
Confluence and orthogonality by residuation
illustrated by the problem of the calissons

Abstract—We revisit the classical notions of confluence and
orthogonality from the perspective of rewrite systems equipped
with a residuation, modelled as 1-algebras. The perspective allows
to smoothly connect confluence and orthogonality to various
fields, e.g. to (least) upper bounds in order theory, (least) common
multiples in algebra, and (relative) pushouts in category theory.
Taking inspiration from the connexions, we prove 3 confluence
results: completeness of random descent for completeness, 3-
confluence by 3-local confluence, and orthogonality by undercut-
ting. We illustrate the results by examples from various fields,
and show each provides a solution to the problem of the calissons.

Index Terms—rewriting, confluence, orthogonality, residuation,
upper bound, common multiple, pushout, random descent, proof
order, undercutting, calisson.

I. INTRODUCTION

The raison d’être of term rewriting [1]–[4] is the cor-
respondence between validity E |= t = s in all models
(algebras satisfying E), provable equality E ⊢ t = s in
equational logic, and convertibility t

∗↔E s for E as a term
rewrite system, given an equational theory E and equation
t = s, correspondences known as Birkhoff’s theorem and
logicality [2], [4]. They extend to sub-equational logics. For
example, dropping symmetry: valid E |= t ≥ s iff provably
reachable E ⊢ t ≥ s iff reducible t↠E s [5], [6].

To decide whether terms t, s belong to the same E-
equivalence class, a basic way to proceed is to define unique
representatives for E-equivalence classes, and a normalisation
function .̂ mapping terms to the unique representative of their
class, after which one checks whether t̂ = ŝ. Completion [2],
[7] automates both the choice of representatives and computing
them, by constructing a term rewrite system T (having the
same provable equality as E) that is complete, i.e. terminating
and confluent. By the above, this allows to reduce the decision
problem to deciding whether t, s are convertible t ∗↔T s, and
answering it to checking whether t, s have a valley, a common
reduct is found by T -normalising t, s to their normal forms.

The backdrop for the confluence results in this paper
(mentioned in the abstract) is that one can view a val-
ley ς :t↠T ·↞T s showing that t, s have a common reduct, as
obtained from the conversion ϱ :t ∗↔T s by means of a rewrite
process itself ϱ ⇒⇒ ς referred to as 2-rewriting. Since this is
a rewrite process on conversions and reductions, it requires
conversions and reductions to be first-class citizens.

Though one finds various accounts of 2-rewriting in the
literature, cf. e.g. [8]–[13], our perspective on it developed in
Sec. II is novel in that we base it on 1-algebras, algebras that
have rewrite systems as carrier. 1-residual 1-algebras will be
our motivating example, as residuation is seen to be at the
basis of the process of 2-rewriting a conversion into a valley.
This process, known as tiling with diagrams [9], is a staple of
rewrite theory since [8], [14], and its formalisation forms the
backdrop for our results. We develop it for rewrite systems
where objects are not assumed to have (term, . . . ) structure.

To make our notions and results evident in a background-
free way, we showcase them on the problem of the calis-
sons [15]. The problem is easy to visualise and so will be our
solutions.1 We focus solely on the rewriting perspective on the
problem and refer the interested reader to the rich literature
on (non-rewriting) descriptions, solutions, and discussions.

Example 1. The problem of the calissons is to show that
if a box B, a regular hexagonal, can be filled with calis-
sons (named after certain diamond-shaped sweets) then in
a resulting filled box the numbers of calissons in each of
the 3 orientations are the same. A first observation is that it

3 oriented calissons filled B-box B2hexagonal box B filled B-box B1

Fig. 1. The Problem of the Calissons

suffices to show that all filled B-boxes have the same spectrum
(r, g, b), for r, g and b the numbers of red, green and blue2

calissons, since then we conclude by rotational symmetry that
r = g = b. Indeed, for the filled B-boxes B1 and B2 in
Figure 1 we have ri = gi = bi = 4 for i ∈ {1, 2}.

II. REWRITE SYSTEMS, 1-ALGEBRAS, RESIDUATION

We present a novel perspective on rewrite systems and their
properties of interest, and present our running examples: λβ-
calculus, (positive) braids, and calissons. The presentation will

1https://callissons-hexagon-solver.netlify.app visualises one of them.
2We assign colours to the orientations for convenient referencing.

https://callissons-hexagon-solver.netlify.app


be at the basis of our results in Sec. III and IV. We assume
familiarity with rewriting [1]–[4], [16] and the λ-calculus [4],
[17], and some knowledge of braids [12]. We base ourselves
on the classical notion of a rewrite system from [8], [4, Ch. 8]:

Definition 1. A rewrite system is a quadruple ⟨O,S, src, tgt⟩
with O and S collections of objects and steps and
source,target maps src, tgt from steps to objects. We write
ϕ : a → b or a →ϕ b to denote ϕ is a step from a to b.
An object from which there is no →-step is in normal form.

We use arrow-like notations like→,−▷,−▶ to denote rewrite
systems, which come equipped with the usual notion of
morphism, and we write → ⊆ −▷ to denote that → is a
sub-system of −▷ [4, Def. 8.2.5]. By their structure being
basic, rewrite systems go under various names, e.g. quivers,
multidigraphs and pre-categories. Rewrite systems have steps
as first-class citizens [8], [11], [18], [4, Chs. 8,9], and are to be
contrasted with rewrite relations as in [2], [17], [4, Chs. 1–7],
binary endorelations on a set. A rewrite relation is obtained
from a rewrite system → by forgetting about the identity of
steps; a is related to b if there exists a step from a to b in →.
The following two standard rewrite systems serve as running
examples. We focus on their steps, absent when presented as
rewrite relations.

We recapitulate the presentation of the λβ-calculus [17]
as a higher-order pattern rewrite system (PRS) from [4,
Ex. 11.2.22(ii)], see [19] for more on PRSs. To render steps
of a PRS as first-class citizens, they are defined as terms over
the signature extended with rule-symbols [4, Ch. 8], [20].

Example 2. The untyped λ-calculus is a PRS having a higher-
order signature Λ of function symbols {abs : (term→ term)→
term, app : term→ (term→ term)} and a signature B of rule-
symbol(s) {β : (term→ term)→(term→ term)}. The left-hand
side (lhs) and right-hand side (rhs) of the rule-symbol β are:

β :MN.app(abs(x.M(x)), N) → MN.M(N)

for M : term→ term, N : term and lhs(β), rhs(β) : (term→
term)→ (term→ term), the type of β. The multistep rewrite
system ◦−→β has (simply-typed) terms over Λ as objects and
terms over (Λ ∪ B) as steps. The source and targets maps
from steps to objects are induced by the (type-preserving)
functions mapping the rule-symbol β to its left-hand side
(lhs(β)) respectively right-hand side (rhs(β)). The (single)
step rewrite system →β is the sub-system of ◦−→β obtained
by restricting multisteps to having exactly 1 occurrence of β.

For example, β(x.x, app(I, y)) and app(I, β(x.x, y)), where
I := abs(x.x), both are (Λ ∪ B)-terms and in fact steps,
as β occurs once in them. By syntactic accident both wit-
ness app(I, app(I, y)) →β app(I, y). The (Λ ∪ B)-term
β(x.x, β(x.x, y)) is a multistep by the rule-symbol β occur-
ring twice in it. It witnesses app(I, app(I, y)) ◦−→β y.

One might expect that making steps explicit would render
the presentation more involved. But in fact, the presentation of
the λ-calculus in Ex. 2 is more succint than usual [17] owing
to modelling it as a PRS and using multisteps [4], [20]: both

λ-terms and β-steps are terms over (simply-typed) signatures,
affording economy. Rule-symbols allow to reuse terms for
defining (multi)steps and to naturally distinguish between the 2
steps in Ex. 2, without having to resort to external means [17,
Ex. 11.2.10] like inference rules [17, Def. 3.1.5], needed there
because there→β is a rewrite relation. Similarly, the multistep
in Ex. 2 corresponds to complete development I (I y) ↠β y,
requiring external means to be presented in [17].

We recapitulate the presentation of (positive) braids [12],
[21]–[23] as a rewrite system [24]–[26], [4, Sec. 8.9].

Example 3. The multistep rewrite system ◦−→B on ℓ strands
• has as objects braids, words over the Artin generators σi

for 1 ≤ i < ℓ, modulo ≡ generated by:

σiσjσi ≡ σjσiσj if |i− j| = 1

σiσj ≡ σjσi if |i− j| > 1

• multisteps (w, v):w ◦−→B wv for any braid w and prefix-
modulo-≡ v of the fundamental word ∆ℓ (so v is a simple
braid), where ∆1 := ε and ∆n+1 := ∆nσn . . . σ1. The
(single) step rewrite system→B is the sub-system of ◦−→B
obtained by restricting multisteps to having 1 generator.

For example, for ℓ ≥ 3 the steps σ1σ2 → σ1σ2σ1 and σ2σ1 →
σ2σ1σ2 have the same target, σ1σ2σ1 ≡ σ2σ1σ2, so constitute
a valley, and ε ◦−→ σ1σ2 is a multistep, but ε ◦−→ σ1σ1 isn’t.

Properties of rewrite systems are expressed in terms of their
objects a, b, c, . . . and steps. Useful properties of steps ϕ, ψ
are that they are co-initial if src(ϕ) = src(ψ), composable if
tgt(ϕ) = src(ψ), co-final if tgt(ϕ) = tgt(ψ), and parallel to
each other if both co-initial and co-final. For rewrite systems
the operations (producing steps) that will be of interest here,
with constraints on sources and targets as specified in Fig. 2,
are the following four:

1) residuation ϕ / ψ on co-initial ϕ, ψ;
2) loop 1a (we usually omit the subscript for legibility);
3) composition ϕ · ψ on composable ϕ, ψ;
4) reverse ϕ−1.

ϕ−1

ψ

ϕ / ψψ / ϕ

ϕ

ϕ ψ

ϕ · ψ1a

a

ϕ

Fig. 2. Operations: 1 residuation, 2 loop, 3 composition, 4 reverse

The other 3 operations being standard, we comment on and
exemplify residuation ϕ/ψ (pronounced ϕ after ψ; cf. Ex. 24).
Early uses of residuation in rewriting are in [8], [14], later
ones in [4], [11]–[13], [18], [27]–[31]. Residuation is natural;
it relates to composition as monus relates to addition on natural
numbers; cf. Ex. 24. It is of central interest here as it witnesses
confluence. More precisely, it is obtained by Skolemising the
diamond property [2], [4], [8] expressing that for all co-initial
ϕ, ψ, there exist ψ′, ϕ′ such that ϕ

ψ′⋄ψϕ′ , where we use ϕ
ψ′⋄ψϕ′ to

denote ϕ, ψ, ψ′, ϕ′ constitute a diamond: src(ϕ) = src(ψ) &



tgt(ϕ) = src(ψ′) & tgt(ψ) = src(ϕ′) & tgt(ψ′) = tgt(ϕ′).
Though Skolemising gives a priori rise to two operations \, /
on steps, corresponding to witnessing existence of the pair
ψ′, ϕ′ via the pair of steps ϕ\ψ, ϕ/ψ, one operation suffices:

Lemma 1. We may assume the two Skolem-functions \, / for
∀ϕψ.∃ψ′ ϕ′. ϕψ′⋄ψϕ′ to be involutive: ψ \ ϕ = ϕ / ψ.

