URL: http://www.elsevier.nl/locate/entcs/volume2.html 10 pages

Context-sensitive Conditional Expression
Reduction Systems

Zurab Khasidashvili!

School of Information Systems
University of Fast Anglia
Norwich NR4 7TJ, Fngland

zurab@sys.uea.ac.uk

Vincent van Qostrom

Department of Mathematics and Computer Science
Vrige Universiteit
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
oostrom@cs.vu.nl

Abstract

We introduce Context-sensitive Conditional Expression Reduction Systems (CERS)
by extending and generalizing the notion of conditional TRS to the higher order
case.

We justify our framework in two ways. First, we define orthogonality for CERSs
and show that the usual results for orthogonal systems (finiteness of developments,
confluence, permutation equivalence) carry over immediately. This can be used e.g.
to infer confluence from the subject reduction property in several typed A-calculi
possibly enriched with pattern-matching definitions.

Second, we express several proof and transition systems as CERSs. In particu-
lar, we give encodings of Hilbert-style proof systems, Gentzen-style sequent-calculi,
rewrite systems with rule priorities, and the w-calculus into CERSs. This last en-
coding is an (important) example of real context-sensitive rewriting.

1 Introduction

A term rewriting system is a pair consisting of an alphabet and a set of rewrite
rules. The alphabet is used freely to generate the terms and the rewrite rules
can be applied in any surroundings, generating the rewrite relation. In the
first order case (no variable binding) one speaks of TRSs while in the higher

! Supported by the Engineering and Physical Sciences Research Council of Great Britain
under grant GR/H 41300

©1995 Elsevier Science B. V. Open access under CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/3.0/

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

order case (with variable binding) there exist several conceptually similar, but
notationaly often quite different proposals. Long ago, the first general higher
order format was introduced by Klop [10] under the name of Combinatory
Reduction Systems. Since then, several other interesting formalisms have been
introduced [7,17,23,19,21]. This paper is based on the notion of Expression
Reduction System introduced by the first author [7], but our results also apply
to the other higher order formats.

Often it is of interest to have the possibility to put restrictions on the
generation of either the terms or the rewrite relation (or both). For example,
many typed lambda calculi can be viewed as untyped lambda calculus with
restricted term formation. Let’s call them sub-ERSs (cf. [12, Def. 12.9]) On
the other hand, many rewrite strategies are naturally expressed by restricting
application of the rewrite rules. For example, the call-by-value strategy in
A-calculus can be specified by restricting the second argument of the g-rule
to values. In general, restricting arguments gives rise to so-called conditional
ERSs (cf. [5]). The leftmost-outermost strategy can be specified by restricting
the context in which the g-rule may be applied. We will call the latter kind
of rules in which contexts are restricted context-sensitive.? In Section 2 we
introduce CERSs (conditional context-sensitive ERSs) which allow all three
kinds of restriction.

In Section 3 we present a suitable notion of orthogonality and prove the
standard results for orthogonal CERSs (OCERSs) like the Finite Develop-
ments Theorem, confluence etc. by adapting a method for unconditional higher
order rewriting [10,7].

In Section 4 we show how some transition and proof systems can be ex-
pressed in a natural way in CERSs. A very similar idea is present in the work
of Meseguer [14] who encodes many systems in his Conditional Rewriting
Logic [14]. Nevertheless, our encoding of calculi with bound variables seems
to be more natural, since we don’t need to ‘code the bindings away’ into a
first order framework.

2 Conditional Expression Reduction Systems

We present CERSs in the style of ERSs [7]. Terms are formed as usual from
the alphabet as in the first order case, but for symbols having binding power
(like A in A-calculus or [in integrals) which require some binding variables
and terms as arguments (as specified by their arity). Scope indicators are used
to specify which variables have binding power in which arguments. Note that
one cannot substitute for binding variables. The variables for which one can
substitute are called metavariables (like in Klop’s CRSs).

