ 1
a · 1 ⇒ a (a · b)−1 ⇒ a−1 · b−1 a−1 · a⇒ 1
(a · b) · c⇒ a · (b · c) (a−1)−1 ⇒ a a · (a−1 · b) ⇒ b

a−1 · (a · b) ⇒ b

string aab French string áàb́ normalised string b́

Table 2. Untyped algebras corresponding to Tab. 3

lifted steps category dagger category groupoid
ϕ, ψ, χ, . . ., 1a composition ϕ · ψ reverse ϕ−1

1 · ϕ⇒ ϕ 1−1 ⇒ 1 ϕ · ϕ−1 ⇒ 1
ϕ · 1 ⇒ ϕ (ϕ · ψ)−1 ⇒ ϕ−1 · ψ−1 ϕ−1 · ϕ⇒ 1
(ϕ · ψ) · χ⇒ ϕ · (ψ · χ) (ϕ−1)−1 ⇒ ϕ ϕ · (ϕ−1 · ψ) ⇒ ψ

ϕ−1 · (ϕ · ψ) ⇒ ψ

reduction ϕϕψ conversion ϕ́ϕ̀ψ́ normalised conversion ψ́

Table 3. Typed algebras corresponding to Tab. 2 (and conventional names)

Remark 11. Fewer 2-equations suffice for presenting (typed) monoids and groups.
E.g. for groups the laws 1 · a = a, a−1 · a = 1 and (a · b) · c = a · (b · c) do, as
shown again by Knuth–Bendix completion tools [57].

Remark 12. The idea of 2-rewriting goes back at least as far as Klop’s PhD
thesis [28] (from where we learned it), where he described the classical stan-
dardisation theorem [6,29] for (generalisations of) the λβ-calculus, in terms of
repeatedly rewriting the anti-standard pairs [28, Def. I.10.2.1] in a reduction. He
called this notion of reduction, rewriting ordinary reductions, meta-reduction [28,
Sec. I.10] and showed that meta-reduction⇒ itself is terminating and confluent.

22 The French accents ´ and ` correspond to the conventional drawing of steps as down-
ward sloping on the page, in the typed involutive monoid in Table 3 [20, Fig. 5].
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This then yielded a strong version of the classical standardisation theorem
showing not only that for every β-reduction ϕ : M ↠β N there exists a stan-
dard reduction ϕstd : M ↠std N where redexes are contracted from left to right
(see [6,28] for details), but also that this standard reduction ϕstd is unique, can be
computed effectively from ϕ, and is permutation equivalent [29] to ϕ; homotopic
to it by tiling with elementary diagrams [37, Sec. 6]. This idea was later recast
for TRSs as 2-term rewriting in [54, Ch. 8] by representing reductions them-
selves as terms called proof terms (proof terms represent proofs of reachability
in Meseguer’s rewrite logic [36] for TRSs; equational logic without symmetry),
and (partially)23 in an axiomatic setting by Melliès [35].

Remark 13. The idea of 2-rewriting, of transforming reductions or conversions
by rewriting itself, comes in many guises and under many names in the rewriting
literature, e.g. proof orders [5]. Here we only want to remark that untyping the
standardisation process by means of swapping anti-standard pairs, it is seen to
correspond to sorting: untyped reductions are strings and anti-standard pairs
are inversions, adjacent letters that are out of order. This helps to classify (and
understand) the various standardisation procedures in the literature as argued
in [54, Sec. 8.5], where the classical procedure was identified as selection sort.
For instance, the standardisation procedure discussed in [3] is insertion sort.

C.6 Sub-equational logics as typed algebras

t −→ s
t = s

(step)
t = t

(refl., 1) t = s s = r
t = r

(trans., ·) s = t
t = s

(sym., −1)

Fig. 7. Correspondence between (sub)equational logic inference rules and operations

Given a rewrite system →, the usual inference rules of equational logic re-
flexivity, transitivity and symmetry, can be seen as (typed) operations 1a, ·
respectively −1 on the steps of→ per Fig. 7. The laws / 2-rewrite rules of Tab. 3
correspond then exactly to the proof normalisation rules on equational logic (or
sublogics thereof) proofs displayed in Tab. 4. The normal forms when only having
reflexivity and transitivity are known as reductions, and those when also having
symmetry but only the top 6 proof normalisation rules in Tab. 4 are known as
conversions [20, Fig. 4 and App. A], in rewriting [4,54] (both reductions and
conversions already originate with [11,37]). This can be seen as the raison d’être
of rewriting: it shows that one can reasons about reachability / equivalence by
reasoning about reductions / conversions only, so-called logicality ; cf. [40].

Remark 14. Usually conversions are viewed just as ↔-reductions for ↔ :=←∪
→. That misses out on the reversal operation on conversions (absent from reduc-
tions) and it being involutive. That’s why we have come to adopt an involutive
23 His axioms only guarantee (weak) normalisation of meta-reduction, not termination.
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t = s s = s
t = s

right unit
======⇒ t = s

t = t t = s
t = s

left unit
=====⇒ t = s

t = s s = r
t = r r = u

t = u
associative
=======⇒

t = s
s = r r = u

s = u
t = u

t = s s = r
t = r
r = t

anti-
========⇒
automorphic

s = r
r = s

t = s
s = t

r = t

t = s
s = t
t = s

involutive
======⇒ t = s

t = t
t = t

inverse unit
=======⇒ t = t

t = s
t = s
s = t

t = t
right inverse
========⇒ t = t

t = s

t = s
s = t t = r

s = r
t = r

perm. right inverse
============⇒ t = r

s = t
t = s s = t

t = t
left inverse
=======⇒ t = t

t = r
s = r
r = s

t = s s = r
t = r

perm. left inverse
===========⇒ t = r

Table 4. Normalising equational logic proofs into normalised conversions

monoid view on conversions in our work [20,45]. For instance, the main result
of [20] can at high level seen to give a map from the typed involutive monoid
↔∗ of conversions to an (untyped) involutive monoid of French strings.