Proof. Let ϕ / ψ := ϕ / ψ if ϕ ⪯ ψ and ψ \ ϕ otherwise, for
some total order ⪯ on steps (existence of ⪯ may be assumed
using the axiom of choice). Then ϕ

ψ/ϕ⋄
ψ
ϕ/ψ for all ϕ, ψ, with

/ involutive per construction.

This validates using the single residuation / in Fig. 2, and
entails residuation is not only natural but unavoidable for
confluence: a rewrite system has a residuation iff its rewrite
relation has the diamond property in the sense of [2], [4], [8].
On top of that, residuation affords economy of proving:

Example 4. The (step) rewrite systems of Exs. 2 and 3 do not
have the diamond property; consider co-initial β-steps from
app(ω, app(I, y)) where ω := abs(x.app(x, x)), respectively
the co-initial braid steps ε → σ1 and ε → σ2. The multistep
rewrite system ◦−→β in Ex. 2 does have the diamond property:
residuation / may be defined recursively, with interesting (non-
congruence) cases, for multisteps ϱ, ς, ζ, ξ, ϑ,ϖ:

ϑ ϖ ϑ / ϖ
app(abs(x.ϱ), ς) β(x.ζ, ξ) (x.ϱ / ζ) (ς / ξ)

β(x.ϱ, ς) β(x.ζ, ξ) (x.ϱ / ζ) (ς / ξ)
β(x.ϱ, ς) app(abs(x.ζ), ξ) β(x.ϱ / ζ, ς / ξ)

The constraints on sources, targets required of residuation
(Fig. 2) are verified by induction on multisteps.3 Also the
braid multistep rewrite system ◦−→B has the diamond property,
shown by induction on ℓ, cf. [24, Thm. 20].

Remark 1. The recursive definition of residuation / on β-
multisteps is an internal version (for multisteps) of the external
(for what are often called parallel steps in the λ-calculus
literature) one [17, Lem. 3.2.6] due to Tait & Martin–Löf.
It exploits lifting the formalisation of objects as terms over
a simply-typed signature as in higher-order abstract syntax
(HOAS [32]), to steps; substitutions are represented internally
(as simply-typed β-redexes (x.ϱ) (ς)) rather than externally
(as ϱ[x:=ς] [17]).

assoc(ϕ, ψ, χ) : (ϕ · ψ) · χ = ϕ · (ψ · χ)
l-unit(ϕ) : 1 · ϕ = ϕ
r-unit(ϕ) : ϕ · 1 = ϕ
invol-id : 1−1 = 1
anti-auto(ϕ, ψ) : (ϕ · ψ)−1 = ψ−1 · ϕ−1

invol(ϕ) : (ϕ−1)−1 = ϕ

Fig. 3. 1-laws of 1-involutive 1-monoids (dagger categories)

3 The most efficient way to proceed is to recursively define an auxiliary
commutative operation ⊔ such that tgt(ϱ ⊔ ς) = tgt(ϱ / ς).

Thus far, the operations in Fig. 2 do not have any properties
other than the constraints imposed on sources and targets.
To express and axiomatise properties of them, we employ 1-
algebras,4 algebras having rewrite systems as carriers. We let
1-X denote the 1-algebra pendant of an algebraic notion X .
An algebra induces a 1-algebra on a singleton carrier with
the objects of the former as steps. The main 1-algebras of
interest are the 1-residual 1-algebras in Sec. IV. Here we
already identify the 1-algebras that are part of the backdrop,
needed for rewriting itself, whose operations are required to
satisfy the 1-laws in Fig. 3 (in as far as applicable).

Example 5. (i) a 1-involutoid5 is a 1-algebra ⟨→, −1⟩;
(ii) a 1-monoid (category) is a 1-algebra ⟨→, 1, ·⟩;

(iii) a 1-involutive 1-monoid is a 1-algebra ⟨→, 1, ·, −1⟩.

These three 1-algebras are relevant to rewriting since stan-
dard rewrite systems ↔, ↠, ∗↔ arise from them as free
constructions on→. Formally, assume→ := ⟨O,S, src, tgt⟩ to
be a rewrite system, and use lowercase letters ϕ, ψ, χ, υ, . . .
from the end of the Greek alphabet to range over its steps.
From the steps of → we can naturally, inductively build
terms together with source and target maps on them using
the operations 1, −1 and · in Fig. 2 as (1-function) symbols
(of arities 0, 1 and 2). Following [4, Ch. 8], [20], [31], we
refer to such terms as proofterms, as they are terms that, due
to them having source and target maps, can be conceived also
as proofs in (sub-)equational logic(s) induced by the steps.
We use other lowercase Greek letters ϱ, ς, ζ, ξ, . . . to range
over proofterms. Proofterms being terms, they are amenable
to being rewritten by the rules of a term rewrite system (TRS).
Orienting the 1-laws in Fig. 3 from left to right as in Fig. 4

assoc(ϱ, ς, ζ) : (ϱ · ς) · ζ ⇒ ϱ · (ς · ζ)
l-unit(ϱ) : 1 · ϱ ⇒ ϱ
r-unit(ϱ) : ϱ · 1 ⇒ ϱ
invol-id : 1−1 ⇒ 1
anti-auto(ϱ, ς) : (ϱ · ς)−1 ⇒ ς−1 · ϱ−1

invol(ϱ) : (ϱ−1)−1 ⇒ ϱ

Fig. 4. Proofterm rewrite system, obtained by orienting 1-laws of Fig. 3

renders them not just term rewrite rules, but proofterm rewrite
rules; they respect sources and targets, applying them rewrites
proofterms into proofterms. In fact, for each item in Ex. 5 the
sub-system of applicable rules is complete, terminating and
confluent, easily proven6 by term rewrite tools [34, App. A].

Example 6. Taking proofterms in ⇒-normal form as steps,
with each operation defined by applying the corresponding
symbol followed by⇒-normalisation, gives rise to the follow-
ing free 1-algebras corresponding to those of Ex. 5:

(i) the rewrite carrier ↔ of the free 1-involutoid ⟨↔, −1⟩
has steps in ←∪→, where ← comprises backward steps

4After that steps are 1-cells [8]; 1-algebras are typed structures in [33].
5For want of a better name.
6See https://termination-portal.org/wiki/Termination_Competition, http://

cl-informatik.uibk.ac.at/software/cocoweb/ for termination, confluence tools.

https://termination-portal.org/wiki/Termination_Competition
http://cl-informatik.uibk.ac.at/software/cocoweb/
http://cl-informatik.uibk.ac.at/software/cocoweb/


of shape ϕ−1 for ϕ a forward step in →. The rewrite
relations of ← and ↔ are the converse and symmetric
closure of that of →;

(ii) the rewrite carrier ↠ of the free 1-monoid ⟨↠, 1, ·⟩ (the
path category [35]) has as elements right-branching trees
of compositions of →-steps, (finite) reductions [14], [4,
Def. 8.2.10]. The rewrite relation of ↠ is the reflexive–
transitive closure of that of →;

(iii) the rewrite carrier ∗↔ of the free 1-involutive 1-monoid
⟨ ∗↔, 1, ·, −1⟩ can be seen as having finite sequences of
forward and backward →-steps, conversions [14] also
known as zigzags. The rewrite relation of ∗↔, convertibil-
ity, is the equivalence closure of →’s rewrite relation.

Reductions / expansions arise as special conversions namely
those only comprising forward / backward steps. A conversion
is a peak if of shape ↞·↠ and a valley if of shape ↠·↞ [14].7

We recapitulate potentially infinite reductions.

Definition 2. Co-inductively define a reduction from a to be
either the empty reduction εa from a or a pair (ϕ, ϱ) of a step
ϕ : a → b and a reduction ϱ from b. If a reduction is finite,
then it is to some object, namely the target of its last step (or
in case of the empty reduction from a just a).

As such reductions from a to b are in 1–1 correspondence
with the finite reductions having a as source and b as target
above, we conflate both. An object a is terminating (SN) if
there are only finite reductions from a, and normalising (WN)
if there is a reduction from it to normal form. Both notions
extend objectwise to rewrite systems.

Remark 2. Modelling conversions via the free 1-involutive 1-
monoid is just right. Though they could also be modelled via
the 1-algebra ⟨↞↠, 1, ·⟩ of↔-reductions or via the free 1-group
(groupoid) ⟨ ∗↔, 1, ·, −1⟩ obtained by normalising witnesses
under the⇒-rules of both Figs. 4 and 5, the former would be

l-inv(ϱ) : ϱ−1 · ϱ ⇒ 1
r-inv(ϱ) : ϱ · ϱ−1 ⇒ 1
l-inv-x(ϱ, ς) : ϱ−1 · (ϱ · ς) ⇒ ς
r-inv-x(ϱ, ς) : ϱ · (ϱ−1 · ς) ⇒ ς

Fig. 5. Proofterm rewrite system extending Fig. 4 for 1-groups

too weak by missing out on that conversions can be reversed,
whereas the latter would be too strong by identifying too much
(a step preceded by its reverse is a peak, not nothing). For that
reason, though 1-groups are of obvious interest [12], [36], we
leave them for later, only remarking on them.

Each of the complete (sub-)TRSs for normalising proofterms
above was obtained simply by orienting the 1-laws in Fig. 3. As
for the group laws [7], this fails for 1-groups: The (derivable)
rules l-inv-x and r-inv-x need to be adjoined [37], [38] to turn

7Reductions, expansions, peaks and valleys are referred to as positive,
negative, negative–positive respectively positive–negative paths in [12]. Peaks
are also called spans or branchings, and valleys co-spans or rewrite proofs.

⇒ into a complete proofterm rewrite system, by a process that
one could call Knuth–Bendix 1-completion.

III. CONFLUENCE

The field of rewriting provides methods to establish proper-
ties of interest for the reductions and conversions of a rewrite
system→ via properties of its steps [1]–[4], [16]. Our property
of interest will be confluence, the diamond property of (finite)
reductions ↠. It plays a pivotal rôle in various areas, e.g.:

Consistency of the equational theory of the λ-calculus, that
not all equations are derivable or (Sec. I) that there are some
λ-terms that are not ∗↔β-related, follows from that there are
distinct →β-normal forms and confluence of →β as shown
in [14] (cf. Ex. 4), or rather the equivalent [8] Church–Rosser
property (CR) was shown: M ∗↔ N implies M ↠ ·↞ N .

A decision procedure for an equational theory is then
obtained when existence of rewrite proofs [10, p. 243], of
valleys t ↠ ·↞ s, is decidable. For instance, if → is
moreover normalising or terminating, then one may proceed
by normalising t, s to t̂, ŝ and checking t↠ t̂

?
= ŝ↞ s [7].