Definition 2.1 Let ¥ be an alphabet comprising variables, denoted by x, vy,
z and symbols (signs). A symbol o can be either a function symbol (simple
operator) having an arity n € N, or an operator sign (quantifier sign) having

2 The distinction between ‘conditional’ and ‘context-sensitive’ is more a historical than a
conceptual one.

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

arity (m,n) € N x N. In the latter case o needs to be supplied with m binding
variables x1,. .., 2, to form the quantifier (compound operator) oxy ... x,,. If
o is an operator sign it also has a scope indicator which is a vector of length
m specifying for each variable in which of the n arquments it has binding
power. Terms t, s, e, o are constructed from variables, function symbols and
quantifiers in the usual first order way respecting (the second component of
the) arities. A predicate AT on terms specifies which terms are admissible.
Metaterms are constructed like terms, but also allowing as basic construc-
tions metavariables A, B, ... and metasubstitutions (1/x1,...,t,/x,)to, where
each t; is an arbitrary metaterm and the x; have binding effect in ty. An assign-
ment (substitution) 6 maps each metavariable to some term. The application
of the substitution 0 to a term t is written 10 and is obtained from t by replac-
ing metavariables with their values under 0, and by replacing metasubstitu-
tions (t1/x1,...,tn/xn)to, in right to left order, with the result of substitution
of terms ty,... t, for free occurrences of x1,...,x, in ty (c¢f. Kahrs’ notion of

substitute [12]).

For example, a f-redex in the A-calculus appears as Ap(Ax t,s), where
Ap is a function symbol of arity 2, and A is an operator sign of arity (1,1)
and scope indicator (1). Integrals such as [! f(x)dz can be represented as
Ja(s,t, f(x)) using an operator sign [of arity (1,3) and scope indicator (3).
The predicate AT can be used to express sorting and typing constraints.

The specification of a CERS consists of a (restricted) alphabet as specified
above and a set of (restricted) rules as specified below.

Definition 2.2 A rewrite rule is a (named) pair of metaterms r : t — s,
such that t and s do not contain free variables. We close the rules under
assignments: 0 110 — s if r : t — s and 0 is a substitution. For reasons of
hygiene this is restricted to assignments 6 such that each free variable occurring
in a term Af assigned to a metavariable A is either bound in the O-instance
of each occurrence of A in the rule or in none of them. The term 10 is then
called a redex and s its contractum. Next, we close under contexts C[rf] :
Ct0] — C[s0], if r0 : 10 — s0 and C|] is a context (a term with one hole).

The rewrite relation thus obtained is the usual (unconditional, context-free)
ERS-rewrite relation. If restrictions are put on assignments, via a predicate
AA on rules and substitutions, the rewrite relation will be called conditional.
If restrictions are put on contexts, via a predicate AC on rules, substitutions
and contexts, the rewrite relation will be called context-sensitive.

A CERS is a pair consisting of an alphabet and a set of rewrite rules, both
possibly restricted.

In the sequel when we speak about terms and redexes, we will always mean
admissible terms and admissible redexes, respectively.

Our syntax is very close to the syntax of the A-calculus and of First Or-
der Logic. For example, the F-rule is written as Ap(AzA, B) — (B/xz)A,
where A and B can be instantiated by any terms. The n-rule is written as
AxAp(A, x) — A, where it is required that @ ¢ A6 for an assignment 0, other-
wise an & occurring in Af and therefore bound in Aax(Afx) would become free.

3

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

A rule like f(A) — Jx(A) is also allowed, but in that case the assignment 6
with @ € Af is not. The recursor rule is written as p(AxA) — (u(AzA)/x)A.
Note that we allow metavariable-rules like 7' : A — Az Ap(Ax) and meta-
variable-introduction-rules like f(A) — ¢(A, B), which are usually excluded a
priori. This is only useful when the system is conditional.

3 Orthogonal CERSs

We define orthogonal CERSs (OCERSs) and sketch our proof of Finite Devel-
opments for them, implying confluence. The FD proof is based on Nederpelt
& Klop’s method [16,10] for reducing strong normalization to weak normaliza-
tion. It is similar in structure to, but simpler than Klop’s original confluence
proof for orthogonal CRSs [10] and we think not more difficult than other
existing confluence proofs [20,17,19,13].

The idea of orthogonality is that contraction of a redex does not destroy
others (in whatever way), but rather leaves a number of their residuals. A
prerequisite for the definition of residual is the notion of descendant allowing
to trace subterms during a reduction. Whereas this is simple in the first
order case, ERSs may exhibit very complex behaviour due to the possibility of
nested metasubstitutions thereby complicating the definition of descendants.
Fortunately each rewrite step can be decomposed into two parts: a TRS-part
replacing the left-hand side by the right-hand side, but without evaluating the
metasubstitutions, and a substitution-part evaluating the metasubstitutions.
This point of view is profitable® since the descendant relation of a rewrite step
can now be obtained by composing the descendant relation of the TRS-step,
which is trivial, and the descendant relations of the evaluation steps, which
are a kind of J-steps (see [7]).