That this involutive-monoid-view is indeed useful I learned from Felgenhauer
(personal communication, 2015), who mentioned that it often saved ‘half the
work’ when formalising the results of [20] in Isabelle for [19].

Remark 15. In rewriting one is typically interested in conversions as is, not
in normalised conversions, also normalised w.r.t. the bottom 4 inverse laws in
Tab. 4. If all conversions from one given object to another are deemed the same,
then normalising them w.r.t. these 4 inverse laws can be viewed as yielding a
simple conversion, a cycle-free one. In general, that is too much in rewriting
where one is interested also in modelling cyclic processes.

For a concrete example, the design-goal for the map of [20] mentioned in
Rem. 14 was that tiling a peak occurring in a conversion with a so-called decreas-
ing diagram should lead to a decrease in its image (i.e. should be monotonic).
This would fail if a peak like ϕ, ϕ were automatically elided from the conversion
due to the inverse laws of the group. That is, we need to be able to express that
such peaks exist first, before we can say that they are trivial to deal with.

Remark 16. Reflecting the theme of this paper, we argued in [40] that in the
case of equational logic on terms, not just on (abstract) objects as in the above,
we are interested in all subequational cases, i.e. in any subset of the set of in-
ference rules comprising reflexivity, symmetry, transitivity, compatibility, and
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substitution-instantiation of statements [40]. There it was shown Birkhoff’s the-
orem [4,54], stating that derivability in equational logic corresponds to validity
in all models, extends to all subequational logics, for instance to that reachability
corresponds to validity in all partial order models, when dropping symmetry [36].

C.7 The Characterisation Lemma (Lem. 3)

From Lem. 3 it follows immediately that the standard example of a category,
namely that of sets and functions, is not a residual system.

Example 7. Within the setting of residual systems with compositions [54], i.e.
rewrite systems whose steps satisfy the (typed) laws (1)–(4),(7)–(9), we see
law (2) fails when taking sets as objects of the rewrite system and functions as
its steps: For the function inj from {0} to {0, 1} mapping 0 to 0, law (2) would
dictate that the residual of inj after itself is the identity map on {0, 1}, but the
push-out between inj and itself instead yields two distinct maps to {0, 1, 1′}, one
mapping 1 to 1 and the other to 1′.

A simpler way of seeing the problem using the Characterisation Lem. 3 is
that inj is not epi, i.e. is not surjective.

Intuitively, the problem exemplified in Ex. 7 is that the 1 in the co-domain {0, 1}
is not in the range of inj, is not a residual of anything in its domain {0}. That is,
residual systems forbid the convenient but lax specification of functions where
there’s a discrepancy between their co-domain and range.

An intuition for the typed monoid being gaunt (or: the untyped monoid being
invertible-free in the sense of Def. 9 below), is that all isomorphisms have been
quotiented out, like quotienting out ≤ ∩ ≥ from a quasi-order ≤, allowing for
proving an equality by two inequalities given as motivation in the introduction.
Of course, this doesn’t work for cyclic structures (without a total partial order)
like the natural numbers with addition modulo, say, 2; clearly 1+1 ≡ 0 (mod 2).

One way to think of steps of residual systems with composition having a
partial order as natural order, is as steps doing ‘real work moving one forward,
closer to the result’.

Remark 17. In [42] we gave direct constructions of residual systems with compo-
sition from the (two sets of) axioms on residuals put forward by Melliès in [34].
Since in [34] it was shown that his axioms gave rise to a category having push-
outs and left-cancellation, Lem. 3 gives a much quicker route to the same: it
suffices to note that the category constructed in [34] is gaunt, to obtain a resid-
ual system with composition having a natural order that is a partial order.

One may specialise Lem. 3 to CRACs, by untyping the notions to algebraic ones:

Definition 9. Call a monoid ⟨A, 1, ·⟩ a residuation monoid if it

– is left-cancellative, if c · a = c · b then a = b;
– is invertible-free, if a · b = 1 then a = 1 = b; and
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– has lcm’s ( least common multiples), where a pair c, d is a cm ( common
multiple) of the pair a, b if a · c = b · d, and the cm b′, a′ is least if b′ ⩽ c
holds for all cm’s c, d of a, b.

Here we write a ⩽ b if a · e = b for some e.

That b′, a′ is an lcm of a, b in the above also entails a′ ⩽ d since if b′ · e = c,
then b · a′ · e = a · b′ · e = a · c = b · d hence a′ · e = d by left-cancellation. Being
gaunt untypes to being invertible-free, and having push-outs to having lcm’s. If
the monoid is commutative, then in the above it is sufficient to have a = 1 for
being invertible-free, to also entail b = 1, and being left-cancellative coincides
with being right-cancellative.