Functional programming languages such as Haskell and
Agda typically enforce / depend on confluence to guarantee
programs are (partial) functions, results are unique [39], [40].

We are interested in diagrammatic confluence techniques,
establishing confluence as a consequence of having some
diagrams at one’s disposal and tiling with them. (The dia-
grammatic perspective originates with [8, Section 6]).

Definition 3. A 2-rewrite system (cf. 2-polygraph [13], [41],
[42]) is a rewrite system having the→-conversions as objects
and a collection D of diagrams D,E, F, . . . equipped with
maps lhs, rhs to →-conversions such that lhs(D) and rhs(D)
are parallel to each other. The steps of the 2-rewrite system
are 2-multisteps, conversions over (S ∪ D) with their source
/ target map the (1-involutive 1-monoid) morphism induced
by lhs / rhs on D, where D−1 has lhs(D)−1 as source and
rhs(D)−1 as target. A 2-multistep is a 2-step if exactly 1
diagram of D occurs in it, and is positive if no D−1 occurs.

We use double-shafted arrows to denote 2-rewrite systems,
uppercase letters Φ,Ψ, X, . . . from the end of the alphabet
for 2-steps, and other such P,Σ, Z, . . . for 2-conversions. Di-
agrams can be viewed as 2-rules on conversions that are closed
under contexts (of conversions; whiskering) to yield 2-steps.
Such transformations pervade the rewriting literature, with
standardisation (transforming reductions into more standard
ones) and tiling (transforming conversions into valleys) being
prominent [8], [9], [11], [14], [17], [43], [44] and tiling has
recently found applications elsewhere, e.g. in Garside theory
under the name of reversing [23, Ch. 1], [12]. A diamond ϱ

ζ⋄
ς
ξ

where ϱ, ς, ζ, ξ are reductions gives rise to two diagrams: a
vertical tiling diagram ϱ−1 · ς ⇓ ζ · ξ−1, cf. [45, Def. 2.4.13]
and a horizontal filling diagram ϱ · ς ⇒ ζ · ξ, see Fig. 17 (left)
for a local diagram / diamond, where ϱ, ς are single →-steps.

Example 7. We model filling a box with calissons by means
of a 2-rewrite system ⇒ on →-reductions, where both →-
steps and ⇒-steps may come in three colours, as depicted in



Fig. 6. The →-steps constitute a grid and the three types of
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Fig. 6. Modelling the problem of the calissons by 2-rewriting

calissons gives rise to the three 2-rules →→ ⇒ →→ and
→→ ⇒ →→ and →→ ⇒ →→. A filling is a reduction
→→→→→→⇒⇒→→→→→→. For instance, the filling F1

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ yields the filled box B1 in Fig. 1.
This modelling is adequate in the sense that any filling of

a box gives rise to a filled box, and conversely, any filled box
can be obtained by filling, shown by that any partial filling of it
can be further extended using convexity of boxes. For instance,
F ′
1 ⇒⇒⇒⇒⇒⇒⇒⇒ depicted in Figure 6 is a partial filling

of B1 after which progress toward B1 is made by the ⇒-step.
That the problem can be analysed via ⇒ (Ex. 11) follows

from observing that the spectrum of a filled box B is the same
as that of its filling, where the spectrum of a filling F is the
triple comprising the numbers of ⇒,⇒,⇒-steps in F .

Switching to tiling, for 2-rules ←→ ⇓ →← and ←→ ⇓
→← and ←→ ⇓ →← (and trivial ones ←→ ⇓ ε and ←→ ⇓
ε and ←→ ⇓ ε), we have ←←←←←←→→→→→→ ⇓⇓ ε,
again with the same spectrum (Ex. 26).

Traditional diagrammatic confluence proofs relate to conflu-
ence proofs by tiling, as normalisation relates to termination;
the former show to have some tiling strategy yielding valleys
whereas the latter show that every tiling yields valleys. The
former lift to the latter (Ex. 8); in a way, they must (Thm. 1).

Call a set D of local diagrams full [4] / deterministic if for
every local peak ϕ−1·ψ there is at least / most 1 diagram D∈D
having it as lhs (lhs(D) = ϕ−1 ·ψ), and involutive if some −1

on diagrams turns lhs, rhs into involutoid morphisms, i.e. if 2-
rewriting of conversions is preserved under converse. Lem. 1
expresses that any deterministic local collection of diamonds
can be turned into an involutive one, such that ϕ−1 ·ψ ⇓ ϱ iff
ψ−1 · ϕ ⇓ ϱ−1, hence ϱ ⇓⇓ ς iff ϱ−1 ⇓⇓ ς−1.

Definition 4 ( [34, Def. 10]). A proof order is a morphism
from ⟨ ∗↔, 1, ·, −1⟩ to a well-founded 1-involutive 1-monoid.

Example 8. (i) The statement that → is confluent if it has
the diamond property [8], lifts to the statement that ⇓
terminates for full sets of (→-)diamonds. It holds by the
area-involutive monoid [34, Ex. 3(v),Fig. 5] (see Fig. 8),
since measuring the area still-to-be-tiled is a proof order;

(ii) Newman’s Lemma, that → is confluent (CR), if terminat-
ing (SN) and locally confluent (WCR) lifts to that tiling
⇓ terminates for full sets of (↠-)diamonds. It holds by
the multiset-involutive monoid [34, Ex. 3(ii)] over objects

(measuring a→ b by [a]), which is a proof order for the
multiset extension [46] of ↞, well-founded as → is SN.
This extends to the Generalised Newman Lemma [47].

(iii) The decreasing diagrams theorem [48, Thm. 3] stating
that→ is confluent if all its local peaks can be completed
into a decreasing diagram [48, Fig. 3], lifts to the state-
ment ⇓ terminates for full sets of decreasing diagrams.
It holds via the order •≪ of [34, Def. 19], induced by
a well-founded order ⪯ on (the labels of) steps. It was
shown to be a (strictly monotonic) proof order in [34,
Sec. 4.3], to which we refer the reader for details.

Theorem 1. For any countable confluent rewrite system,
there exists a full, deterministic, involutive collection of local
diamonds such that ⇓ terminates.

Proof. Let→ be a countable confluent rewrite system. By [49,
Lem. 1] it has a spanning forest −▷, a sub-system of→ that is
spanning (→-convertibility coincides with −▷-convertibility)
and a forest (deterministic and acyclic) [49]. Therefore, for
any local →-peak ϕ−1 · ψ there exists a −▷▷-valley ϱ · ς−1,
uniquely determined by {tgt(ϕ), tgt(ψ)} if we choose the −▷-
reductions ϱ, ς to end in their least common reduct in the −▷-
tree. Having D comprise all such ϕ

ϱ⋄ψς , it is full, deterministic
and involutive per construction. Tiling ⇓ terminates by the
multiset involutive monoid (Ex. 8(ii)) over bits, measuring −▷-
steps by 0 and other →-steps by 1.

In Sec. III-A we show tiling with diamonds whose legs have
the same measure allows for quantitative confluence results.
This is used in Sec. III-B to say more on filling and tiling.

A. Random descent

Random descent (RD) [8], [50], [51] is a quantative con-
fluence property. It expresses that if an object a has some
reduction ϱ to normal form b, then all reductions from a
are finite, (the maximal such) end in b and have the same
measure as ϱ. Its power derives from its local characterisation
(RD ⇐⇒ OWCR) as a property (OWCR) of peaks of steps.
We present examples and show (Cor. 1) it complete for com-
pleteness: SN & CR ⇐⇒ WN & OWCR for some measure.

We briefly recall the setting and result from [51] relevant
here, unfolding definitions so as to avoid its heavy notation.
A reduction monoid8 is a monoid ⟨M,⊥,+⟩ equipped with
some well-founded order ≤, such that ⊥ is least and + is (≤-
)monotonic in both arguments, strictly in its first argument. A
measure is a morphism from ⟨↠, 1, ·⟩ to a reduction monoid,
mapping steps to non-⊥-elements. Measures are indicated by
subscripts. Assume to have a measure for →.

Example 9. Any initial segment of the ordinals with 0, ∔, ≤
with ∔ the flipped ordinal sum (α∔ β := β+α) constitutes a
reduction monoid; the length measure maps steps to 1.

Theorem 2 ( [51, Lem. 24]). OWCR ⇐⇒ PR ⇐⇒ RD.
Here, ordered local confluence (OWCR) holds if for any peak
b m← a→n c, there is an infinite reduction from b or a valley

8Called derivation monoid in [51].
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Fig. 7. Measures for the example in the proof of Thm. 3

b↠n′ d↞m′ c with n+m′ ≤ m+ n′. Peak random descent
(PR) holds if for any reduction to normal form a ↠m â and
reduction from a, the latter is finite of shape a↠n c and there
is a reduction c↠k â such that m = n+ k.

OWCR puts no constraints on objects not convertible to
normal form, e.g. b← b← a→ c→ c is OWCR (so OWCR
≠⇒ WCR), but objects that are convertible to normal form
are complete. This is in fact a characterisation.

Theorem 3. → is PR for some measure iff → is uniformly
complete, i.e. if all objects convertible to normal form are
complete (SN & CR).

Proof. The idea, as illustrated for the example below in Fig. 7,
is that in a directed acyclic graph (the SN & CR accessible sub-
graph) ordinal-weights can be assigned to edges such that all
paths from one node to another in it have the same measure,
by topological sorting bottom–up, starting from the normal
forms. E.g. consider the rewrite system having steps a → bi
and bi+1 → bi for i∈N. To deal with the system being non-FB
a must get measure the supremum of {i + 1 | i ∈ N}, i.e. ω,
which thus is the measure of each step from it too. (Reductions
a↠ b0 all have measure ω as ω ∔ n = ω; Ex. 9.)

We dubbed the property uniform completeness by analogy
with the extant notion of uniform termination, expressing that
all objects convertible to normal form are terminating, cf. [52].

Corollary 1. A rewrite system→ is complete (SN & CR) iff it
is normalising (WN) and ordered locally confluent (OWCR).

Remark 3. For systems that are confluent such as pure type
systems (PTSs) this gives a new perspective on proving them
SN. E.g. the Barendregt–Geuvers–Klop conjecture stating [53,
Conj. 14.7.1] WN entails SN for PTSs is equivalent to that
PTSs are OWCR, and to that PTSs are uniformly complete.

As first example we present [50, Ex. 7], as it is illustrative
and basic yet interesting. It shows bubblesort and insertion sort
to take exactly the same number of steps to sort a given list,
where → swaps (adjacent) out-of-order elements. (So, e.g.,
termination of insertion sort follows from that of bubblesort).

Example 10. By Thm. 2 it suffices to show swapping to
have OWCR, which follows by a critical peak analysis having
[c, b, a] as only interesting case, resolved by that the two legs
[c, b, a] → [b, c, a] → [b, a, c] → [a, b, c] and [c, b, a] →
[c, a, b] → [a, c, b] → [a, b, c] of its local confluence diamond
have the same length, 3.