Definition 3.1 To an CERS (X, R) we associate its refined version (X s, Rys),
where Y¢5 is obtained from ¥ by adding fresh symbols S™* and R;s is obtained
from R by the following procedure

(i) Replace each R-rule v :t — s by the rule ry : 1 — s, where sy is s with
each ‘implicit” metasubstitution replaced by its ‘explicit’ pendant S.
(i) Add rules for S™* (cf. polyadic A-calculus [11, p. 115])
Sy x Ay ARA — (A fa, . Ay 2n) A

Obviously, an r-step can be simulated by an ry-step followed by a number of S-
steps. Via the corresponding descendant relations of these steps, this induces
a (unique) descendant relation for r. Two (admissible) redexes with respect to
the same rule are called weakly similar. A descendant of a redex u which is a
redex weakly similar to v is called a u-residual.

We call a CERS orthogonal (OCERS) if:

(i) the left-hand side of a rule is not a single metavariable,

(ii) the left-hand side of a rule does not contain metasubstitutions and its

31t even seems to be prerequisite for syntactical studies of higher order rewriting.

4

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

metavariables contain those of the right-hand side,
(iii) in no term redex-patterns can overlap,

(iv) all the descendants of a redex w in a term t under the contraction of any
other redex v € t are residuals of u.

The second condition ensures that rules exhibit deterministic behaviour
when they can be applied. The last condition can be thought of as imposing
some closure conditions on arguments and contexts of rules. For example,
consider the rules ¢ — b and f(A) — A with admissible assignment A = a.
The descendant f(b) of the redex f(a) after contraction of a is not a redex since
the assignment # A = b is not admissible, hence the system is not orthogonal
(it should not be, since it is not confluent). Note that unconditional non-left-
linear rules (almost) never satisfy (iv).

A development of a set of non-overlapping redexes is a reduction in which
only residuals of redexes in that set are contracted. A development can be
conveniently visualized by underlining the head-symbols of the redexes in the
set, only allowing contraction of underlined redexes. We will denote the cor-
responding underlined rewrite system by R.

Theorem 3.2 All developments in an OCERSs R are finite (FD), that is, R

is strongly normalizing.

Because space is limited we will contend ourselves with presenting the main
ideas of the proof, which follows closely the proof of FD for orthogonal ERSs
as presented in [7]. The full proof can be found in the report version [9].

I can be refined into L2;5 and surely strong normalisation of the latter
implies strong normalisation of the former. To prove strong normalisation of
L;s the ‘memory’ technique by Nederpelt and Klop is useful. The idea is to
transform the system R;g into yet another orthogonal system R/s where no
erasure takes place, by ‘memorizing’ metavariables which might be erased. We
use a simplified version of Nederpelt & Klop’s technique, as developed in [8].
For example

[(A,B) = [(A)

is transformed into

[(A, B) = p(B, f(A))

where the B is ‘memorized’ since it did not have descendants in f(A). This
p-transformation is also applied to the S-rules. ;From the definition we imme-
diately have that every I2;s-reduction can be lifted to an E;S—reduction of the
same length, for which the number of p’s increases in each step. Note that the
presence of the ‘memory’ (y) cannot prevent creation of redexes, since there
is no creation of redexes possible in R;s. Moreover, R is weakly normalizing
as can be seen by considering the rightmost-innermost strategy. To conclude
strong normalization of R}, we can apply the following lemma from [10].

Lemma 3.3 A locally confluent, increasing, weakly normalizing abstract rewrit-
ing system is strongly normalizing (so confluent by Newman’s Lemma).

;From the conditions on admissibility in the definition (these conditions

5

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

are needed for confluence as witnessed by the example above) of orthogonal-
ity and finiteness of developments, one can conclude confluence. Actually,
most of Lévy’s theory of permutation equivalence can be reduced to FD, so is

applicable to OCERSs. This is properly addressed in [9].
Theorem 3.4 Orthogonal CERSs are confluent.

Untyped lambda calculus [4] is the prime example of an (unconditional)
orthogonal higher-order term rewriting system. If one restricts term formation
in it, one arrives at the large class of typed lambda calculi. Since the rewrite
relation in these calculi is not restricted in any way, and typed terms are closed
under $-reduction? these sub-ERSs are orthogonal, hence confluent.