Lemma 7 (Lem. 3 untyped). ⟨A, 1, ·⟩ is a commutative residuation monoid
iff ⟨A, 1, /, ·⟩ is a CRAC with a/b := a′ for every pair a, b and its least cm b′, a′.

Proof. Everything is an immediate consequence of Lem. 3, except that for the
if-direction we need to verify that the monoid is commutative, which we already
know from Lem. 1 and Rem. 4, and for the only–if-direction we need to verify
that laws (5) and (6) hold. That follows by tiling as depicted at the bottom in
Fig. 2 and by the reasoning in Rem. 3: By commutativity the cm of a·b, b·a is 1, 1.
Hence by tiling we obtain both (b/a)/b · (a/(a/b))/(b/(b/a)) = 1 and (a/b)/a ·
(b/(b/a))/(a/(a/b)) = 1, as depicted in Fig. 2. From the assumption that the
monoid is invertible-free, we thus get that each of (b/a)/b, (a/(a/b))/(b/(b/a)),
(b/(b/a))/(a/(a/b)), and (a/b)/a is 1 as in Rem. 3. From the first (or fourth), the
law (5) follows immediately. From the second and third we get by definition of
/that the pair 1, 1 is an lcm of the pair b/(b/a), a/(a/b), from which the law (6)
follows.

C.8 From (typed) conversions to fractions (valleys)

As stated above Lem. 4, and easy to check, the construction of the involutive
monoid from a CRAC can be typed; it works for any residual system with compo-
sition, i.e. ⟨→, 1, /, ·⟩, yielding a typed involutive monoid, conventionally known
as a dagger category. The residual laws for composition (7)–(9) make valleys,
typed fractions, i.e. pairs of reductions having the same target, compose to val-
leys again, using tiling as shown in Fig. 8. That is, compared to normalising
conversions w.r.t. the top 6 laws in Tab. 4 we now also normalise them w.r.t.
ϕ−1 · ψ −→ (ψ/ϕ) · (ϕ/ψ)−1 for peaks ϕ, ψ, replacing such by the valley ψ/ϕ

ϕ/ψ , and
the residual laws make that composition is associative as displayed in Fig. 5.
Since a valley ϕ, ψ is nothing but a typed fraction we use the notation of the
latter ϕ

ψ , implicitly expressing that ϕ, ψ have the same targets.24

24 Speaking of peaks / valleys for pairs of steps and reductions having the same sources
/ targets goes back to the origin of rewriting [11,37]. Just like the concept of a rewrite
system, these concepts are so general they have been invented many times over. E.g.
a peak might be called a span, a fork, a branching, a negative–positive path or a
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ω ⇒ϕ ψ χ◦ ωϕ ψ χ

⇓

⇐ϕ · (χ/ψ) ω · (ψ/χ)

ϕ ψ χ ω

ψ/χχ/ψ

Fig. 8. Composition of valleys ϕ
ψ

and χ
ω

by tiling / residuation

That valleys compose corresponds in rewrite terminology to transitivity of
joinability, which is equivalent to confluence [4,54]. But note that associativity
is not a consequence of confluence; different orders of composition may give rise
to the constructed valleys being different. It does hold for residual systems with
composition though, which satisfies the laws of a join semi-lattice per Lem. 1,
since for them joinability is witnessed by the join ∨.

However, note that in general this does not yield a typed group, i.e. a groupoid,
even if we quotient out projection equivalence as in the proof of Thm. 3. We illus-
trate this by means of the classical residual system [11,37,6] for the λβ-calculus.

Example 8. Consider the term M := (λx.y) (I (I a)) and in the λβ-calculus and
the β-reductions ϕ, ψ : M → (λx.y) (I a) → y obtained by contracting either
I-redex in the argument first, and the head redex next. These two β-reductions
ϕ and ψ are projection equivalent (aka permutation equivalent [29,6], where it is
shown that in fact all β-reductions from a term to its normal form are projection
equivalent). Yet, cancelling the final head β-step common to both yields (single
step) β-reductions ϕ′, ψ′ : M → (λx.y) (I a) that are not projection equivalent
(a so-called syntactic accident [29, p. 34]).

More generally, though left-cancellation holds for any residual system with com-
position, cf. Lem. 3, the example shows that right-cancellation may fail, even if
the natural order is a partial order.

Remark 18. The standard example showing this failure is the monoid of (equiva-
lence classes of) strings over {a, b, c} such that ba = ca; in it b and c are distinct,
so it’s not a group as a can’t be cancelled on the right.

C.9 Generating a (typed) group from a (typed) involutive monoid

As seen in the previous section, though we may embed a residual system with
composition in a typed involutive monoid by means of tiling, that in general

fraction depending on people’s creed, and a valley may be called a rewrite proof or
a positive–negative path or flat AB∗ or . . . . Note that they are then often used in a
more restrictive setting, e.g. of categories or algebra.
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does not yield a typed group, even after quotienting out projection equivalence.
Right-cancellation typically fails, which manifests itself in that though the unit
valley 1

1 is a unit, in general any valley ϕ
ϕ is a unit for valleys ψ

χ with ϕ ⩽ ψ, χ.
Such common factors have to be quotiented out. We do so by the relation ▷◁ [13].
(In this section we will tacitly assume the involutive monoid to be generated as
above, from a residual system with composition.)