We solve the problem of the calissons in Exs. 1,7 by
showing all spectra of fillings of a given box to be the same.

Example 11. Consider triples of natural numbers, equipped
with pointwise zero, addition, and comparison. This gives
a reduction measure when mapping ⇒,⇒,⇒-steps to re-
spectively (1, 0, 0), (0, 1, 0), (0, 0, 1). Given a grid, filling
has OWCR as shown by a critical peak analysis having
→→→ ⇐ →→→ ⇒ →→→ as only interesting case,
resolved by →→→ ⇒ →→→ ⇒ →→→ ⇐ →→→ ⇐
→→→. By Thm. 2 we conclude that ⇒ has random descent,
since both legs of the diamond have (1, 1, 1) as measure /
spectrum, entailing that all fillings of a given box have the
same spectrum, solving the problem of the calissons (Exs. 1,7).
Filling terminates as it is a ‘colouring’ of sorting in Ex. 10.

Example 12. OWCR holds for braids as one easily checks. For
instance, though the peak of braids steps ε→ σ1 and ε→ σ2
cannot be completed into a diamond of steps (Ex. 4), 2 steps
do suffice: σ1 → σ1σ2 → σ1σ2σ1 ≡ σ2σ1σ2 ← σ2σ1 ← σ2.
Thm. 2 is of no immediate use, since no braid normalises;
there are no normal forms. Still, it has sub-systems (e.g. simple
braids Ex. 3) that are terminating where RD is useful.

The fourth example shows a powerful technique to reduce
termination (SN) to normalisation (WN), originating with the
λ-calculus [9], [54], to be a trivial consequence of random
descent. The idea is that WN gives some upperbound and
increasingness makes that rewriting squeezes objects below
it. Recall [4, Def. 1.1.15(ii)] that a function |.| : A → N
on the objects of a rewrite system → is increasing (Inc) if
a → b ⇒ |a| < |b|. Lifting |.| to a function on steps by
|ϕ : a→ b| := |b| −̇ |a|, the former is increasing iff the latter is
a reduction measure since |a| < |b| iff |b|−̇|a| ≠ 0. We refer to
it as the dif -measure (induced by the function on objects). For
a dif-measure |.| all reductions from a to b are commensurate,
have the same measure |b| −̇ |a|.

Example 13. WCR & Inc & WN ⇒ SN [9, Cor. 5.19(ii)], [4,
Thm. 1.2.3(iii)]. Local confluence (WCR) and increasingness
(Inc) entail ordered local confluence (OWCR) as legs of local
confluence diamonds are commensurate for the dif-measure.
Normalisation (WN) and Thm. 2 entail termination (SN).

In the fifth example we reprove that in the λI-calculus any
λ-term that is normalising is terminating [14, Thm. 2], where
the λI-calculus is the sub-system →βI of →β obtained by
restricting its objects by that for every abstraction abs(x.M),
x must have some free occurrence in M [17, Def. 2.2.2]. The
idea is that though →βI -steps need not increase the size of
terms, they can be made so by inserting inert symbols.

Example 14. Adjoin c : term→ term to the signature Λ and
replace the rule-symbol β in B by βcn, for all n, with rules:

βcn :MN.app(cn(abs(x.M(x))), N)→MN.cn+1(M(N))

This is an orthogonal PRS hence its rewrite system →βc is
confluent (CR) [19, Thm. 6.11], and so is its (reduction-closed)
sub-system →βcI (defined as above). One shows successively:



(i) →βcI is increasing (Inc) when measuring terms by the
number of c-symbols, so has random descent by Ex. 13;

(ii) The map (on both terms and steps) c 7→ x.x forgetting c
gives a morphism h from→βc to→β and→βcI to→βI ;

(iii) if t̂ is in →βcI and ϕ is a step from h(t) in →βI , there
exists a unique ϕ̂ from t̂ in →βcI such that h(ϕ̂) = ϕ.

Then to show a normalising term M of→βI to be terminating,
consider a →βI -reduction ϱ from M to normal form N . If
there were an infinite →βI -reduction from M , then by (iii)
also an infinite→βcI -reduction from M (as M = h(M)). But
also ϱ lifts to a →βcI -reduction ϱ′ from M and by (ii) to a
term that is in →βcI -normal form, contradicting (i).

Remark 4. The example and proofs (by inductions on steps)
are generic and simple; they carry over to any orthogonal non-
erasing term rewrite system, cf. [9, Sec. II.5] [55, Cor. 7].

In the final example the idea is adapted to infer termina-
tion (SN) from normalisation (WN) of the simply-typed λ-
calculus [56]. Let −▷β denote →β restricted to simply-typed
terms, the formalisation of which is largely immaterial here
but cf. [57], [58]. The main obstacle to increasingness (Inc) is
that contracting a redex β(x.M,N) yields M if x is not free
in the body M , thereby erasing the argument N . The idea to
overcome this, as pioneered in [9], [59], cf. [54], [58], is to
make β non-erasing by memorising the argument N .

Example 15. Adjoin a symbol [., .] : term→ term→ term for
memory [9] to the signature Λ. Replace the rule-symbol β in
B by β[n], for all n, with rules:

β[n] :MN.app([abs(x.M(x)), P⃗ ], N)→MN.[M(N), P⃗N ]

where nested memory [Q, P⃗n] denotes [[Q, P⃗n−̇1], Pn] if n >
1 and Q if n = 0. This is an orthogonal PRS hence its rewrite
system→β[] is confluent (CR), and so is its (reduction-closed)
simply-typed sub-system −▷β[], where [M,N ] has type σ if M
has type σ and N has type τ [58, Def. 3.3].

(i) −▷β[] is increasing (Inc), measuring terms by the number
of [., .]-symbols, so has random descent by Ex. 13;

(ii) The map [., .] 7→ xy.x forgets the memory, gives a
morphism h from →β[] to →=

β and −▷β[] to −▷=β ;
(iii) if t̂ is in −▷β[] and ϕ is a step from h(t) in −▷β , there

exists a unique ϕ̂ from t̂ in −▷β[] such that h(ϕ̂) = ϕ.
Then if there were an infinite −▷β-reduction from M , then by
(iii) also an infinite −▷β[]-reduction from M (as M = h(M)).
But since −▷β[] can be shown to be normalising in the same
way as −▷β (e.g. contracting an innermost redex of maximal
type decreases the multiset of redex-types), this contradicts (i).

As for the previous example, the point is not the novelty
of the result but the smoothness afforded by the combination
of presenting a system as an (orthogonal) PRS, with random
descent, allowing both for results about normalising objects
(Ex. 14) and systems (Ex. 15), cf. Prop. 1 and Ex. 12 below.

B. Filling and tiling

We resume the study of filling and tiling, using Sec. III-A.

Example 16. We solve the problem of the calissons based on
filling (Ex. 11), this time exemplifying proof orders. Using that
filling is WCR (shown in Ex. 11) we show SN by the volume-
proof order from which the spectrum can be read off. For a

Pg

Pr Pb4 2

3(4, 3, 2)

Fig. 8. Volume of P as areas of 3 projections Pr , Pg , Pb (forgetting colours)

partial filling ending in some path P (forgetting directions
of steps), as visualised in Fig. 8, we let its volume be the
triple (r, g, b) of area-measures (Ex. 8) of the three projections
Pr, Pg and Pb of P . We only exemplify this for the path P
given by depicted in Figure 8. Then Pr
is having area (2, 4, 2), Pg is with
area (2, 3, 2) and Pb is with area (2, 2, 2). One
verifies that for any filling step of a given colour (the 2nd
component of) that colour is decremented, with the areas of
the other colours unchanged. Since in the initial / final filling
of the box all (2nd components of) areas are 4 / 0, we conclude
the spectrum is (4, 4, 4), independent of the filling.

We further investigate the properties of tiling ⇓D with
diagrams D for a rewrite system →. Typically, diagrams in
D are induced by local diamonds ϕ

ϱ⋄ψς for →-steps ϕ, ψ and
→-reductions ϱ, ς inducing tiling rules ϕ−1 ·ψ ⇓ ϱ · ς−1, but a
priori we do not restrict them. We allow them to have any of
the shapes in Fig. 9, with the shapes top / bottom–left being

⇓

⇓

⇓

⇓

Fig. 9. Some common diagram shapes lhs
rhs

the most general (conversion to conversion) / specific (peak
to valley, i.e. a diamond). Throughout we use ⇓ to denote a
2-rewrite system having a collection D of diagrams (2-rules)
for a rewrite system → := ⟨O,S, src, tgt⟩.

We showed (Ex. 8) some known confluence results could be
rephrased as termination-of-tiling results, and that in a sense
any such can be rephrased that way (Thm. 1), for appropriate
sets of diagrams D. But what about arbitrary such?

Example 17 ( [8, Fig. 3]). Let for ϕ : a → a′, ϕ′ : a′ → a,
ψ : a → b, χ : a′ → c, the tiling diagrams in D be those of



the local diamonds ψε⋄
ϕ
ϕ·ψ and ϕ′

ϕ·χ⋄χε , their involutive versions
ϕ

ϕ·ψ⋄ψε and χ
ε⋄
ϕ′

ϕ·χ, and the trivial ones χ
ε⋄χε for each step χ.

Then D is a full, deterministic, involutive collection of local
diamonds, but tiling ⇓ does not terminate; as visualised in

ψ
ϕ

χ

ε
εε

ε ε

ε

⇓
⇓

⇓

⇓⇓

⇓

ϕ′

Fig. 10. Infinite descent of tiling in Ex. 17

Fig. 10 it leads to an infinite descent for b ψ← a→ϕ a
′ →χ c.

Typically, there may be several tiling rules applicable to a
given conversion. For example, in the conversion ϱ : b ψ←
a→ϕ a

′
ϕ← a→ψ b the two local peaks b ψ← a→ϕ a

′ and
a′ ϕ← a →ψ b occur, allowing for two different tiling steps.
The first observation is that strategy is irrelevant when tiling,
if the only choice is between such occurrences not between
what tiling rule to apply then. If some tiling descends into a
valley, then tiling randomly descends into it [8, p. 226].

Proposition 1. If D is deterministic, then positive (Def. 3)
tiling has RD, and tiling has RD if D is also involutive.

We present a proof of Prop. 1 as it is simple, showcasing
Thm. 2. The proposition is below also in its contrapositive
form, to conclude that no tiling of a given conversion termi-
nates because there is some infinite tiling of it.

