
Confluence by the Z-property for De Bruijn’s λ-calculus

with nameless dummies, based on PLFA∗

Vincent van Oostrom

University of Sussex, School of Engineering and Informatics, Brighton, UK
Vincent.van-Oostrom@sussex.ac.uk

Abstract
We discuss the Agda formalisation of a proof of confluence of the untyped λβ-calculus,

more precisely, of the Z-property for De Bruijn’s λ-calculus notation with nameless dum-
mies, based on the latter’s formalisation in Programming Language Foundations in Agda.

Introduction We consider confluence of the rewrite system →β of the λβ-calculus [3].
A sufficient condition for a rewrite system→ to be confluent is the Z-property, the existence

of a map • on its objects such that if a → b then b ↠ a• ↠ b•. The Z-property originates
with Loader [14, Section 4.1] for the λβ-calculus with the Gross–Knuth bullet map, and with
Dehornoy [9] for self-distributivity with the full distribution bullet map. See [15] for more on
it and on its theory, e.g. that it is not necessary for confluence.

In [15, Remark 52][10, Conclusions] we claimed that the proof of confluence of→β by means
of the Z-property given there was (a bit) shorter than the proof of the same due to Takahashi [18]
via the angle property, the existence of a map • on the objects of → together with a rewrite
system ◦−→ with → ⊆ ◦−→ ⊆↠ and such that if a ◦−→ b then b ◦−→ a• [19, 15].

Remark. In the same paper we showed [15, Lemma 8] that the Z-property and the angle
property are equivalent. That the proof using the former is (a bit) shorter nonetheless is due
to that it dispenses with introducing the auxiliary rewrite system ◦−→; the •-map suffices.

Here we investigate that claim specialised to a formalisation of the λ-calculus, in partic-
ular to the formalisation of it in Agda in Programming Language Foundations in Agda [20].
There, in the module Confluence, a proof of confluence of De Bruijn’s λ-calculus with nameless
dummies [7] was formalised via the angle property. We present an alternative formalisation1 of
confluence via the Z-property; it again is (a bit) shorter than the one via the angle property.
Our alternative formalisation is based on the October 2021 snapshot2 of [20]; it may replace its
Confluence module but is still based on its modules Untyped (formalising De Bruijn’s λ-calculus
with nameless dummies) and Substitution (formalising the so-called Substitution Lemma).

We first describe and comment on the key ingredients of the Agda code from [20] we took
as the basis of our formalisation, the objects and steps of the rewrite system, and motivate why
we did so. We then do the same for our supplementary code, the alternative formalisation of
Confluence, split into: (i) supplementary code (50 loc) showing the system to be a term rewrite
system, (ii) code (65 loc) for the Z-property, and (iii) code (25 loc) for inferring confluence from
Z, supplemented with comments on design decisions. We assume knowledge of rewriting [19]
and the λ-calculus [3] with nameless dummies [7].

∗This work is licensed under the Creative Commons Attribution 4.0 International License L M. The Agda
code was developed in the 1st week of October 2021 based on the then-current version of Programming Language
Foundations in Agda [20] on a MacBook Pro 2019 with Agda 2.6.1.1, Emacs 26.3.

1HTML source at http://www.javakade.nl/research/agda/plfa.part2.ConfluenceZ4.html (external hyperlinks
do not work; see PLFA) and pure Agda code at http://www.javakade.nl/research/agda/ConfluenceZ4.agda.

2That snapshot already had the proof via the angle property of the 2022 version of [20] , instead of the
Tait–Martin-Löf proof via the diamond property found in its 2020 version, i.e. based on the existence of a
rewrite system ◦−→ with → ⊆ ◦−→ ⊆ ↠, such that for a ◦−→ b and a ◦−→ c there is a d with b ◦−→ d and c ◦−→ d.