Definition 10. ϕ
ψ ▷◁ χ

ω if there exists a proportion ς
ζ making both peaks into a

tile: ϕ · ς = χ · ζ and ψ · ς = ω · ζ, see Fig. 9 left,middle.

ifψ χϕ ≡ ω

ζ

ψ

ϕ ω

χ

ς

Fig. 9. Diabolo equivalence ▷◁ for valleys

This corresponds to quotienting out right-cancellation. A valley ϕ
ψ for elements

ϕ, ψ of the typed monoid represents ϕ ·ψ−1 in the typed group. On the one hand,
if ϕ · ζ = ψ · ζ for some ζ, then 1

1 ▷◁
ϕ
ψ for proportion ϕ·ζ

ζ , yielding 1 = ϕ · ψ−1,
i.e. ϕ = ψ, and on the other hand, if ϕ

ψ ▷◁ χ
ω in proportion ς

ζ , by the group laws:

ϕ ·ψ−1 = ϕ ·ς ·ς−1 ·ψ−1 = ϕ ·ς ·(ψ ·ς)−1 = χ ·ζ ·(ω ·ζ)−1 = χ ·ζ ·ζ−1 ·ω−1 = χ ·ω−1

Example 9. In Ex. 8 we have ϕ′ ▷◁ ψ′ because composing the same head step to
their right yields the same (permutation) equivalent reduction.

Remark 19. For usual fractions one may think of ▷◁ as saying fractions a
b and

c
d are equivalent if their respective numerators a, c and denominators b, d are
proportionate to each other in proportion e

f , that is, a · ( ef ) = c, i.e. a · e = c · f ,
and the same for b, d. This generalises the classical way, not using proportions, of
expressing this directly by requiring the crosswise compositions to be the same
a · d = c · b. That is, this extends [13] Grothendieck’s classical equivalence from
the commutative to the non-commutative case.

Note that for non-commutative systems only ▷◁ yields an equivalence, the
classical way doesn’t, but that for commutative systems ▷◁ coincides with the
classical way, as seen by setting e := d and f := b, respectively by cancelling e, f
after crosswise combining both equalities and reordering using commutativity.

We will refer to ▷◁ as the diabolo equivalence. We only justify that, i.e. that ▷◁ is
an equivalence, and that one obtains a group, referring to [13] for more.
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Lemma 8. ▷◁ is an equivalence relation.

Proof. Reflexivity and symmetry follow from the same for equality of paths. For
transitivity, if ϕ

ψ ▷◁ ϕ′

ψ′ is witnessed by ς
ζ and ϕ′

ψ′ ▷◁
ϕ′′

ψ′′ is witnessed by ς′

ζ′ , then
define ς′′

ζ′′ to be a tile T for the peak ζ, ς ′, see Fig. 10 left. We then claim that
ς·ς′′
ζ′·ζ′′ is a witness to ϕ

ψ ▷◁ ϕ′′

ψ′′ . We only check the left diagram, as the other follows

symmetrically. ϕ · ς · ς ′′ hyp
= ϕ′ · ζ · ς ′′ T

= ϕ′ · ς ′ · ζ ′′ hyp
= ϕ′′ · ζ ′ · ζ ′′ where T refers

to that the left and right leg of the tile are equal per construction of the tile T .

ζ ′′

ψ ϕ′

ζ

ψ′ϕ

ς

χ ω

ς ′′

χ/ψ′ ψ′/χ
ψ/χ

χ/ψ

ς ′

ς

ς ′′ ζ ′′

ζ ′

T
ζ ς ′

ψϕ ψ′′ϕ′′ϕ′ ψ′

ζ ′

Fig. 10. Diabolo transitivity and congruence by tiling

Lemma 9. Valleys up to ▷◁ constitute a typed group with units 1
1 , composition

defined as in Fig. 8, and inverse ( ϕψ )
−1 := ψ

ϕ , if left-cancellation holds.

Proof. We first show that ▷◁ is a congruence for the operations. Suppose ϕ
ψ ▷◁ ϕ′

ψ′

by proportion ς
ζ . For the composition, it suffices to show ϕ·(χ/ψ)

ω·(ψ/χ) ▷◁
ϕ′·(χ/ψ′)
ω·(ψ′/χ) for

all χ
ω since we then conclude by reasoning symmetrically and by transitivity of

▷◁. Let for the respective compositions, the peaks ψ, χ and ψ′, χ be completed
by valleys χ/ψ

ψ/χ and χ/ψ′

ψ′/χ . We then conclude by tiling as in Fig. 10 right, by
setting first ς ′ := ς/(χ/ψ) and ζ ′ := (χ/ψ)/ς, next ς ′′ := (χ/ψ′)/(ζ · ζ ′) and
ζ ′′ := (ζ · ζ ′)/(χ/ψ′), and finally the proportion ς′·ς′′

ζ′′ . It remains to verify both
diabolo equations hold for the proportion by tiling. The first holds by:

ϕ · (χ/ψ) · ς ′ · ς ′′ = ϕ · ς · ζ ′ · ς ′′

= ϕ′ · ζ · ζ ′ · ς ′′

= ϕ′ · (χ/ψ′) · ζ ′′
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For the second, note (ψ/χ) · ς ′ · ς ′′ = (ψ′/χ) · ζ ′′ by left-cancellation from:

χ · (ψ/χ) · ς ′ · ς ′′ = ψ · (χ/ψ) · ς ′ · ς ′′

= ψ · ς · ζ ′ · ς ′′

= ψ · (χ/ψ′) · ζ ′′

= χ · (ψ′/χ) · ζ ′′

From that we conclude to ω · (ψ/χ) · ς ′ · ς ′′ = ω · (ψ′/χ) · ζ ′′, as desired. For the
inverse, ψ

ϕ ▷◁ ψ′

ϕ′ holds trivially by the same proportion ς
ζ . It remains to check

the group laws. By Rem. 11 it suffices to check only the following three.