Proof. We show OWCR for positive tiling by analysing the
critical peaks between tiling steps Φ:ϱ ⇓ ς and Ψ:ϱ ⇓ ζ. This
is trivial: If Φ,Ψ apply to the same occurrence of a local peak
in ϱ, then by D being deterministic and ⇓ being positive they
are the same step, so ς is the common reduct reached in 0
⇓-steps in both cases. Otherwise, by the shape ←·→ of local
peaks, they apply to non-overlapping occurrences, hence we
get ⇓-steps Ψ′ : ς ⇓ ξ and Φ′ : ζ ⇓ ξ for some ξ reached in 1
⇓-step either way. For tiling in the presence of an involutive
D the reasoning is the same, but now making use of that if D
and E−1 could be applied to the same occurrence of a local
peak so lhs(D) = lhs(E)−1, then by D being deterministic
and involutive also D = E−1 and rhs(D) = rhs(E)−1.

Example 18. If the sets of diagrams in Ex. 8 are not just full
as assumed there but also deterministic and involutive, then
tiling ⇓ is SN & CR by Prop. 1. The same holds for OWCR and
local Dyck diagrams [51, Def. 16] for random descent, but for
positive tiling as such diagrams are a priori not involutive.

Under the conditions of the proposition, ↠-residuation can
be suitably lifted from having diamonds for peaks of →-steps
only, to all peaks of ↠-steps (→-reductions), by tiling.

Definition 5. Let D be a deterministic collection of tiling dia-
grams obtained from local diamonds ϕ

ϕ\ψ⋄
ψ
ϕ/ψ for residuations

\, / mapping →-steps to ↠-reductions9 Define ϱ \ ς := ζ and
ϱ/ ς := ξ if ϱ−1 · ς ⇓⇓ ζ · ξ−1 for some valley, and let both ϱ \ ς
and ϱ / ς be undefined otherwise.

Though the valley in Def. 5 need not exist, e.g. in case tiling
does not terminate (Ex. 17) or gets stuck in a conversion that
is not yet a valley because D is not full, Prop. 1 guarantees
that if it does it is unique, so \, / are indeed (partial) functions.
Also, involutive residuations (cf. Lem. 1) lift: if ψ \ϕ = ϕ/ψ
for all →-peaks ϕ, ψ, then ς \ ϱ ≃ ϱ / ς for all ↠-peaks ϱ, ς ,
where ≃ is Kleene-equality expressing that either both sides
denote and are equal, or that neither side denotes.

Example 19. Let D be as in Def. 5 and moreover full. Then
tiling in Ex. 8 (the diamond property, Newman’s Lemma, de-
creasing diagrams) and in Thm. 1, induces a (total) residuation
for reduction ↠ (preserving being involutive).

Proposition 2. Under the conditions of Def. 5, for all ↠-
reductions ϱ, ς, ζ (matching up appropriately):

ϱ / ε = ϱ ϱ / (ς · ζ) ≃ (ϱ / ς) / ζ
ε \ ϱ = ϱ (ϱ · ς) \ ζ ≃ ς \ (ϱ \ ζ)
ϱ \ ε = ε ϱ \ (ς · ζ) ≃ (ϱ \ ς) · ((ϱ / ς) \ ζ)
ε / ϱ = ε (ϱ · ς) / ζ ≃ (ϱ / ζ) · (ς / (ϱ \ ζ))

Proof. By tiling as Fig. 11, using Prop. 1 to factorise tiling,
e.g., tiling for ϱ / (ς · ζ) through tiling for ϱ / ς .

ς \ (ϱ \ ζ)

⇓⇓

⇓⇓

⇓⇓

⇓⇓

ϱ ς

ϱ \ ς

ϱ \ (ς · ζ)

ϱ / ς

(ϱ / ς) \ ζ

ζ ς

ϱ ζ

ϱ / ζ
ϱ \ ζ

ς / (ϱ \ ζ) (ϱ · ς) / ζ

(ϱ / ς) / ζ

Fig. 11. Composition laws for residuation by tiling

Prop. 2 justifies defining lifting residuation from steps to
reductions by recursion, having as base cases peaks of steps
or empty reductions, and as (mutually) recursive clauses:

(ϕ · ϱ) / (ψ · ς) := ((ϕ / ψ) · (ϱ / (ϕ \ ψ))) / ς
(ϕ · ϱ) \ (ψ · ς) := ϱ \ ((ϕ \ ψ) · ((ϕ / ψ) \ ς))
(ϕ · ϱ) / (ψ · ς) := ((ϕ / ψ) · (ϱ / (ψ / ϕ))) / ς

where ϕ, ψ range over steps and ϱ, ς over reductions, with the
third clause the single clause (other than for empty reductions)
needed for an involutive residuation /, justified by (ϕ · ϱ) /
(ψ · ς) ≃ ((ϕ · ϱ) / ψ) / ς ≃ ((ϕ / ψ) · (ϱ / (ψ / ϕ))) / ς . Vice
versa, since the laws give rise to a (this) tiling strategy, the
recursive definition is the least (w.r.t. function as sets of pairs)
extension of / satisfying them; cf. [12, II Lem. 4.32].

IV. ORTHOGONALITY

Following [4, Ch. 8], we view orthogonality of rewrite sys-
tems as a strengthening of confluence by axiomatising residu-
ation, in such a way that orthogonality relates to confluence as

9We assume neither that \, / be involutive, nor ϕ \ ϕ = ε or ϕ / ϕ = ε.



least upperbounds to upperbounds [8], least common multiples
to common multiples [12], and pushouts to co-cones [25].
Similarly to how diagrammatic confluence was based on 2-
D tiling, we will base orthogonality on 3-D bricklaying.

Example 20. For the 3rd rewriting approach to the problem
of the calissons we change its modelling. We view filled boxes
now from a 3-D perspective, as beds on which bricks are laid,
and in keeping with that orient the green arrows in the grid
→ (Fig. 6) upward. The bricklaying rewrite system ⇛ has as
objects filled boxes, and the rule , allowing to rearrange triples
of calissons forming hexagons, one can think of as bricklaying,
visualised in Fig. 121 By the spectrum being invariant under

bricklaying rule (snapped to grid)

brick bed search

v

v′
⇛

bricklaying step

⇛

Fig. 12. 3-D calissons: bricklaying ⇛-rule (left) and ⇛-step (right)

⇛, the problem has a positive answer if all filled boxes have
the same normal form. Observe that a filled box B is in
⇛-normal form iff it has no 3-peaks, triples ϕ, ψ, χ of →-
steps, co-initial in the grid. This follows by ‘searching the
bed’ (Fig. 12 right): if that 3-peak could not be rewritten, its
source v has some in-edge, say from v′, which then (by B
being hexagonal) is the source of another 3-peak. Repeating
this we must end up with a 3-peak that can be ⇛-rewritten
(by finiteness of B); We conclude by noting that if there is no
3-peak, then B is filled as one big brick, with all calissons of
the same colour grouped together (cf. the rhs of ⇛), that only
depends on the box. This holds since each 2-peak, say ←·→,
must then belong to a calisson of the other colour (here green;
if not, its source would have an in-edge from a 3-peak).

The lhs and rhs of the bricklaying ⇛-rule in Ex. 20 combine
into a brick, analogous to how the lhs (peak) and rhs (valley)
of a tiling ⇒-rule combine into a diamond. When does local
tiling gives rise to bricklaying rules? It typically does not.

Example 21. For the 3-peak from app(ω, app(ω, app(I, y)))
(cf. Ex. 4), tiling the three peaks, followed by tiling the
resulting three (↠-)peaks succeeds, but does not give a brick;
the resulting reductions are not (pairwise) the same (see [4,
Fig. 8.53] for the analogous TRS example).

Similarly, for the 3-peak of braid steps from ε to σ1, σ2, σ3
tiling (of first the three→-peaks and then the three ↠-peaks),
succeeds but does not yield a brick (cf. e.g. [24, Exc. 61.2]).

To have diamonds that do give rise to bricks, whose reduc-
tions match up, is expressed by the cube law [60, Lem. 2.1.1],
[17, Fig. 12.3] [23, Fig. 2.1], see Fig. 13 right. We rephrase
its axiomatisation [4], [25], [27], [29] in terms of 1-algebras.

Definition 6. A residual 1-algebra (1-ra) is a 1-algebra
⟨→, 1, /⟩ such that (1)–(4) hold; Fig. 13. A residual 1-algebra

1

ψ

ϕ

(ϕ / χ) / (ψ / χ)
ϕ / ψ

1 / ϕ = 1

ϕ
ϕ / ψ

ψ

χ / ψ

ψ / χ (ϕ / ψ) / (χ / ψ) =
ϕ / χ

χ

ϕ / 1 = ϕ
ϕ

ψ / ϕ

Fig. 13. 1-ra laws with cube: (ϕ / ψ) / (χ / ψ) = (ϕ / χ) / (ψ / χ)

with composition (1-rac) extends this to ⟨→, 1, /, ·⟩ such that
also (5)–(7) hold; Fig. 11.

ϕ / 1 = ϕ (1)
ϕ / ϕ = 1 (2)
1 / ϕ = 1 (3)

(ϕ / ψ) / (χ / ψ) = (ϕ / χ) / (ψ / χ) (4)
χ / (ϕ · ψ) = (χ / ϕ) / ψ (5)
(ϕ · ψ) / χ = (ϕ / χ) · (ψ / (χ / ϕ)) (6)

1 · 1 = 1 (7)

Example 22. Multisteps of both the λ-calculus and braids
with their residuations (Ex. 4) constitute 1-ras as can be
checked by inductions (The auxiliary ⊔ operation on β-
multisteps of Footnote 3 is helpful here too; it allows to
decompose a cube into 2 prisms [30].)

Based on this example, we say a structured rewrite system is
orthogonal if its multisteps constitute a 1-ra, where multisteps
capture the idea of performing multiple (single) steps in
parallel (to be contrasted with many-steps that may perform
many in sequence). For instance, orthogonal PRSs in the
syntactic sense of [19] are orthogonal in this sense.

Example 23. The construction of integers as pairs of natural
numbers that in turn are constructed as sequences of bits,
generalises [12] to the construction of steps of a 1-group
(groupoid of fractions) of valleys of steps of a 1-rac, that
in turn are reductions of a 1-ra. A prototypical instance is
the construction in [12] of the braid group from the 1-rac of
positive braids, and those in turn (cf. Sec. IV-A) from the 1-ra
of simple braids (i.e. the multistep 1-ra in Ex. 22), For valleys
to compose, the construction relies on confluence.

Example 24. ras, 1-ras with a singleton-object rewrite system,
abound. For instance, bits / natural numbers with cut-off
subtraction, (multi)sets with (multi)set difference, the positive
naturals with cut-off division (cancelling factors that do oc-
cur). Also conditional probabilities can be understood through
residuation. Taking the event A | B as notation for a step
from B to A ∩ B, leaving B implicit if it’s the sample
space Ω (Fig. 14 left) makes laws (1)–(4) hold (by being a
semilattice). Bayes’ Theorem P (A) ·P (B |A) = P (A∩B) =
P (B∩A) = P (B)·P (A|B) is then nothing but a map P from
it to fractions (of cardinalities; Fig. 14 right). This allows to
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BA
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P (B | A) P (A |B)
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A ∩B

P (A ∩B)

Fig. 14. Bayes’ Theorem as an ra-morphism P from events to fractions

separate probabilities from events; P ((A | B) | (C | B)) =
P ((A | C) | (B | C)) makes sense and is true.