https://plfa.inf.ed.ac.uk/
https://plfa.inf.ed.ac.uk/
https://plfa.inf.ed.ac.uk/Confluence/
https://plfa.inf.ed.ac.uk/Confluence/
https://plfa.inf.ed.ac.uk/Untyped/
https://plfa.inf.ed.ac.uk/Substitution/
https://plfa.inf.ed.ac.uk/Confluence/
https://plfa.inf.ed.ac.uk/
https://plfa.inf.ed.ac.uk/
http://www.javakade.nl/research/agda/plfa.part2.ConfluenceZ4.html
http://www.javakade.nl/research/agda/ConfluenceZ4.agda

Confluence by Z in Agda V. van Oostrom

Figure 1: Church numeral 2 with names, nameless and scopes (left), and factoring 2 2→β 4 (right)

Objects of the rewrite system The objects of the rewrite system are the λ-terms with
nameless dummies of [7], obtained by restricting generalised such terms [5, 12] t ::= 0 |St |λt | t t
by requiring t in St to be an index, a unary natural number generated from 0 and S only. Figure 1
(left) exemplifies the correspondence between named [3] and nameless [7] (better: uni -named) λ-
terms for the Church numeral 2:=λλ(S0) ((S0) 0) (we employ the notational conventions of [3]).

It is a matter of hygiene to factor a notion for open λ-terms through the same for closed
λ-terms, e.g. it is hygienic to define an open term M to be solvable [3] if its closure M̂ is, i.e.

if M̂ P⃗ =β I for some P⃗ . The formalisation in Untyped follows suit and carves out from the
above λ-terms the closed ones [2, 16] by means of the inference rules (to be read bottom–up):

Here the scoping judgment i ⊢ t asserts that t is a λ-term having i as upper bound on its free
indices, in particular 0 ⊢ t asserts t is closed. See [16, example 3] for a derivation showing 2 is
indeed closed. Scoping judgments are implemented in the module Untyped of [20], there split
into separate judgments for indices i and λ-terms t built from them by means of abstraction
(λ) and application (@). As is good engineering practice, we reuse it for our formalisation.

Remark. The reason for calling i ⊢ t a scoping judgment in [20] is that making the scopes of
λ-abstractions explicit [12, 16] as boxes, as done in Figure 1 for the Church numeral 2, makes it
clear that each S represents an end-of-scope of, and each 0 a reference to, its λ-abstraction. The
notion of binding for named λ-terms is recovered for nameless λ-terms by the context-free notion
of matching parentheses along paths of the abstract syntax tree of the λ-term, viewing each λ as
an opening parenthesis (and each end-of-scope S or reference 0 as a closing parenthesis) [12].
A box is formed by an abstraction together with its matching end-of-scopes and references.

Design. Since in the λβ-calculus terms are constructed just from abstractions and applications,
in the literature [3] one usually abstains from formalising the concept of a symbol / signature [19]
to construct terms from. The formalisation in the module Untyped follows suit. For applied
λ-calculi this design choice leads to redundancy, e.g. an inference rule for each construct.

Steps of the rewrite system The →β-steps are generated by closing the β-rule scheme [7]:

β : (λt) s→ t[s]

under contexts, where t[s] denotes substitution of s for the free occurrences of 0 in t; it must
be hygienic in that it should preserve scoping: if i ⊢ (λt) s, i.e. if Si ⊢ t and i ⊢ s, then i ⊢ t[s].

2

https://plfa.inf.ed.ac.uk/Untyped/
https://plfa.inf.ed.ac.uk/Untyped/
https://plfa.inf.ed.ac.uk/Untyped/

Confluence by Z in Agda V. van Oostrom

Figure 2: Alternative substitution (left), scope extrusion (middle) and minimal lifting (right)

Contracting (λt) s can be split into two phases. In the first phase the λ together with its
box are removed and each 0 on it is replaced by s, see Figure 1 (right). This yields a generalised
λ-term, upon which the second phase extrudes any offending scopes, to yield the λ-term t[s].

Contracting (λt) s to t[s] in the module Untyped of [20] factors through subst-zero yielding
a parallel substitution σ mapping 0 7→ s and Si 7→ i implementing the first phase, with the
second lifting phase brought about during the parallel substitution process t[s] = tσ via subst.3

That subst satisfies the so-called Substitution Lemma [3] is shown in the module Substitution
of [20]. Since our code is modular in it, we reuse also that module.