– 1
1 ·

ϕ
ψ ▷◁ ϕ

ψ follows by taking a tile with valley ϕ
1 ;

– ( ϕψ )
−1 · ϕψ = ψ

ϕ ·
ϕ
ψ ▷◁ 1

1 follows by taking a tile with valley 1
1 ;

– associativity holds by Fig. 5 and ▷◁ being a congruence.

Since for residual systems with composition (after quotienting out projection
equivalence), left-cancellation holds, any such gives rise to a group.

Example 10. The involutive monoid of valleys of λβ-calculus reductions as in
Ex. 8, taken up to diabolo equivalence ▷◁ induces a typed group.

Remark 20. One may wonder whether if ϕ
ψ ▷◁ χ

ω holds both by proportion ς
ζ and

by proportion ς′

ζ′ , then ς
ζ ▷◁

ς′

ζ′ , i.e. whether then the proportions themselves are

diabolo equivalent.25 This holds by proportion ς′/ς
ς/ς′ , with the first ς · (ς ′/ς) =

ς ∨ ς ′ = ς ′ ∨ ς = ς ′ · (ς/ς ′) holding by design (commutativity of ∨ in any CRAC),
and the second ζ · (ς ′/ς) = ζ ′ · (ς/ς ′) following by left-cancellation of ω from
ω · ζ · (ς ′/ς) hyp

= ψ · ς · (ς ′/ς) = ψ · ς ′ · (ς/ς ′) hyp
= ω · ζ ′ · (ς/ς ′).

Remark 21. That the λβ-calculus induces a typed group in this way, and even
gives rise to an ω-groupoid was shown in [48]. There it was stated that the result
holds for any equational theory which admits Lévy’s calculus of reductions, and
that for example, all (weakly) orthogonal term rewrite systems (TRSs) describe
homotopy 1-types.

We interpret the above as asserting that the result in [48] holds for any resid-
ual system in the sense of [47,52,54], which would be a pleasant state of affairs,
confirming the relevance of residual systems (with composition) and their ax-
iomatics.26 The second part of this claim in [48], that the result pertains to
25 Polonsky conjectured this (personal correspondence of 22-11-2015) for the λβ-

calculus w.r.t. Lévy’s permutation equivalence. We affirmed it to him for residual
systems as in [54, Tab. 8.5], also at the basis of this paper; cf. [48, Sec. 4].

26 Lévy largely developed the notion of permutation equivalence for various calculi (in
joint work with Berry and Huet). As far we know he did not present a calculus of
reductions however, he did not provide an axiomatics. We based [54] on [52], with
its axiomatics being vindicated by the recent discovery of [47]. (In [48] a reference
to [6, Prop. 12.2.2] is made, but though that proposition shows relevant properties,
an axiomatics is neither given nor studied in itself, there’s no calculus.)
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weakly orthogonal TRSs, is surprising since it is well-known that weak orthogo-
nality is problematic for residual theory; e.g. naïvely extending it leads to failure
of the cube law [28, Ch. III][26, Rem. 2.26]. Though it is known [41, Lem. 1]
that in fact any (countable) confluent rewrite system admits a residual system,
the problem is that that construction is not constructive, losing the connexion
(other than that both present the same quasi-order) between the residual system
and the original rewrite system.

The example and remark highlight that though we always can generate a typed
group from a residual system with composition, the steps and reductions of the
rewrite system may not embed in the group; some may be forced to be identified
by the need for right-cancellation to hold in the group.

Example 11. The standard example showing this necessity is the monoid of
strings such that ba = ca; in it b and c are distinct but right-cancelling a shows
they must be identified in any generated group.

Ore’s theorem, discussed below, characterises when we do have an embedding.

Remark 22. For the CRACs in the main text, this question / problem does not
arise: their left-cancellation entails their right-cancellation by commutativity.

Remark 23. It should be interesting to characterise for the λβ-calculus which
(permutation equivalence classes) of reductions are identified by ▷◁, or more
generally to characterise the typed group(s) obtained.

As noted in [48, Ex. 3], though the two Hindley-equivalent (having the same
source and targets) steps from I (I a) to I a are identified by ▷◁ (since com-
posing them with the further step from I a to a yields permutation equiva-
lent reductions), there are also many that are not. For instance, all reductions
from Ω := (λx.x x) (λx.x x) are in fact Hindley-equivalent (inducing an untyped
group), but such reductions having distinct lengths are neither permutation nor
diabolo equivalent [48, Ex. 3] (the group induced by Ω is just Z).

Characterisating the typed group of the λβ-calculus27 should be interesting.
Maybe it could be characterised using some notion similar to Lévy’s notion of
family [29]; for instance, note that (after initially labelling all edges with 0) the
two steps from I (I a) to I a are the same in the Hyland–Wadsworth labelling.
Such a characterisation could shed further light on Lévy’s notion of syntactical
accident [29, p. 34] or on reversible computations in λβ-(sub)calculi.