In a 1-ra(c) there’s a natural order on co-initial steps given
by ϕ ⪯ ψ :=ϕ/ψ = 1. That need not be a partial order, but if
not then quotienting out ⪯∩⪰ yields a 1-ra(c) again where it
is [4, Lem. 8.7.25(iii) and 8.7.41(ii)]. By having a residuation
/, the rewrite system → of a 1-ra has the diamond property
(Fig. 2). In a 1-rac the diamonds constructed are universal, in
the sense mentioned at the start of the section.

Theorem 4 ( [27], [29], [44]). ⟨→, 1, ·⟩ is a 1-monoid (a
category) that is left-cancellative (each χ is epi: for all ϕ, ψ,
if χ·ϕ = χ·ψ then ϕ = ψ), gaunt (isomorphisms are 1) and has
pushouts (in the standard categorical sense) iff ⟨→, 1, /, ·⟩ is a
1-rac whose natural order is a partial order, where ϕ/ψ :=ϕ′

for every peak ϕ, ψ and its pushout valley ψ′, ϕ′.

Remark 5. Beware that the pushout of the two steps
app(I, app(I, y)) →β app(I, y) in Ex. 2, is not the empty
valley ε despite both steps having the same target app(I, y).
The pushout comprises twice the step app(I, y) →β y. The
reason is that the same target app(I, y) was reached in the
peak by syntactic accident [60, p. 34], but that the residuation
/ constructs common reducts reached by the same work.

A. Bricklaying

Despite →-steps of a 1-ra not being closed under composi-
tion, they can be used to (freely) generate a 1-rac on ↠ [27],
[29], [61] with the intuition that→-cubes compose (in 3-D) to
form→-bricks, i.e. ↠-cubes: Tiling with the diamonds for the
residuation on → of a 1-ra gives rise to a residuation (Ex. 19)
on ↠ that trivially satisfies (1)–(3) and (7), and satisfies (5)
and (6) by Prop. 2. Also the cube law (4) can be shown to
hold by tiling [4, Lem. 8.4.47] [62] [12]. Here we show it as
a consequence of tiling with decreasing local bricks.

Definition 7. Let D be a full, deterministic, involutive col-
lection of tiling diagrams obtained from local diamonds ϕ

ϱ⋄ψς
of →-steps ϕ, ψ and →-reductions ϱ, ς . We say the 2-rewrite
system ⇓ is 3-confluent, if for every 3-peak of →-reductions
tiling its 6 peaks yields (the 6 faces of) a →-brick, locally 3-
confluent if this holds for 3-peaks of →-steps, and decreasing
if all diagrams in D are [4], [45], for some well-founded order
⪯ on steps. A brick is decreasing if its 6 faces are.

By Ex. 19, if the local diamonds are decreasing, then tiling
the 6 peaks of any 3-peak results in 6 faces that all are
decreasing diagrams, but without requiring 3-confluence these
need not constitute a brick.

Theorem 5. If ⇓ is locally 3-confluent and decreasing, then
it is 3-confluent, yielding decreasing bricks.

Proof. By induction on the multiset sum of the lexicographic
maximum measures [45] of the 3 →-reductions in a 3-peak,
well-foundedly ordered by the multiset extension ⪯mul of ⪯,
with the induction steps visualised in Fig. 15.

χ̄
IH3

IH1

IH2

ψ̄ψ

ϕ′ϕ

ϕ̄

χ χ′

Fig. 15. 3 induction steps in the proof of Thm. 5

Since →-cubes are trivially decreasing, cube (3) holds for
↠ in the generated 1-rac when taking as diamonds ϕ

ψ/ϕ⋄
ψ
ϕ/ψ .

Example 25. For every countable confluent →, there exist a
1-rac on ↠. Setting D to the local diamonds in Thm. 1, one
checks that all local diamonds are decreasing and that local
3-confluence holds, which is sufficient by the above.

B. Undercutting

The methods developed above show, for reductions, that ev-
ery peak could be completed into a diamond by a valley that is
least. Here we are interested in determining this for individual
peaks, even for rewrite systems that need not be confluent.
The idea is analogous to bounded-complete partial orders, and
to categories having relative pushouts [63]. Concretely, the
undercutting criterion put forward below is inspired by [12,
Proposition 4.16(4.18)]. A prototypical example is hole-filling
of contexts; the holes in f(g(□),□) and f(□, h(□)) can be
filled in a most general way to f(g(□), h(□)), but in f(□) and
g(□) they cannot (confluence fails as both are reachable from
□); see Fig. 16. Throughout, we assume to have a deterministic

f (a, b,□)

f (□,□,□) f (□,□,□)

f (□, b,□)

f (a, b, c)

f (a,□,□) f (□,□, c)

f (□, b, c)f (a, b,□)

if then

f (□,□,□)

f (a,□, c)

f (a, b, c)

f (a,□,□) f (□,□, c)

f (□, b, c)

Fig. 16. Undercutting / semi-lattice for hole-filling

collection D of local diamonds ϕϱ⋄ψς for →-steps ϕ, ψ and →-
reduction ϱ, ς , inducing the 2-rewrite systems of filling ⇒ on
→-reductions with rules ϕ · ϱ ⇒ ψ · ς , and tiling ⇓ on →-
conversions with rules ϕ−1 · ψ ⇒ ϱ · ς−1.



Definition 8. D is undercutting (UC) if it has trivial ϕε⋄ϕε and
if P : ϕ−1 · χ · χ−1 · ψ ⇓⇓ ζ · ξ−1 then Σ : ζ−1 · ϕ−1 · ψ · ξ ⇓⇓ ε
with Σ ⊑ P . D is semi-lattice (SL) if D is UC and involutive.

Here ⊑ compares the peak-multisets of 2-reductions (⇓ or
⇒) in the (well-founded) multiset extension of •≪ (based
itself on some well-founded order on step-labels; cf. Ex. 8(iii)),
where the peak-multiset morphism maps a 2-reduction to its
multiset of local peaks, induced by mapping a diamond to the
singleton of its local peak, but trivial diamonds to [].

Recalling that ⇓⇓ denotes tiling, the intuition for undercutting
is that it captures cut-elimination (between the positive χ in
ϕ−1 · χ and the negative χ in χ−1 · ψ to yield ϕ−1 · ψ), and
replacing two diagrams (the ones for ϕ−1 · χ and χ−1 ·ψ) by
a single one (for ϕ−1 · ψ) under them.

Theorem 6. ϱ⇒⇒ ς iff ϱ−1 · ς ⇓⇓ ε for ϱ a reduction parallel
to ς , and D UC.

Proof. We first reformulate filling: ϱ ⇒⇒ ς iff there is a

D

∗ ∗
D

ϑ5ϑ2

ϑ3

ϑ1 ϑ6

κ1 κ5

κ2

ϑ4

κ4

D

κ3

Fig. 17. Diamond D with ⇓D,⇒D (left); foliage with ⇒-reductions (right)

foliage for ϱ−1 · ς , see Fig. 17 (right), where a foliage for
a cyclic conversion ϑ = ϑ1 · . . . · ϑn comprising n steps ϑi,
has reductions κi for 0 ≤ i ≤ n with κ0 = ε = κn, and
reductions Pi : κi−̇1 ⇒⇒ ϑi · κi if ϑi is a forward step, and
Pi : ϑ

−1
i · κi−̇1 ⇒⇒ κi if ϑi is a backward step, for 1 ≤ i ≤ n.

Then the only-if direction of the theorem is trivial, using the
same diamonds as in the ⇓ tiling to construct the⇒-reductions
in the foliage. The if-direction is by induction first on ⊑ but
then on the width of peaks in the cyclic conversion measuring
how often UC could be applied, showing the tiling to be ⊑-
related to the foliage.

ϱ

tiling ϱ−1 · ς ⇓⇓ εfilling ϱ⇒⇒ ς

iff

⇓12

⇓11⇓9
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⇓

⇓⇓if

ςϱς

Fig. 18. Undercutting (left) and filling = tiling (right) for calissons

Example 26. In the 4th solution to the problem of the
calissons, we return to its modelling in Ex. 7. Since UC holds
for the diamonds employed (Fig. 18 left), ⊑ holds for the
trivial order as both sides of UC have 3 diamonds, and both

sides also have one diamond of each colour so the spectrum is
preserved, we conclude using Thm. 6 by that the tiling yields
a filled box that only depends on the box (Fig. 18 right), so
all spectra are the same.

Similar reasoning pertains to hole-filling (even SL holds).
The correspondence of Thm. 6 is an important theme in the
literature, e.g. both in [12] and [24] (Sec. 5), but also in the
λ-calculus and term rewriting.

Example 27. For the λ-calculus the correspondence is known
as that between permutation and projection equivalence, cf. [9,
Thm. I.10.2.6], [60]. To infer this by Thm. 6 one must find a
suitable order on steps such that the ⊑-condition on UC holds.
This is complicated by that →β is not terminating. However,
for its Hyland–Wadsworth labelling [17], [60] (orthogonal
as a PRS), every local confluence diamond (computed by
residuals, not by syntactic accidents) lifts to a labelled one,
and any filling ϱ ⇒⇒ ς (proof of permutation equivalence
of reductions ϱ, ς) lifts to a HW-labelled filling where labels
are bounded. This then gives a termination measure (via the
maximal label in it, [60, Prop. 1.5.6]) allowing to verify UC
and to turn the HW-labelled filling into a HW-labelled tiling.
We then obtain a tiling simply by forgetting the labels, least
because any other tiling will factor through it.

Also braids are not terminating, but one can proceed
similarly, exploiting that they have random descent for the
length measure, that to have a filling ϱ⇒⇒ ς entails ϱ, ς have
the same length. Even stronger, UC can be shown to hold
for all Artin–Tits [12, Ch. IX.1.2] (with order ⊑ based on
right-Noetherianity), allowing one to reason by contraposition
to conclude elements not to have common multiples: if some
tiling of two elements ϱ, ς does not terminate, then no tiling
does (by random descent), hence no least common multiple ex-
ists, hence no common multiple exists; cf. [12, Ex. II.4.28], e.g.
providing the standard solution to the paint pot problem [64].

V. CONCLUSION

Building on the known confluence techniques of decreas-
ing diagrams [34], [65] and random descent [8], [51], we
presented three new confluence / orthogonality results and
gave (potential) application( area)s in both rewriting and
2-rewriting. Surprisingly, each technique provided a simple
solution to the problem of the calissons. To give an algebraic
account of these results and in particular of tiling / residuation
on which we based them, we resorted to introducing 1-
algebras, algebras having rewrite systems as carrier, because
by the very nature of rewriting we are interested in systems
in which sequential compositions of steps need not exist.