Remark. The Substitution Lemma is unavoidable in any proof of confluence as it captures the
resolution of the critical peak of the β-rule arising from nested redex-patterns (λy.(λx.M)N))L:

(λy.M [x := N])L← (λy.(λx.M)N))L→ ((λx.M)N)[y := L] = (λx.M [y := L])(N [y := L])

in a canonical way by means of a valley, having the Substitution Lemma (SL) in its middle:

(λy.M [x := N])L→M [x := N][y := L] =SL M [y := L][x := N [y := L]]← (λx.M [y := L])(N [y := L])

Design. To allow for an algebraic proof of the Substitution Lemma, the module Substitution
of [20] first defines the basic substitution operations corresponding to the explicit substitution
operators of [17], based on [1] but having laws that are complete w.r.t. De Bruijn algebras in the
sense that explicit substitution expressions are equivalent iff they are provably equal by means
of the laws. Then these operations are linked to substitutions, the algebraic laws are proven to
hold for substitutions, and finally the Substitution Lemma is proven using the algebraic laws.

The result of taking that indirect approach is that the module Substitution is largish. As it
essentially only provides (both to [20] and to our code) the Substitution Lemma subst-commute,
it should be feasible and interesting to replace it by a smaller module on a different basis.

E.g., [13] employs only 2 operations, substitution (subst rec) and lifting (lift rec), and 6
laws governing their interaction to formalise the Substitution Lemma in Coq. That development
can be seen as implementing t[s] as t[s]0 followed by maximal scope extrusion as sketched above,
defined in [16], and repeated here in Figure 2. We formalised4 the Substitution Lemma for
generalised λ-terms in Coq, based on minimal scope extrusion, only extruding scopes as far as
needed to make β-redexes visible [12]. Somewhat surprisingly Huet’s 6 laws still hold.

Design. In the module Untyped of [20] steps are generated as in [3] via the compatible closure,
via clauses conventionally called ζ for abstraction and ξ1 and ξ2 for (the arguments of) appli-
cation. Already here the absence of a signature leads to redundancy (between ξ1 and ξ2). The
redundancy will be worse for applied λ-calculi having larger signatures.

3Now lifting the substitution into a box top–down via its λ, instead of bottom–up via an S as earlier.
4HTML at http://www.javakade.nl/research/coq/ConfluencebyZofGeneralisedLocalDeBruijninCoq.html.

3

https://plfa.inf.ed.ac.uk/Untyped/
https://plfa.inf.ed.ac.uk/Substitution/
https://plfa.inf.ed.ac.uk/Substitution/
https://plfa.inf.ed.ac.uk/Substitution/
http://www.javakade.nl/research/coq/ConfluencebyZofGeneralisedLocalDeBruijninCoq.html
https://plfa.inf.ed.ac.uk/Untyped/
http://www.javakade.nl/research/coq/ConfluencebyZofGeneralisedLocalDeBruijninCoq.html

Confluence by Z in Agda V. van Oostrom

app-cong : ∀{Γ} {K L M N : Γ ⊢ ⋆} → K —↠ L → M —↠ N → K · M —↠ L · N
rew-rew : ∀{Γ} {M N : Γ , ⋆ ⊢ ⋆ } {K L : Γ ⊢ ⋆ }

→ M —↠ N
→ K —↠ L

→ M [K] —↠ N [L]

Figure 3: Closure of reduction under application (app-cong) and substitution (rew-rew)

Term rewrite system To say that we have a term rewrite system [19] is to say that steps (and
reductions) are closed under contexts and substitutions [19]. We supplemented the results in [20]
with the remaining ones needed to show that, with the main ones being closure of reduction
under application (app-cong) and under substitution (rew-rew), displayed in Figure 3. The 50 loc
needed for it constitute Part I of our formalisation and confirm sanity of the module Untyped.