C.10 Embedding in a typed group; deciding ▷◁ by double tiling [13]

A (typed) monoid being left- and right-cancellative is necessary for it to embed
in a (typed) group, as expressed by Ore’s Theorem [13, Prop. II.3.11]. It states,
using the terminology of this paper, that a typed monoid C is cancellative and has
27 For sub-calculi like linear λ-calculi and by extension proof net calculi for linear logic,

but also for term rewriting systems such as combinatory logic the same question
should also be interesting.
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the diamond property iff the homomorphism to its enveloping [13] typed group
Env(C) is injective and steps of the latter are valleys of the former. Then, elements
of Env(C) are represented by valleys up to diabolo equivalence ▷◁ (Def. 10).

As noted above in Rem. 23, working up to diabolo equivalence ▷◁ is cumber-
some due to the proportion being existentially quantified in Def. 10 (it may not
be decidable). Hence, one would like to have more concrete characterisations of
it. We discuss three special cases relevant to this paper where diabolo equiva-
lence ▷◁ can be efficiently decided: valleys of positive braids [13], of reversible
reductions [10], and of reductions of CRACs.

Example 12. To decide ▷◁ for braids discussed at the end of Sec. 2, one may
proceed as expounded in [13] by exploiting symmetry.

The monoid of positive braids over 3 strands is presented by (Artin) gener-
ators {σ1, σ2} with equation σ1σ2σ1 = σ2σ1σ2. Simple braids are braids where
strands never cross twice, and are represented (up to the equivalence) by ε,
σ1, σ2, σ1σ2, σ2σ1 and σ1σ2σ1. The (former) latter constitutes a residual sys-
tem (with composition) [34,54] embedding in the typed braid group by Ore’s
Theorem [13]; right-cancellation follows from left-cancellation by symmetry: two
positive braids ϕ, ψ are projection equivalent iff the reverse braids ϕ−1, ψ−1 are,
due to the symmetry of the equation. (This is in fact independent of the number
of strands.)

ψ̂−1 ϕ̂−1

⇑
⇓

ϕ := ϕ̂/ψ̂ ψ := ψ̂/ϕ̂

ψ̂ ϕ̂

Fig. 11. Double tiling: reversing and tiling upward, reversing and tiling downward

Therefore, we may compute a unique representative of ▷◁-equivalence classes
of conversions by tiling twice (called double right-reversing in [13]). In classical
rewriting terminology: to compute a unique valley representing a conversion, we
reverse it, compute a valley ϕ̂−1

ψ̂−1
by tiling [11,37,28,5], reverse that into a peak

ψ̂, ϕ̂, and then compute its valley ϕ

ψ for ψ := ψ̂/ϕ̂ and ϕ := ϕ̂/ψ̂ by tiling again.

Reversing the braid on 5 strands σ−1
4 σ1σ

−1
2 σ4 yields σ4σ−1

1 σ2σ
−1
4 . Tiling

and reversing that yields σ4σ2σ1σ−1
2 σ−1

1 σ−1
4 and σ−1

4 σ−1
2 σ−1

1 σ2σ1σ4, after which
tiling yields σ1σ−1

2 .
The resulting valley ϕ

ψ is unique in its diabolo equivalence class. To see this

first observe that per construction ψ̂ ·ϕ = ϕ̂ ·ψ, which by the assumed symmetry

is the same as ϕ−1 · ψ̂−1 = ψ−1 · ϕ̂−1. Now, if ϕ

ψ ▷◁ χ
ω say for proportion ς

ζ , then
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ϕ · ς = χ · ζ and ψ · ς = ω · ζ, hence by symmetry ς−1 · ϕ−1 = ζ−1 · χ−1 and
ς−1 ·ψ−1 = ζ−1 ·ω−1. Combining these with the observation and left-cancellation
of ζ−1 yields χ−1 · ψ̂−1 = ω−1 · ϕ̂−1. By symmetry again ψ̂ · χ = ϕ̂ · ω, and we
conclude uniqueness of ϕ

ψ by uniqueness of push-outs in residual systems with
composition (Lem. 3).

Example 13. Consider a reversible rewrite system → as at the end of Sec. 2. It
trivially constitutes a residual system on its reflexive closure →=, by defining
ϕ/ϕ := 1 with 1 the empty step on the target of ϕ. By reversible systems being
reversible, i.e. both deterministic and co-deterministic, the same reasoning as in
Ex. 12 pertains: ϕ, ψ are projection equivalent iff ϕ−1, ψ−1 are. Hence, unique
representative valleys can be computed by double tiling. For instance, if ϕ : a→
b, ψ : b→ c and χ : c→ d, then double-tiling the conversion ϕψχχ−1χχ−1ψ−1

yields ϕ. (Note that simply tiling would yield a valley, namely ϕψχχ−1ψ−1, but
not the unique representative valley.)

Remark 24. Recall from [46] a rewrite system → is one-step affluent if ←·→ ⊆
← ∪ → and affluent if its reductions ↠ are one-step affluent. Now → being
deterministic entails one-step affluence of its reflexive closure →=, hence by [46,
Lem. 2.4] affluence of→. By tiling we even have that n←·→m ⊆ n−̇m← if m ≤ n
and n←·→m ⊆ →m−̇n if n ≤ m (Lemma star_step_diamond in CompCert28).