We expressed bricklaying ⇛ as a rewrite system on beds,
analogously to the 2-rewrite systems on conversions, but only
for the simple example of the calissons. The general case
concerns planar graph rewriting, so seems challenging in the
light of [66].

a) Acknowledgments: Jan Willem Klop suggested the
problem of the calissons as testbed for rewriting, and its
modelling as a confluence problem (per group e-mail (2024)).
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APPENDIX

A. Rewrite systems, 1-algebras, residuation

Remark 6 (On the notation for PRSs, Ex. 2). The rendering
of the λβ-calculus as a higher-order pattern rewrite system

in [4, Ex. 11.2.22(ii)] as employed here, is obtained from the
same example as rendered in [19, Example 3.4] by dropping
the λ from abstractions λx.M in the underlying substitution
calculus [45], [67], and by not using free variables in (left-
and right-hand sides of) rules but explicitly abstracting from
them.

Remark 7 (On steps as first-class citizens / terms). The
economy afforded by having steps as first-class citizens, in
particular as (proof)terms over a signature (including rule-
symbols), extends to proving properties, cf. Ex. 4 ff. For in-
stance, PRSs being closed under signature extensions obviates
the need for restating / reproving for variations like labelling,
cf. [17, Def. 11.1.2].

Having steps as first-class citizens in term rewriting enables
reasoning algebraically about geometric notions for them. This
applies to various operations on them like residuation [8], [14]
(see below), to critical peaks (based on that patterns occurring
in a term constitute a finite distributive lattice [49]), and
to orthogonality (Sec. IV), and is heavily exploited in recent
Isabelle formalisations10 of TRS-confluence results [31].

B. Confluence

Remark 8 (On adequacy of the modelling in Ex. 7). Let F be
a partial filling of B, i.e. a ⇒-reduction from →→→→→→
to some →-reduction P , having calissons as in B. Then we
claim further progress can be made toward B. Key to the
claim is that if→→ occurs in P then B has a green calisson,
and otherwise if →→ occurs in P , then for the rightmost
such either it is matched, i.e. occurs in a sub-reduction of P
of shape →→↠→ and then B either has a red-calisson for
→→ or a blue calisson for →→, or it is unmatched and then
B has a red-calisson for it by boxes being convex. Each case
allows some further ⇒-step toward B.

Remark 9 (On the proof of Thm. 1). We obtained Thm. 1 in
2008. The compact proof presented here builds on the recent
advances of [68], [69], showing that steps can in fact be
mapped to belonging to the spanning −▷-tree (0) or not (1),
i.e. to a bit.

C. Random descent

Proof of Thm. 3. For the only–if-direction first note that the
assumption implies that all objects convertible to some normal
form are complete. Thus ↞ is a well-founded order on them,
and we will exploit it to define a measure on the steps in
conversions to normal form. We measure steps in the reduction
monoid of the ordinals with 0 and flipped ordinal sum ∔.

We construct measuring functions both for steps and objects,
with the measure of an object being based on the measures of
all its reductions to normal form. We first partition the objects
into those that are convertible to some normal form, and those
that are not. We measure the latter, and steps between them,
arbitrarily, by 1. An object a of the former is measured by
the supremum of the successors of the measures of all b such

10Cf. operations on proofterms in http://informatik-protem.uibk.ac.at/Okui/.
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that a → b. This is well-defined by well-foundedness of ↞.
In turn, each such step a → b is measured by the ordinal γ
such that γ ∔ β = α, where α, β are the measures of a, b. γ
exists and is non-0 per construction.

We claim peak random descent then holds. Note that it
suffices to verify it for finite peaks â ↞α a ↠β b with â
in normal form; an infinite reduction from a would contradict
uniform termination. We prove that then α = β ∔ γ with
γ the measure of b, by induction on the length of the peak,
distinguishing cases on the direction of its last step. For the
empty peak, it is trivial as normal forms have measure 0.
Otherwise, â ↞α′ a ↠β′ b′ ↔ b, where α′ = β′ ∔ γ′ holds
with γ′ the measure of b′ by the induction hypothesis. Let δ be
the measure of b′ ↔ b. If b′ → b, then α = α′ = β′ ∔ γ′ =(†)

β′∔(δ∔γ) = (β′∔δ)∔γ = β∔γ where (†) holds since γ and
γ′ are the measures of b and b′ and δ the measure of b′ → b
so γ′ = δ ∔ γ. If b′ ← b, then α = δ ∔ α′ = δ ∔ (β′ ∔ γ′) =
δ∔ (β∔ γ′) =(∗) β∔ (δ∔ γ′) = β∔ γ, using for (∗) that this
case can only happen when β = 0 = β′ (while constructing
the left leg of the peak, its right leg is empty).

For the if-direction, we claim that a rewrite system → is
uniformly complete iff all objects convertible to a normal form
are terminating and reduce to that normal form. Suppose the
claim holds.

To show all objects convertible to a normal form are
terminating, one may proceed by induction on the length of
the conversion to the normal form, and by cases on its first
step a ↔ b with b terminating by the IH. If the step is of
shape a ← b, then we conclude by the IH. If the step is of
shape a→ b then we conclude by PR for the reduction from
a to normal form (via b).

That objects convertible to a normal form reduce to that
normal form, follows by induction on the number of peaks in
the conversion to normal form, cf. [51, p. 32:3].

It remains to show the claim. For the only–if-direction,
suppose → is uniformly complete. An object convertible to
normal form a, then is complete hence certainly terminating,
so reduces to some normal form b. Moreover, all objects on
the conversion between a, b are complete, so a = b. For the if-
direction, suppose all objects convertible to a normal form are
terminating and reduce to that normal form. Then if an object
a is convertible to some normal form b, it is terminating, and
moreover the reductions in a peak from a are convertible to b
too, so must reduce to it, showing confluence of a.

Example 28 (Another example of an application of RD).
Ind & Inc ⇒ SN [54] [9, Lem. 5.17(i)] [4, Thm. 1.2.3(ii)],
where → is inductive (Ind) if for all a0 → a1 → . . ., ∃a ∈ A
such that ai ↠ a for all i ∈ N. By Inc all reductions from a0
to a are commensurate, so there can only be finitely many ai
by addition on the natural numbers being strictly monotonic
in its first argument (this would fail for addition of ordinals).

Example 29 (Example associativity-TRS is OWCR, but not
for the length measure; shown by (1-)algebraic means). Con-

sider the term rewrite rule for associativity:11 ϱ(x, y, z) :
xyz → x(yz). It is linear and it has a single critical peak
which may be completed into a local confluence diagram
with legs xyzw → x(yz)w → x(yzw) → x(y(zw)) and
xyzw → xy(zw) → x(y(zw)). To show OWCR, observe
the length measure does not work as the legs have different
lengths. Measuring a step contracting ϱ(t, s, r) by twice the
number of leaves of t does: both legs then have the same
measure: 2n+2n+2m = 2(n+m)+2n with n,m the number
of leaves of t, s. For non-overlapping peaks ordered local
confluence follows from that counting the number of leaves
in a term yields a model, i.e. is invariant under ϱ. Since the
bullet function of [70, Definition 32] induces a normalising
strategy [70, Lemma 35(Extensive)] → is complete by Cor. 1.

An algebraic way of defining the measure may be obtained
by employing proofterms to represent reductions resulting,
e.g., in representing the legs of the diagram as ϱ(x, y, z)w ·
(ϱ(x, yz, w) · xϱ(y, z, w)) and ϱ(xy, z, w) · ϱ(x, y, zw). Then
the measure is defined by a 1-algebra, i.e. an algebra for proof
terms, building on an algebra, i.e. an algebra on terms. In
the algebra, computing the number of leaves, we interpret
variables by assigning 1 to them and interpret @ as addition.
The 1-algebra, computing the sum of the numbers of leaves in
the first argument of each ϱ-redex contracted in a reduction,
builds on that by interpreting variables as 0, @ and · as
addition, and ϱ as the value of its first argument (a term).

Remark 10 (On WN iff SN for λβI-terms). • The result
in Ex. 14 and its proof carry over immediately to any
orthogonal (first- or higher-order) non-erasing (pattern)
term rewriting system, saturating left-hand sides of rules
with c-symbols and prefixing right-hand sides by their
sum plus one. For higher-order term rewrite systems
(PRSs) one has to be careful though with the notion
of erasingness, since for systems of order 3 or higher
it might well be that though a step is not erasing a
subterm, it is critical in the sense that it transforms a
non-terminating term into a terminating one [55, Ex. 2].

• The idea to make rewrite systems increasing by carrying
extra information along is a special case of the (70+
years) old idea of labelling [4, Sec. 8.4], with the
most prominent labellings of the λ-calculus being Lévy-
labelling and Hyland–Wadsworth labelling [17, Ch. 14].

• The above proof steps amount to verifying that →βc is
a rewrite labelling of →β and →βcI of →βI , in the
sense of [4, Def. 8.4.5] for the initial labelling mapping
a term to itself, establishing a bisimulation between M
and h(M). Even stronger, the labelling is a term rewrite
labelling in that it is induced by labelling rules (in this
case only the β-rule) [4, Def. 8.4.26].

• A slightly more general λβI-calculus is obtained by not
restricting the terms but only the proofterms, i.e. requiring
x to occur in M for a subterm β(x.M,N). The same

11In applicative notation, using association to the left for the implicit infix
application symbol @.



effect could be obtained by restricting the substitution
calculus [45], [67] of PRSs to λβI .

Remark 11 (Random descent of bricklaying ⇛ for calissons).
For the same reason as for ⇓, bricklaying ⇛ for calissons has
random descent (‘⇛-redexes do not have overlap’).

D. Bricklaying

Proof of Thm. 5. If one of the reductions of the 3-peak is
empty, then the faces adjacent to it are trivial by the assump-
tion that faces are obtained by tiling, and the face orthogonal
to it is decreasing, so the latter can be combined with two
further trivial faces, to yield a 3-valley completing the 3-peak
into a brick that is trivially seen to be decreasing.

Otherwise consider the local brick for the 3-peak formed by
the initial steps ϕ, ψ, χ of the reductions ϕ · ϕ̄, ψ · ψ̄, χ · χ̄; it
is decreasing by assumption. We first show that laying such a
brick decreases the measure of each of the 3 resulting 3-peaks,
as visualised in Fig. 19 (for the bottom–right 3-peak).