Remark. For rew-rew, we first showed closure of steps under substitution (stp-subst) after which
we pointwise extended the definition of many-step reduction —↠ to many-step reduction of
substitutions —↠s and showed the latter to be closed under term-contexts trm-subst, finally
allowing us to show reductions are closed under substitution for rew-rew, all missing from [20].

Design. Since in the λ-calculus there is only a single rule β, one usually abstains from for-
malising the concept of a rule, instead giving the corresponding ad hoc rule scheme directly
(one can think of the scheme as obtained from the rule by taking all its substitution instances).
Since in the module Untyped there is only one such rule scheme, conventionally [3] called β,
this is manageable. However, for applied λ-calculi this would again lead to redundancy.

It should be feasible and interesting to give an alternative formalisation of the untyped λ-
calculus in [20] as a higher-order term rewrite systems [19, Chapter 9], proceeding in the spirit
of [19, Chapter 8] and [6] via a signature of both function and rule symbols, with (multi)steps
simply being terms over that signature, so-called proofterms.

Z To establish the Z-property for →β we follow the approach pioneered by Loader [14] with
key properties outlined in [15, Sections 3.3.1, 3.4] for orthogonal term rewrite systems. We take
as bullet map • the full development map [15, Definition 42], recursively mapping a term M to
the target obtained by contracting all β-redexes in M ; its Agda code is presented in Figure 4.

Remark. For the history of this bullet map for the λ-calculus, going back to Gross, Knuth,
and Takahashi among others, see [4, 15].

Design. I initially tried formalising the Z-property for the full superdevelopment [15, Defi-
nition 42] bullet map going back to Aczel, van Raamsdonk and others, cf. [11], inside–out
contracting β-redexes starting from M , but failed. (Defining the full superdevelopment map
was unproblematic but I failed to use it.) It should be of interest to have a single generic proof
that can be instantiated to both the full development and superdevelopment bullet maps.

• : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A
(‘ x)• = ‘ x
(λλ M)• = λλ (M •)
((λλ M) · N)• = M • [N •]
(M · N)• = (M •) ·(N •)

Figure 4: Full-development bullet map •

4

https://plfa.inf.ed.ac.uk/Untyped/
https://plfa.inf.ed.ac.uk/Untyped/

Confluence by Z in Agda V. van Oostrom

The Agda code for the four key properties below, taken from [15, Sections 3.3.1, 3.4]5, with
the Z-property the conjunction of (upperbound) and (monotonic), fitting on one page (Figure 5)
bears witness to the simplicity of the proof of confluence via the Z-property. These 65 loc
constitute Part II of the formalisation, its core, the rest being generic / boilerplate code.

(extensive) M ↠β M• (• gives an upperbound);

(upperbound) if M →β N then N ↠β M• (• gives an upperbound on all 1-step reducts); •

(rhss) (M•)σ
•
↠β (Mσ)• (applying • to whole exceeds applying it to parts (of the rhs)); and

(monotonic) if M →β N then M• ↠β N• (• is monotonic with respect to reduction).

Remark. Each property may be shown either by induction on the term M (and then distin-
guishing cases on steps (proofterms) M →β N possible from M) or by induction on M →β N
(and then distinguishing cases on the possible shapes of M). This choice is largely immaterial.
Here we found it convenient to prove the properties (extensive) and (rhhs) by induction on the
term M , and the properties (upperbound) and (monotonic) by induction on M →β N .

Confluence That the Z-property entails confluence, holds abstractly [15, 8]. We arbitrarily
chose to formalise the first proof of it in [15, Lemma 51], factoring confluence through the Strip
Lemma [3, 20] strip, and that through an easy recombination of (extensive), (upperbound) and
(rew-monotonic), the lifting of (monotonic) from steps to reductions. Combining the trivial
formalisation of this final part with that of Parts I,II yields some 140 loc6 confirming our claim.

