Bowls and beans

Suppose to have an array of bowls each containing a number of beans. We have
the following bean rule for moving beans about:

If a bowl contains two or more beans, pick any two beans in it and move
one of them to the bowl on its left and the other to the bowl on its right.

A bean step according to the bean rule is presented on the left in Figure 1, where
we have coloured the moved beans to visualise movement. In fact, we assume
that we live in an ideal world: beans are indistinguishable from one another, a
bowl can contain an arbitrary number of beans, and the array of bowls extends
indefinitely to either side. The problem is to show that if we start with any
situation in which there is only a finite number of beans, only a finite number
of successive bean steps is possible. Even stronger, for a given situation all its
final situations are in fact the same and reached in the same number of steps!
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Figure 1: Bean step in reality (left) and in mathematical model (right)

Mathematical modeling

Definition 1 e A situation is a map s:Z—N.
e The bean rule is the pair (I,7) of triples, with 1 = (0,2,0) andr = (1,0, 1).

e A bean step at i has shape C +1' ~; C +r', for some situation C' and
integer i. Here, + denotes pointwise addition, the i-shift s* of a situation
s is defined by s'(j) = s(j — i), and a triple (m,n, k) of natural numbers
denotes the situation defined by —1+— m, 0+— n, 1 — k, and 0 elsewhere.

Example 2 e The initial situation top left in Figure 1 is modeled as the
situation to its right, i.e. as s defined by s(0) = 3, s(—1) = 2, and 0
everywhere else,



o The bean step on the left Figure 1 is modeled as the bean to its right, i.e.
by a bean step at position 0, taking C identical to s, except that C(0) = 1.

Figure 2: Bean run

o An exhaustive bean run consisting of bean steps, results in the situation t,
which yields 1 at positions —3, —2, 0, 1 and 2, and 0 everywhere else. (see
Figure 2). The steps in the figure are in fact parallel steps performing a
number, indicated alongside the arrows, of bean steps in parallel.

Since these data define an abstract rewrite system (ARS) ~, we reformulate the
puzzle using rewriting terminology:

(P) ~ is terminating, ~ has unique normal forms for rewriting, and all ~-
reductions to normal form have the same length.

Solution

Definition 3 An ARS — is linear orthogonal (LO) if for every fork t «— s — u,
either t =u, ort — v « u, for some v.

Theorem 4 ([Toy92]) If — is LO and normalising, then (P) holds.
Lemma 5 ~ is LO.

Proof Consider a fork ¢ ;v s v u.



e If i = j, then t = u, hence LO holds.

o If i # j, then we claim ¢t ~; v ;v u holds, for some v. In case 7 and j are
far enough apart (]2 — j| > 2), this is trivial. Otherwise, one uses that if
m>2,thenalsom+1>2and (m—2)+1=(m+1)—2.

Lemma 6 ~ is normalising.

Proof We define a normalising wave strategy for a situation s, by recursion
on the number of beans. In case there are no beans, then nothing can or needs
to be done. Otherwise, pick an arbitrary bean, say at position ¢, remove it and
normalise the resulting situation by a recursive call to the wave strategy. This
yields some situation in normal form. Now note that if we drop the bean back
in at position ¢ resulting in, say, t, then s reduces to t.

e In case t(i) = 1, then ¢ is a normal form and we are done.
e Otherwise, t(i) = 2 and we perform parallel bean steps from ¢ as visualised
in Figure 3. See how the wave front first extends from the position where

the bean was dropped to the two borders. When a border is reached it is
extended, the front moves back to the center and the waves die off.
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Figure 3: Bean drop
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A Variations

On termination One can vary in the way termination is established. We
present one such variation combining ideas of Joost Joosten and Lev Beklemi-
shev. The idea is to assign a weight function to situations such that the weight
increases with every reduction step. When an upperbound on the weights can
be established, termination follows.

Let there be m beans. Weigh a situation by a base-m + 1 number in the
obvious way, removing all (infinitely many) heading and trailing zeros. For
instance, the situations in Figure 1 are represented in base 6 as 23 and 311,
respectively. As one easily checks, by the choice of the base every reachable
situation maps to a base-m + l-number, and any bean move will increase the
weight establishing our first requirement.

To establish the second requirement as well, note that all reachable situa-
tions are weakly connected to the original situation in the sense that if in the
initial situation some bowl contains a bean, then in any reachable situation,
either the bowl itself or both its neighbours contain a(t least one) bean. As an
easy consequence, any situation containing m beans cannot extend more than
2m bowls beyond its initial width, which gives the number represented by n
consecutive ms as a (rough) upper bound on the weight, where n is the initial
width plus four times the number of beans m.

However, note that the puzzle is not yet completely solved when termination
is established; one still has to prove that all reductions to normal form have the
same length. Interestingly, the route via [Toy92] as employed here, allows one to
prove this stronger result, at the expense of checking linear orthogonality (two
diagrams), but weakening the termination assumption to normalisation!

On topology One can vary on the puzzle by varying its topology. For in-
stance, a solution analogous to the above was found (independently) by Hans
Zantema in case the topology is a ring instead of a two-sided infinite array, un-
der the condition that the number of beans is less than the length of the ring.
The proof above goes through unmodified using that the condition implies the
border of any group of beans as in Figure 3 is formed by distinct (empty) bowls.

On rules One may vary on the rules. E.g. if we allow for an infinite number of
beans, but still require that for every rule the numbers of beans in its left- and
right-hand sides are the same, one obtains universal computing power. To see
this, view the array of bowls as the tape of a Turing machine. The ith symbol
of its signature, say of total size m, can then be represented on this tape by a
sequence of three bowls the first of which contains m + 1 beans (a marker), the
second 7 beans (the symbol), and the third m — i beans (the complement). It
is easy to see that by encoding blanks, the position of the head, and the rules
of the Turing machine in a similar way, the Turing machine can be faithfully
simulated. (The markers are used to enforce that rules can only be applied with
an empty, i.e. everywhere 0, context situation C'.)