Since if → is reversible as in Ex. 13 the above also holds for ←, we obtain
that unique representative valleys are either expansions or reductions of→. This
makes the set {n←,→n | n ∈ N} into (the carrier of) a typed group.

As noted in [46], each component of the graph of a co-deterministic rewrite
system→ consists of a number (possibly 1) of trees branching off (if at all) from
pairwise distinct objects lying at a (possibly empty) cycle; cf. [46, Fig. 6]. (The
trees may be infinite: both infinitely branching and non-rooted trees are allowed.)
Hence if → is reversible, so → is also deterministic, then components classify as
being either straight lines (infinite or finite to either side) or cycles. Thinking
of the latter as straight lines too via their infinite unfolding, justifies picturing
computation-trees in reversible rewrite systems as straight lines all parallel to
each other; neither forward nor backward branching; of course.

Example 14. CRACs being algebras any valley generated from them is a peak,
and symmetry as above holds by commutativity. Hence, diabolo equivalence of
valleys can be checked by double tiling again.

For the natural numbers N with addition, valleys n
m of natural numbers

intuitively denote n − m as expounded in the main text. To check whether
n
m ▷◁ n′

m′ we may proceed by double tiling the conversion n+(−m)+m′ +(−n′)
(written using formal + and −). For instance, 5

3 ▷◁
4
2 holds since double tiling

5+(−3)+2+(−4) yields (using monus for residuation) first 5+0+(−1)+(−4)
and then 0. That is, unique representative valleys are either 0 or positive n or
negative −n for n > 0.
28 https://compcert.org/doc/html/compcert.common.Determinism.html.

https://compcert.org/doc/html/compcert.common.Determinism.html
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For the positive natural number Pos with multiplication, valleys n
m denote

fractions (see the main text). Double tiling amounts to normalising fractions.
For instance, 6

10 ▷◁
21
35 holds since double tiling the conversion 6 · 10−1 · 35 · 21−1

(now written using formal · and −1) yields (using dovision for residuation) first
6 · 7 · 2−1 · 21−1 and then 1.

Remark 25. In general, reasoning by symmetry as above fails for residual sys-
tems, with the simplest case being the rewrite system b → a ← c which is
confluent (it’s deterministic) but not co-confluent aka upward confluent; there’s
no object reducing to both b and c. This example may seem artificial, but in fact,
upward confluence fails for many term rewrite systems: for the λ-calculus [6] it
fails even when restricted to simply typed and/or linear β-expansion [38], and
failure extends to many (orthogonal) TRSs, e.g. to combinatory logic [53].

C.11 Untyping typed groups

At the end of Sec. 2 it was stated that our embeddings are ‘just commutative
untyped’ versions of known typed embeddings, and we gave two examples of the
latter, of braids and of reversible rewrite systems, cf. e.g. [13] resp. [10]. We can
now add a bit more detail to that, and show that the ‘commutative untyped’
version of both is the (commutative) group Z.

Example 15. Reconsider braids as in Ex. 12. Forcing commutativity on braids
over 3 strands by setting ab = ba, makes aba = abb, hence in the group a =
b by cancellation making it collapse to positive and negative exponents of a,
isomorphic to Z. The same reasoning pertains to any number of strands.

Example 16. Untyping the typed group {n←,→n | n ∈ N} of expansions and
reductions of a reversible rewrite system of Ex. 13 and Rem. 24 yields Z.

Both examples confirm the analogy suggested for them at the end of Sec. 2; both
are lattice-ordered in the same way Z is via min,max, i.e. in fact totally ordered
by the less-than-or-equal order ≤.

C.12 Upper bounds vs. lower bounds / composition vs. residuation

As noted before, composition in CRACs being commutative, immediately yields
that they are right-cancellative too, hence by Ore’s theorem that they embed in
commutative groups.

Ore’s theorem is expressed in terms of composition only. Accordingly, both
the diabolo equivalence ▷◁ and the direct one discussed in Sec. C.10 can be seen as
expressing equivalence on valleys in terms of composition, of having upper bounds
/ common multiples. This is to be contrasted to Thm. 4 where valleys are deemed
equivalent when they normalise to the same valley, which is expressed in terms
of residuation, of having lower bounds / common divisors; cf. [12,1]. As a sanity
check, we recapitulate that for CRACs, both are the same:
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Proposition 3. For elements a, b, c, d of a CRAC, a
b ▷◁

c
d iff a/b

b/a = c/d
d/c .

Proof. For the only–if-direction, suppose a ·e = c ·f and b ·e = d ·f for some ele-
ments e, f of the CRAC. Then a/b

b/a = (a·e)/(b·e)
(b·e)/(a·e) =

(c·f)/(d·f)
(d·f)/(c·f) =

c/d
d/c by repeatedly

using the residuation laws for composition (7) and (8) and unit laws.
For the if-direction, ab ▷◁

a/b
b/a = c/d

d/c ▷◁
c
d follows using the assumption and for

the ▷◁s that the resulting crosswise compositions are the same, e.g. a · (b/a) =
a ∨ b = b ∨ a = a · (b/a) by Def. 1, Lem. 1 and Rem. 4.

Remark 26. Prop. 3 jibes well with Ex. 14: for CRACs, normalising a
b to a/b

b/a is
the same thing as double tiling the conversion a · b−1.