Conclusion Upon sending comments on the module Confluence to the authors of [20] in the
summer of 2021, Jeremy Siek challenged me to formalise the comments myself. Since for a long
time I had wanted to learn some Agda and in October of that year I had some time on my
hands, I then took up the challenge resulting in the current alternative formalisation of that
module. It closely followed the pen-and-paper proof [15] and confirmed my comments (that the
module Confluence could be simplified by basing it on the Z-property; its core is only 65 loc).
Formalising was surprisingly smooth (taking a full week only; not knowing Agda), helped by
that the code in [20] is well-explained and modularised, allowing for easy reuse and adaptation.
Accordingly, the proofs of the key properties in Figure 5 are by direct inductions on terms and
steps (proofterms), mostly making use of properties in the modules Untyped and Substitution.

Design. Having renaming and substitution and parallel substitution causes redundancy in [20].

Whether one can easily formalise a proof of confluence of the λ-calculus is often used as a
litmus test for proof assistants so formalisations abound [11]. When starting the endeavour I
was not aware of other formalisations of confluence via the Z-property in Agda. At IWC 2023,
I learned from Riccardo Treglia that he had supervised the student project in 2019/2020 of An-
drea Laretto on formalising the Church–Rosser theorem for the λ-calculus in Agda (not relying
on [20]). I have tried to initiate a discussion, but that has not materialised yet. The authors
of [20] still have to react to both the original comments and the subsequent formalisation, and
the improvements suggested to the untyped λ-calculus and its confluence mostly still apply.

5The (rhss) property here is the one which was intended in [15, Lemma 44(Rhs)]. The property (Rhs)

given there, that M(σ•) reduces to (Mσ)•, is correct in it being a trivial consequence of (extensive) and (rhss).

However, (Rhs) did not capture the idea that the result ((M•)(σ
•)) of applying the bullet map to the parts (M

and σ) of the right-hand side of the term rewrite rule (Mσ) reduces to the result ((Mσ)•) of applying the bullet
map to right-hand side. Consequently, the property (Rhs) given there is too weak to be useful.

6Of which 50 loc show the λ-calculus in the module Untyped is a term rewrite system so belong in that
module, leaving 90 loc for confluence itself in the module Untyped.

5

https://plfa.inf.ed.ac.uk/Confluence/
https://plfa.inf.ed.ac.uk/Confluence/
https://plfa.inf.ed.ac.uk/Untyped/
https://plfa.inf.ed.ac.uk/Substitution/
https://plfa.inf.ed.ac.uk/Untyped/
https://plfa.inf.ed.ac.uk/Untyped/

Confluence by Z in Agda V. van Oostrom

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal of Functional
Programming, 1(4):375–416, 1991. doi:10.1017/S0956796800000186.

[2] T. Altenkirch and B. Reus. Monadic presentations of lambda terms using generalized inductive
types. In Computer Science Logic (CSL ’99), Madrid, 1999, volume 1683 of Lecture Notes in
Computer Science, pages 453–468. Springer, 1999. doi:10.1007/3-540-48168-0_32.

[3] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103. North-Holland,
Amsterdam, 2nd revised edition, 1984.

[4] H.P. Barendregt, J. Bergstra, J.W. Klop, and H. Volken. Degrees, reductions and representability
in the lambda calculus. Preprint 22, Utrecht University, Department of Mathematics, 1976. URL:
https://dspace.library.uu.nl/handle/1874/15119.

[5] R.S. Bird and R.A. Paterson. de Bruijn notation as a nested datatype. Journal of Functional
Programming, 9(1):77–91, 1999. doi:10.1017/S0956796899003366.

[6] H.J.S. Bruggink. Equivalence of Reductions in Higher-Order Rewriting. PhD thesis, Utrecht
University, 2008. URL: https://dspace.library.uu.nl/handle/1874/27575.

[7] N.G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic for-
mula manipulation, with application to the Church–Rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972. doi:10.1016/1385-7258(72)90034-0.

[8] F.L.C. de Moura and L.O. Rezende. A formalization of the (compositional) Z property. Conference
on Intelligent Computer Mathematics, 2021. URL: http://flaviomoura.info/files/fmm21.pdf.