An interesting example of a CERS was recently studied in [2]. Terms are
ordinary A-terms possibly containing let expressions, but the rewrite rules have
conditions on them as follows. Define the syntactic categories by the following
grammar

M:i=a | MM | Ae. M | letx =M in M

Vi=dae M
A=V |leta=Min A
Ex=[]]| EM |leta=Min E | letz = E in E[]

The rules are
Az MYM' —let x = M'in M
let z =V in E[z] —let z = V in E[V]
(let x = M in A)M' —let x = M in AM’
let v = (lety =M in A)in E[z] —lety= M inlet x = A in F[z]

the rewrite relation —; is obtained from this by allowing arbitrary contexts.
By some case analysis, one shows that each of the syntactic categories is closed
under —, and that there are no overlaps between rules, so the system is an
orthogonal conditional ERS. Even stronger, the system is leftnormal in the
sense of [10], hence standard reductions are normalizing.

An emerging class of context-sensitive and conditional ERSs is the class
of A-calculi with restricted expansion rules like 77 (see e.g. [1]). These calculi
are not quite orthogonal, nevertheless their confluence can be shown by tam-
pering with the confluence diagrams arising from FD for the corresponding
unconditional expansion rules.

4 Expressive power of CERSs

In [14], Meseguer gives encodings of labeled transition systems, several func-
tional programming languages, Chomsky grammars, and some concurrent lan-
guages (e.g. Chemical Abstract Machine and CCS), into CTRSs. In this sec-
tion, we give encodings of some other proof and computation systems, to show
that CERSs are even more expressive programming languages. This is not al-
ways very useful to understand the original systems better (e.g, one doesn’t

4 This so-called Subject Reduction property is sometimes non-trivial to prove.

6

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

gain any insight from encoded versions of Hilbert and Gentzen style proof
systems), but it often helps to understand operational behaviour of a system
(e.g., in the case of the w-calculus).

4.1 Conditional TRSs

Conditional term rewriting systems (CTRSs) were introduced by Bergstra &
Klop in [5]. Their conditional rules have the form t; = s; A--- A t, = 5, =
t — s, where the s; and ¢; may contain variables in ¢ and s. According
to such a rule tf can be rewritten to sf if all the equations s, = t,0 are
satisfied. CTRSs were classified depending on how satisfaction is defined (‘=’
can be interpreted as —» , <%, etc.) As they remark this can be generalized
by allowing for arbitrary predicates on the variables as conditions (cf. also
[6,22]).

Clearly, all these CTRSs are context-free CERSs since they only allow con-
ditions on the arguments not on the context of rewrite rules. For this reason
sometimes results for them are a special case of general results which hold for
all CERSs. In particular, stable CTRSs for which the unconditional version
is orthogonal as defined in [5] are orthogonal in our sense, so confluent. Sev-
eral confluence results were obtained in the above papers for non-orthogonal
CTRSs as well, which perhaps can also be generalized to the higher-order case.

4.2 FEncoding of strategies

In the literature ([4]) a strategy for a rewriting system (R, ¥) is amap F: Ter(X) —
Ter(Y), such that ¢t — F(¢) if ¢ is not a normal form, and ¢ = F(t) otherwise.
Such strategies are deterministic and only specify what to do, not how to do it.

We prefer to view a strategy as a set F of triples (r, 8, C[]) specifying that rule
r:t— s € R can be used with assignment # in context C[] to rewrite C[t0]

to C'[sf].® To a strategy F one can associate a CERS Ry encoding exactly
the same information, by taking #,C|[| admissible for r iff (r,0,C[]) € F.
Obviously, this also holds the other way around, that is, every CERS can be
viewed as a strategy for its unconditional version.

4.3 FEncoding of rewrite systems with priorities

A priority rewrite system, or PRS for short is a pair consisting of a TRS R
and a partial order < on the set of rules of R [3]. The partial order is meant
as a judge in case of conflict between rules. An r-redex w can be contracted
iff it is a closed term, and there is no v’ > r such that u can be rewritten to
an r’-redex by means of an internal (i.e. taking place below the headsymbol)
reduction; such redexes ar allowed to be contracted in any context. Because
of the negative condition in the definition of the rewrite relation, PRSs are
not always well-defined, but it is clear that those which are well-defined can

5 Note that an ordinary strategy F' can be directly encoded by associating the set {(r :
t—s,0,C[])|re€R,C[s0] = F(C[t0])} to it.