Remark 27. Working with normalised fractions only is known to be compute-
intensive. Therefore, in applications computations / operations are often per-
formed on ordinary fractions, normalising them only if (and then as far as)
needed, e.g. for comparing them. A similar deliberation should come into play
when computing with valleys and conversions in residual systems.

C.13 The positive cone of a commutative ℓ-group is a CRAC

The positive cone of a commutative ℓ-group constitutes a CRAC, via Lem. 7:

Lemma 10. If G := ⟨A, 1,−1, ·,∧,∨⟩ is a commutative ℓ-group, then its positive
cone G⩾1 := ⟨A⩾1, 1, ·⟩ is a commutative residuation monoid.

Proof. First note that trivially 1 ∈ A⩾1 and A⩾1 is closed under · by orderedness
and 1 being the unit. Also the lattice-structure is preserved on A⩾1 since if
1 ⩽ a, b then 1 ⩽ a ∧ b and if a, b ⩽ c then 1 ⩽ c. That G⩾1 is (left-)cancellative
follows from G being cancellative, by being a group. By definition a ⩽ b in the
commutative residuation monoid G⩾1 if a · c = b from some c in A⩾1, but this is
the same as in A, since we may define for a, b in the positive cone such that a·c = b
we must have 1 ⩽ c since c := (b · a−1)∨ 1 in G works: a · c = (a · b · a−1)∨ a = b
and c is in the positive cone. It follows from the same that G⩾1 is invertible-free
since if a · b = 1 for a, b ≥ 1 then b = a−1∨1 = 1. Finally, since the natural order
on G⩾1 coincides with that on G, the lcm of a, b ≥ 1 is just a ∨ b in G.

Remark 28. The map embedding residuation from the CRA / CRAC into the
group is the obvious generalisation of that from monus for the bits / natural
numbers into the integers, evaluating n −̇ m as max(n − m, 0) (but of course,
defining monus based on minus is circular; the same holds for defining any notion
lower in the hierarchy B ↪→finite sequences N ↪→pairs Z ↪→pairs Q ↪→infinite sequences
R via notions higher up in it).

The above justifies thinking of the positive cone of any commutative ℓ-group as
a CRAC or equivalently as a commutative residuation monoid.

Remark 29. We leave it to further research to investigate (the literature on) an
analogon for embedding residual systems with composition in typed ℓ-groups



44 V. van Oostrom

C.14 The Inclusion–Exclusion principle for commutative ℓ-groups

We fix the Inclusion–Exclusion principle we based ourselves on, by giving a
standard version of it and standard slick / inductive proofs of it, for a finite
family AI := (Ai)i∈I of finite sets:

Theorem 7 (de Moivre, da Silva, Sylvester C17/18th).∣∣∣⋃AI

∣∣∣ = ∑
∅⊂J⊆I

(−1)|J|−̇1 ·
∣∣∣⋂AJ

∣∣∣
Proof (slick, of Thm. 7). Count for each individual x ∈

⋃
AI depending on

#(x) := |{i | x ∈ Ai}|:

1 = 1 if #(x) = 1
1 = 2− 1 if #(x) = 2
1 = 3− 3 + 1 if #(x) = 3

1 =
∑

1≤j≤n(−1)
j−̇1(n

j

)
if #(x) = n

by double counting:
∑

0≤j≤n(−1)
j(n
j

)
⇐ (1− 1)n ⇒ 0 (‘critical peak’)

Proof (by induction, of Thm. 7). we only show the step case I ∪ {k} of the
standard proof by induction #sets |I| of Inclusion–Exclusion for finite sets∣∣∣⋃AI∪{k}

∣∣∣ =IE2,∪semiℓ
∣∣∣⋃AI

∣∣∣+ |Ak| − ∣∣∣(⋃AI

)
∩Ak

∣∣∣
=∪∩distrℓ

∣∣∣⋃AI

∣∣∣+ |Ak| − ∣∣∣⋃
i∈I

(Ai ∩Ak)
∣∣∣

=2×IH
(∑

∅⊂J⊆I
(−1)|J|−̇1 ·

∣∣∣⋂AJ

∣∣∣)+ |Ak| −∑
∅⊂J⊆I

(−1)|J|−̇1 ·
∣∣∣⋂

j∈J
(Aj ∩Ak)

∣∣∣
=∩semiℓ,cgroup

(∑
∅⊂J⊆I

(−1)|J|−̇1 ·
∣∣∣⋂AJ

∣∣∣)+ |Ak|+∑
{k}⊂J⊆I∪{k}

(−1)|J|−̇1 ·
∣∣∣⋂AJ

∣∣∣
=cgroup

∑
∅⊂J⊆I∪{k}

(−1)|J|−̇1 ·
∣∣∣⋂AJ

∣∣∣
Lemma 11. For µ a measure and multisets M,N , µ(M ⊎N) = µ(M)+µ(M).

Proof. Based on that
∑
iµ(M

>i) =
∑
j j · µ(Lj), see Fig. 6, we conclude by

µ(M ⊎N) =
∑

j,k
(j + k) · µ(M j ∩Nk) = µ(M) + µ(M)

Remark 30. It is easy to state and prove a version of IE for commutative ℓ-
groups.

Theorem 8 (Commutative ℓ-group version of Inclusion–Exclusion for
finite family aI). Let G := ⟨A, 1,−1, ·,∧,∨⟩ be a commutative ℓ-group. Then∨

aI =
∏

∅⊂J⊆I

(
∧
aJ)

(−1)|J|−̇1
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