[9] P. Dehornoy. Braids and Self-Distributivity, volume 192 of Progress in Mathematics. Birkhäuser,
2000.

[10] P. Dehornoy and V. van Oostrom. Z; proving confluence by monotonic single-step upperbound
functions. In Logical Models of Reasoning and Computation (LMRC-08), Moscow, 2008. URL:
http://www.javakade.nl/research/talk/lmrc060508.pdf.

[11] B. Felgenhauer, J. Nagele, V. van Oostrom, and C. Sternagel. The Z property. Archive of Formal
Proofs, June 2016. URL: https://www.isa-afp.org/entries/Rewriting_Z.shtml.

[12] D. Hendriks and V. van Oostrom. λ. In Proceedings of CADE 19, volume 2741 of Lecture Notes
in Artificial Intelligence, pages 136–150. Springer, 2003. doi:10.1007/978-3-540-45085-6_11.

[13] G. Huet. Residual theory in λ-calculus: a formal development. Journal of Functional Programming,
4(3):371–394, July 1994. doi:10.1017/S0956796800001106.

[14] R. Loader. Notes on simply typed lambda calculus. ECS-LFCS- 98-381, Laboratory for
Foundations of Computer Science, The University of Edinburgh, February 1998. URL: http:
//www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/.

[15] V. van Oostrom. Z; syntax-free developments. In 6th Conference on Formal Structures for Com-
putation and Deduction (FSCD 2021), Buenos Aires, volume 195 of LIPIcs, pages 24:1–24:22.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FSCD.2021.24.

[16] V. van Oostrom, K.J. van de Looij, and M. Zwitserlood. Lambdascope. In Workshop on Algebra
and Logic on Programming Systems, Kyoto, page 9 pp., April 2004. URL: http://www.javakade.
nl/research/pdf/lambdascope.pdf.

[17] S. Schäfer, G. Smolka, and T. Tebbi. Completeness and decidability of de Bruijn substitution
algebra in Coq. In Proceedings of the 2015 Conference on Certified Programs and Proofs (CPP
2015), India, pages 67–73. ACM, 2015. doi:10.1145/2676724.2693163.

[18] M. Takahashi. Parallel reductions in λ-calculus. Information and Computation, 118:120–127, April
1995. doi:10.1006/inco.1995.1057.

[19] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[20] P. Wadler, W. Kokke, and J.G. Siek. Programming Language Foundations in Agda. 2024. http://
plfa.inf.ed.ac.uk/20.07/, http://plfa.inf.ed.ac.uk/22.08/, http://plfa.inf.ed.ac.uk/.

6

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1007/3-540-48168-0_32
https://dspace.library.uu.nl/handle/1874/15119
https://doi.org/10.1017/S0956796899003366
https://dspace.library.uu.nl/handle/1874/27575
https://doi.org/10.1016/1385-7258(72)90034-0
http://flaviomoura.info/files/fmm21.pdf
http://www.javakade.nl/research/talk/lmrc060508.pdf
https://www.isa-afp.org/entries/Rewriting_Z.shtml
https://doi.org/10.1007/978-3-540-45085-6_11
https://doi.org/10.1017/S0956796800001106
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
https://doi.org/10.4230/LIPIcs.FSCD.2021.24
http://www.javakade.nl/research/pdf/lambdascope.pdf
http://www.javakade.nl/research/pdf/lambdascope.pdf
https://doi.org/10.1145/2676724.2693163
https://doi.org/10.1006/inco.1995.1057
http://plfa.inf.ed.ac.uk/20.07/
http://plfa.inf.ed.ac.uk/20.07/
http://plfa.inf.ed.ac.uk/22.08/
http://plfa.inf.ed.ac.uk/