7

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

be expressed as a conditional ERS. In [3] some criteria sufficient for well-
definedness as well as for ground confluence are found. In particular, it is
shown that essentially reqular® RPSs are ground confluent. Such PRSs are
orthogonal in our sense, so this confluence result is covered by ours.

4.4 Encoding of Hilbert style proof systems

To illustrate the expressive power of CERSs we give an encoding of Hilbert
style proof systems into CERSs, translating deduction into reduction. A
Hilbert style system H has a number of axioms Fj, Fy, ... and two rules:
Modus Ponens, allowing to infer B when A and A = B are theorems, and
the 3-rule, allowing to infer Jx. A[x] if Aft] is a theorem. A proof in the ax-
iomatic theory H is a finite sequence of formulae GGy, Gy, G, . .., G, such that
(; is either an axiom (i.e., coincides with one of the F}) or is obtained from
G1,...,Gi—1 by one of the above two rules. To each H we can associate a
CERS Ry as follows. The alphabet of Ry consists of the alphabet of R
augmented by the function symbols P" of arity n, used to model the current
stock of theoremata. The rules, more precisely the rule-schemata, of Ry are:

o P"(Ay,...,A,) — Pt (A, ... A, F), for each n and axiom F'. In partic-
ular P° — P'(F). Admissible assignments assign arbitrary formulae to the
metavariables A,..., A,, and an axiom to the metavariable F'.

o P"(Ay,...,Ag,..., A = A,...,A,) — P""Y(Ay,... A, A) for each n >
2. The Ay may also appear after Ay, = A in the sequence. Admissible
substitutions are the same as in the previous case.

o P"(Ay,...,(A/2)AL, ..., A,) — P Ay, ... (A)x)Ag, ..., Ay, JaAy) for
each n > 1. An admissible assignment 6§ assigns arbitrary formulae to
Aq,..., A, and a term to A.

Obviously there is a 1-1 correspondence between theoremata of H and terms
which occur as argument of some P" in a Ry-reduction starting from P°.
Encoding a Gentzen style proof system is similar to a Hilbert style system,
the main idea being to translate inference rules into rewrite rules, proofs into
terms and deduction into reduction. We refer to [9] for full treatement.

4.5 FEncoding of the w-calculus

In this paragraph we will encode the version of 7-calculus as described in [15]
as a CERS. Recall that m-calculus agents P, @), ...are defined as follows:
Pu=7zy.P | x(y).P | 0| PP |IP | ()P
Basic interaction is generated from the rule
2(y).-Plzz.Q — [2/y]P|Q

by closing under unguarded contexts and working modulo structural congru-
ence (see [15]).

SThe left-linearity condition in [3] is redundant, since it is implied by essential
nonambiguity.

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

To w-calculus a CERS (X, R,) can be associated as follows. The alphabet
Y, consists of the function symbols 0,!,|, O with respective arities 0,1,2,3,
and the quantifier symbols I and R with arities (1,2) and (1,1). I binds only
in its last argument. The map [] transforms w-terms into terms in T'er(X,).
The only non-obvious cases are input, output and restriction:

[2(y)-P] = Ty(x, [P]); [22.Q] = O(z, z,[Q]); [(2) P] = Rz ([P])

Combining the transformation [| with the closing under unguarded contexts
and the structural congruence leads to rules R, of the form

Cilly(X, P GLlO(X, Z, Q)] — Chl(Z/y) P]| C2[Q], where

(i) P,Q, X, 7 are metavariables, and admissible assignments for X, 7 are
variables.

(ii) The indicated subterms must be unguarded in C;[] and C3[] and not in
the scope of RX (among the symbols above them only the operators |, !
and Rx with « # X can occur).

(iii) Only (all) unguarded contexts are admissible, for any redex.

Obviously, the ‘critical pairs’ for the interaction rule are preserved by the
translation, so R, is not orthogonal. Nevertheless, we expect results like: for
the standard translation of A- into 7w-calculus, R, is orthogonal hence confluent
modulo the structural congruence.

References

[1] Akama Y. On Mints’ reduction for ccc-calculus. In: Proc. of the 1°* International
conference on Typed Lambda Calculus and Applications, TLCA’93, LNCS,
vol. 664, Bezem M., Groote J.F., eds., 1993, p. 1-12.