ϕ DCR

ψ̄

χ′χ DCR

ψ

ϕ′

Fig. 19. Decrease in measure of 3-decreasingness

We show that |ϕ′| ⊎ |ψ̄| ⊎ |χ′| ≺mul |ϕ| ⊎ |ψ · ψ̄| ⊎ |χ| with
ϕ′, χ′ the reductions opposite of ϕ, χ, by generalising the idea
and proof of [45, Lem. 2.3.19], with each line justified below.

|ϕ′| ⊎ |ψ̄| ⊎ |χ′| =
=((|ϕ′| ⊎ |ψ̄| ⊎ |χ′|) ∩⋎ψ) ⊎ ((|ϕ′| ⊎ |ψ̄| ⊎ |χ′|)−⋎ψ) (8)
≺mul |ψ| ⊎ ((|ϕ′| ⊎ |ψ̄| ⊎ |χ′|)−⋎ψ) (9)
= |ψ| ⊎ (|ϕ′| −⋎ψ) ⊎ (|ψ̄| −⋎ψ) ⊎ (|χ′| −⋎ψ) (10)
= |ψ · ϕ′| ⊎ (|ψ̄| −⋎ψ) ⊎ (|χ′| −⋎ψ) (11)
⪯mul |ϕ| ⊎ |ψ| ⊎ (|ψ̄| −⋎ψ) ⊎ (|χ′| −⋎ψ) (12)
= |ϕ| ⊎ (|ψ̄| −⋎ψ) ⊎ |ψ · χ′| (13)
⪯mul |ϕ| ⊎ (|ψ̄| −⋎ψ) ⊎ |χ| ⊎ |ψ| (14)
= |ϕ| ⊎ |ψ · ψ̄| ⊎ |χ| (15)

The justifications given refer to results in [45].
(8) Split 1.4.6(7d)
(9) Noise Reduction 1.4.11(4), ψ ̸= ε
(10) Distribute 1.4.6(8d)
(11) Compose 2.3.13(2) for ϕ′

(12) DCR for ϕ, ψ
(13) Compose 2.3.13(2) for χ′

(14) DCR for ψ, χ
(15) Compose 2.3.13(2) for ψ̄

Thus (since |ϕ| ⪯mul |ϕ · ϕ̄| and |χ| ⪯mul |χ · χ̄|) the
IH applies allowing to complete the 3-peak with reductions
ϕ′, ψ̄, χ′ into a decreasing brick (IH1 in Fig. 15). Since

decreasing diagrams compose [45, Lem. 2.3.17], and also the
⇓-tiling of their faces composes by Prop. 2, so do decreasing
bricks, entailing (mutatis mutandis) the IH applies successively
from front to back (along ϕ, IH2), and bottom to top (along
χ, IH3).

Compared to the proof of [45, Lem. 2.3.19] the main
difference is that ψ is used repeatedly above, like a catalyst, in
the justification given. This is needed to deal with noise in both
ϕ′ and χ′ introduced into them by the decreasing diagrams of
ψ with both ϕ and χ.

Remark 12 (On Ex. 25). For decreasingness it suffices to
order all −▷-steps (→-steps belonging to the spanning forest)
in the proof of Thm. 1 below all other steps of ϕ.

To see that local 3-confluence holds for a 3-peak (ϕ, ψ, χ),
note that the three →-peaks are, per construction, completed
by tiling to three −▷▷-valleys ending in the least upperbound
in the tree of each pair. Then the tiling of each of the 3 −▷▷-
peaks ends up in the least upperbound in the tree of the triple,
which is unique, using that −▷ is deterministic.

E. Undercutting

Remark 13 (On checking UC / SL). To establish UC it suffices
to consider triples ϕ, ψ, χ where ϕ ̸= χ ̸= ψ since if, say,
ϕ = χ then the assumption simplifies to ϕ−1 · ψ ⇓⇓ ζ · ξ−1,
which is seen to entail the conclusion ζ−1 ·ϕ−1 ·ψ ·ξ ⇓⇓ ε using
that peaks between a step and itself were assumed trivial. As
observed in [12] SL allows to also assume ϕ ̸= ψ, since if
ϕ = ψ then ϕ−1 · χ · χ−1 · ϕ ⇓⇓ ζ · ξ−1 entails ζ = ϱ = ξ for
ϕ
ϱ⋄χς , χς⋄ϕϱ ∈ D so ζ−1 · ϕ−1 · ϕ · ξ ⇓⇓ ε.

Proof of Theorem 6. We first establish the equivalence be-
tween filling and foliage. Let ϱ = ϱ1 ·. . .·ϱn and ς = ς1 ·. . .·ςm
be reductions comprising n steps ϱi respectively m steps ςj ,
with ϱ parallel to ς . Then ϑ := ϱ−1 · ς is a cyclic conversion.

For the if-direction, let κi be the→-reductions of the foliage
for the cyclic conversion ϑ as in the definition. By definition
of foliage and closure of⇒-steps under contexts (whiskering)
then ϱ⇒⇒ κn ⇒⇒ ς; Fig. 17.

For the only–if-direction, we distinguish cases on n being
0 or not. If n is 0, then so is m and ϱ⇒⇒ ς must be the empty
filling on an empty →-reduction, by the assumption that D
comprises local confluence diagrams only whose legs are non-
empty reductions, hence ⇒ can only be applied to non-empty
→-reductions; Fig. 17. If n is positive, then ϱ is non-empty
and by the assumption on D again, all ⇒-reducts of ϱ along
ϱ ⇒⇒ ς are non-empty. Defining κi := ϱn−̇(i−̇1) · . . . · ϱn for
1 ≤ i ≤ n and κi := ς(i+1)−̇n · . . . · ςm for n+ 1 ≤ i < n+m
then gives rise to a foliage for ϑ: All ⇒-reductions for the
foliage may be set to empty⇒-reductions, except that to show
κn = ϱ ⇒-reduces to ς1 · κn+1 = ς1 · ς2 · . . . · ςm = ς we use
the assumptions that ϱ ⇒⇒ ς and that ς is non-empty (so has
a first step).

We now prove the if-direction of the theorem (for foliages)
by induction on the number of tiling steps p in ϑ ⇓p ε. If
p = 0, we trivially conclude as ϑ = ε. Otherwise, we can



write ϑ = ϑl · ϕ−1 ·ψ · ϑr for some ϕ
ζ⋄
ψ
ξ ∈D and conversions

ϑl, ϑr, and there is a tiling step ϑ ⇓ ϑ′ to ϑ′ = ϑl · ζ · ξ−1 ·ϑr,
such that ϑ′ ⇓p−1 ε. By the IH there is a foliage for ϑ′; its
subconversions ϑl, ϑr combined with prefixing ϕ to the last
reduction of ϑl then give a foliage for ϑ. Note that the peak-
multisets of the ⇓- and ⇒-reductions (of the foliage) are the
same.

Finally, we prove the only–if-direction (again for foliages
instead of fillings) by induction on the lexicographic product
of ⊑ on the foliage for ϑ, next ≤ on the length of ϑ, and
finally the multiset extension of ≤ for the multiset of widths
(see below) of local peaks, and by cases on ϑ. We strengthen
it to that the peak-multiset of the tiling is ⊑ than that of (the
multiset sum of the fillings in) the foliage. We may assume
the foliage has no ⇒-steps for trivial peaks. If ϑ is a valley,
then by definition of foliage ϑ = ε using that the legs of
diamonds in D are non-empty, and we conclude. Otherwise,
ϑ has shape ϑℓ ·ϕ−1 ·ψ ·ϑr with ϕ·κi−1 ⇒⇒ κi ⇒⇒ ψ ·κi+1 and
we distinguish cases on the width, the number of⇒-root-steps
in the ⇒-reductions.

If w = 0 then ϕ = ψ and κi−1 ⇒⇒ κi+1. Then ϑ ⇓ ϑ′ for
ϑ′ := ϑℓ · ϑr by UC. Replacing12 κi−1 by κi+1 in the foliage
for ϑℓ renders ϑ′ a foliage. We conclude by the IH for ϑ′

(decrease in second component).
If w = 1 then ϕ ·κi−1 ⇒⇒ ϕ ·ζ ·κ′ ⇒ ψ ·ξ ·κ′ ⇒⇒ ψ ·κi+1 for

some diamond ϕ
ζ⋄
ψ
ξ ∈ D and some κ′, where the displayed⇒⇒

do not have head-steps. Then ϑ ⇓ ϑ′ for ϑ′ :=ϑℓ · ζ · ξ−1 ·ϑr.
Replacing (cf. footnote 12) κi−1 by ζ · κ′ in the foliage for
ϑℓ and replacing κi+1 by ξ · κ′ in the foliage for ϑr, renders
ϑ′ a foliage again. We conclude by the IH for ϑ′ (decrease in
first component).

If w > 1 then ϕ ·κi−1 ⇒⇒ ϕ ·ϱ ·κ′ ⇒ χ ·ς ·κ′ ⇒⇒ χ ·ζ ·κ′′ ⇒
ψ′ · ξ · κ′′ ⇒⇒ ψ · κi+1 for some diamonds ϕ

ϱ⋄χς ,
χ
ζ⋄
ψ′

ξ ∈ D and
some κ′, κ′′, where the first two displayed ⇒-reductions do
not have head-steps (we may but need not have ψ′ = ψ).
The second induces a foliage for the peak κ′−1 · ς−1 · ζ ·κ′′ to
which the IH applies (decrease in first component, because the
removed peaks are non-trivial) yielding κ′−1 · ς−1 · ζ · κ′′ ⇓⇓ ε.
By random descent for ⇓ (Prop. 1), this projection factors as
ς−1 ·ζ· ⇓⇓ ζ ′ ·ς ′−1 and κ′−1 ·ζ ′ ·ς ′−1 ·κ′′ ⇓⇓ ε for some reductions
ζ ′, ς ′ (with the peak-multisets of the factors multiset-summing
up to that of their composition).

The former ⇓⇓ combined with two ⇓-steps for the diamonds
gives ϕ−1 ·χ ·χ−1 ·ψ′ ⇓⇓ ϱ · ζ ′ · ς ′−1 · ξ−1 for which UC entails
ζ ′−1 · ϱ−1 · ϕ−1 · ψ · ξ · ς ′ ⇓⇓ ε (with ⊑-peak multiset). The
if-direction then yields a foliage for it (with the same peak
multiset), so ϕ · ϱ · ζ ′ ⇒⇒ ψ · ξ · ς ′ having exactly 1 head-step
(by a diamond for ϕ, ψ).

For the latter ⇓⇓ the if-direction yields a foliage so κ′ ⇒⇒ ζ ′·κ̂
and ς ′ · κ̂⇒⇒ κ′′ for some κ̂.

Combining both shows that ϕ · ϱ · κ′ ⇒⇒ ψ′ · ξ · κ′′ using a
single head-step, instead of the two before. Hence we conclude
by the IH for the same ϑ but with this alternative foliage

12 If ϑℓ = ε replacing is not allowed but not needed: then κi−1 = ε =
κi+1 as legs of diamonds are non-ε.

(decrease in the third component, if not already in the first).

F. Haskell

Haskell code exhibiting recursive definition of residuation
for reductions, based on residuation for steps, for the particular
case of the paint pot problem [64]. For instance, trying to
compute the residual of the list of other generators after
the first does not terminate (it should not terminate [12]).
paintpot = [(1,2),(1,3),(1,4),(1,5)]
graph = paintpot
nr = foldr (\(i,j) m -> max (max i j) m) 1 graph
resstp i j = if (i==j) then [] else
if elem (i,j) graph || elem (j,i) graph
then [i,j] else [i]

resred [] v = []
resred u [] = u
resred (i:u) (j:v) = resred ((resstp i j) ++
(resred u (resstp j i))) v
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