Confluence by Z in Agda V. van Oostrom

extensive : ∀ {Γ A} → (M : Γ ⊢ A) → M —↠ M •
extensive (‘) = ■

extensive (λλ M) = abs-cong (extensive M)
extensive ((λλ M) · N) = —→〈 β 〉 rew-rew (extensive M) (extensive N)
extensive (‘ · N) = appR-cong (extensive N)
extensive (L · M · N) = app-cong (extensive (L · M)) (extensive N)

upperbound : ∀ {Γ} → {M N : Γ ⊢ ⋆}
→ M —→ N

→ N —↠ M •
upperbound { } {λλ } (ζ ϕ) = abs-cong (upperbound ϕ)
upperbound { } {(‘) · } { } (ξ2 ϕ) = appR-cong (upperbound ϕ)
upperbound { } {(λλ) · M} {((λλ) · M)} (ξ1 (ζ ϕ)) = —→〈 β 〉 rew-rew (upperbound ϕ) (extensive M)
upperbound { } {(λλ L) · } {.((λλ L) ·)} (ξ2 ϕ) = —→〈 β 〉 rew-rew (extensive L) (upperbound ϕ)
upperbound { } {(λλ L) · M} {.(subst (subst-zero M) L)} β = rew-rew (extensive L) (extensive M)
upperbound { } { · · M} {.(· M)} (ξ1 ϕ) = app-cong (upperbound ϕ) (extensive M)
upperbound { } {K · L · } {.(· ·)} (ξ2 ϕ) = app-cong (extensive (K · L)) (upperbound ϕ)

rhss : ∀{Γ ∆} (M : Γ ⊢ ⋆) {σ τ : Subst Γ ∆} → ((x : Γ ∋ ⋆) → τ x ≡ σ x •)

→ subst τ (M •) —↠ (subst σ M)•
rhss (‘ x) eq rewrite (eq x) = ■

rhss (λλ M) eq = abs-cong (rhss M (exts-bullet eq))
rhss ((‘ x) · M) {σ} eq rewrite (eq x) = —↠-trans
(appR-cong (rhss M eq)) (app-bullet (σ x) (subst σ M)) where
{- auxiliary rhs/monotonicity lemma for application -}

app-bullet : ∀{Γ} (L M : Γ ⊢ ⋆) → L • · M • —↠ (L · M)•
app-bullet (‘) = ■

app-bullet (λλ) = (—→〈 β 〉 ■)
app-bullet (·) = ■

rhss ((λλ L) · M) {τ = τ} eq rewrite (sym (subst-commute {N = L •} {M •} {τ})) =
rew-rew (rhss L (exts-bullet eq)) (rhss M eq)

rhss (K · L · M) eq = app-cong (rhss (K · L) eq) (rhss M eq)

monotonic : ∀{Γ} → {M N : Γ ⊢ ⋆}
→ M —→ N

→ M • —↠ N •
monotonic (ζ ϕ) = abs-cong (monotonic ϕ)
monotonic { } {(‘) · } {(‘) · } (ξ2 ϕ) = appR-cong (monotonic ϕ)
monotonic {Γ} {(λλ M) · N} {.(subst (subst-zero N) M)} β = rhss M bullet-zero where
{- bullet commutes with lifting terms to substitutions -}
bullet-zero : (x : Γ , ⋆ ∋ ⋆) → subst-zero (N •) x ≡ subst-zero N x •
bullet-zero Z = refl
bullet-zero (S x) = refl

monotonic { } {(λλ) · } {(λλ) · } (ξ1 (ζ ϕ)) = rew-rew (monotonic ϕ) (■)
monotonic { } {(λλ M) · } {.((λλ M) ·)} (ξ2 ϕ) = rew-rew (M • ■) (monotonic ϕ)
monotonic { } { · · } {(λλ) · } (ξ1 ϕ) = —↠-trans (appL-cong (monotonic ϕ)) (—→〈 β 〉 ■)
monotonic { } { · · } {(‘) · } (ξ1 ϕ) = appL-cong (monotonic ϕ)
monotonic { } { · · } { · · } (ξ1 ϕ) = appL-cong (monotonic ϕ)
monotonic { } { · · } { · · } (ξ2 ϕ) = appR-cong (monotonic ϕ)

Figure 5: Key properties (extensive,upperbound,rhss,monotonic) for confluence of λ-calculus by Z

7