[2] Ariola Z.M., Felleisen M., Maraist J., Odersky M., Wadler P. A Call-By-Need
Lambda Calculus. In: Proc. ACM Conference on Principles of Programming
Languages, 1995.

[3] Baeten J.C.M., Bergstra J.A., Klop J.W., Weijland W.P. Term Rewriting
Systems with rule priorities. Journal of TCS 67, 1989, p. 283-301.

[4] Barendregt H.P. The Lambda Calculus, its Syntax and Semantics. North-
Holland, 1984.

[5] Bergstra J. A., Klop J. W. Conditional Rewrite Rules: confluence and
termination. JCSS vol. 32, n. 3, 1986, p. 323-362.

[6] Dershowitz N., Okada M., Sivakumar G. Canonical conditional rewrite systems.
In: Proc. of the 9" International Conference on Automated Deduction, LNCS,
vol. 310, p. 538-549.

[7] Khasidashvili Z. The Church-Rosser theorem in Orthogonal Combinatory
Reduction Systems. Report 1825, INRIA Rocquencourt, 1992.

[8] Khasidashvili Z. The longest perpetual reductions in orthogonal expression
reduction systems. In: Proc. of the 3" International Conference on Logical

9

L4aliiiJil/Aadial vV A4 AANLDLS S VALY AV L AUVASAVE

Foundations of Computer Science, LFCS’94, LNCS, vol. 813, Nerode A.,
Matiyasevich Yu. V. eds. St. Petersburg, 1994. p. 191-203.

[9] Khasidashvili Z., van Qostrom V. Context-sensitive Conditional Rewrite
Systems. Report SYS-C95-06. University of East Anglia, 1995.

[10] Klop J.W. Combinatory Reduction Systems. Mathematical Centre Tracts 127.
Centre for Mathematics and Computer Science, Amsterdam, 1980.

[11] Klop J.W. Term Rewriting Systems. Report CS-R9073, Centre for Mathematics
and Computer Science, 1990.

[12] Klop J. W., van Qostrom V., van Raamsdonk F. Combinatory reduction
systems: introduction and survey. In: To Corrado Boéhm, J. of Theoretical
Computer Science 121, 1993, p. 279-308.

[13] Mellies P.-A. An abstract theorem of finite developments. Talk presented at
CONFER-meeting, september 1993, Amsterdam.

[14] Meseguer J. Conditional Rewriting Logic as a unified model of concurrency.
Journal of TCS 96, 1992, p. 73—155.

[15] Milner R. Functions as processes. In: Journal of Mathematical structures in
Computer Science. 2(2): 1992, p. 119-141.

[16] Nederpelt R.P. Strong normalization for a typed lambda-calculus with lambda
structured types. Ph.D. Thesis, Eindhoven, 1973.

[17] Nipkow T. Orthogonal higher-order rewrite systems are confluent. In: Proc. of
the 1% International conference on Typed Lambda Calculus and Applications,
TLCA 93, LNCS, vol. 664, Bezem M., Groote J.F., eds., 1993, p. 306-317.

[18] Van Oostrom V. Confluence for Abstract and Higher-Order Rewriting. Ph. D.
Thesis, Free University of Amsterdam, 1994.

[19] Van Oostrom V., van Raamsdonk F. Weak orthogonality implies confluence:
the higher-order case. In: Proc. of the 37? International Symposium on Logical
Foundations of Computer Science, LFCS’94, LNCS, vol. 813, Nerode A.,
Matiyasevich Yu. V., eds. St. Petersburg, 1994, p. 379-392.

[20] Van Raamsdonk F. Confluence and superdevelopments. In: Proc. of the 5%
International Conference on Rewriting Techniques and Applications, RTA’93,
LNCS, vol. 690, C. Kirchner, ed. Montreal, 1993, p. 168-182.

[21] Takahashi M. A-Calculi with Conditional Rules. In: Proc. of the 1°* International
conference on Typed Lambda Calculus and Applications, TLCA’93, LNCS,
vol. 664, Bezem M., Groote J.F., eds., 1993, p. 406-417.

[22] Toyama Y. Confluent term rewriting systems with membership conditions.
In: Proc. of the 1°* International Workshop on Conditional Term Rewriting
Systems, LNCS, vol. 308, 1988, p. 128-141.

[23] Wolfram D. The clausal theory of types. Cambridge Tracts in Theoretical
Computer Science, vol. 21, Cambridge University Press, 1993.

10

