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Abstract

Residual theory in rewriting goes back to Church, Rosser and Newman at the end of the
1930s. We investigate an axiomatic approach to it developed in 2002 by Melliès. He gave
four axioms (SD) self-destruction, (F) finiteness, (FD) finite developments, and (PERM)
permutation, showing that they entail two key properties of reductions, namely having (i)
least upper bounds (lubs) and (ii) left-cancellation.1 These properties are shown to hold up
to the equivalence generated by identifying the legs of local confluence diagrams inducing
the same residuation, which corresponds to Lévy’s permutation equivalence. Melliès in fact
presented two sets of axioms, one for redexes as in classical residual theory and another
more general one for treks. We show his results factor through the theory of residual
systems we introduced in 2000, in that any rewrite system satisfying the four axioms (for
redexes or treks) can be enriched to a residual system such that (i) and (ii) follow from
the theory of residual systems. We exemplify the axioms are sufficient but not necessary.

Proofs omitted in this abstract can be found in the appendix of [18].

1 Residual systems

We are interested in the theory of computation based on rewriting. As this requires to have
computations as first-class citizens, we use rewrite systems [14],[20, Def. 8.2.2] (not rewrite rela-
tions), whose steps have sources and targets. We recapitulate residual systems [20, Def. 8.7.2].

Definition 1. A residual system (RS) ⟨→,1, /⟩ comprises a rewrite system → and a residual
function / having 1 as unit: 1 is a function from objects to steps such that tgt(1a) = a = src(1a)
and for co-initial steps φ,ψ,χ, the residual identities (1)–(3) in Tab. 1 must be satisfied. The
projection order ≲ is defined by φ ≲ ψ if φ/ψ = 1 for co-initial steps φ,ψ.

The projection order ≲ is a quasi-order [20, Lem. 8.7.23] inducing projection equivalence
≃ ∶= ≲ ∩ ≳. Examples of rewrite systems that can be equipped with residual structure abound.

Example 1. For the following rewrite systems →, residual structure is obtained from the proof
of the diamond property for an appropriate rewrite system that is between → and its reflexive–
transitive closure: i) the λβ-calculus induces a residual system by the Tait–Martin-Löf proof
that ≥1 has the diamond property [1]; ii) β-steps in the linear λβ-calculus have the diamond
property themselves; iii) parallel steps ∥Ð→/ multisteps ○Ð→ in orthogonal first/higher-order term
rewrite systems [8, 20, 2]; iv) positive braids with parallel crossings of strands [20, Sect. 8.9].

Here we show multi-redexes and multi-treks as in Melliès’ axiomatic residual theory naturally
induce residual systems, entailing the results of [13] via the theory of residual systems [20].
We use φ,ψ,χ, . . . and γ, δ, ε, . . . to range over steps respectively reductions. We denote finite

1Instead of the order-theoretic setting employed here, Melliès employs a category-theoretic setting and the
corresponding terminology of having pushouts and epis.
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reductions by ↠. They can be identified [20, Def. 8.2.10] with formal compositions (⋅) of steps
(whose targets, sources match) modulo the monoid identities. Orienting these into the rules
(4)–(6) of Tab. 1 gives a complete 2-rewrite system2 so unique representatives of such reductions.

Proposition 1. Any residual system on → extends to a residual system on ↠, defining resid-
uation by normalisation w.r.t. the 2-rewrite system with rules (4)–(8) of Tab. 1.

φ/1 (1)= φ (γ ⋅ δ) ⋅ ε
(4)
⇒ γ ⋅ (δ ⋅ ε) γ/(δ ⋅ ε)

(7)
⇒ (γ/δ)/ε

φ/φ (2)= 1 γ ⋅ 1
(5)
⇒ γ (δ ⋅ ε)/γ

(8)
⇒ (δ/γ) ⋅ (ε/(γ/δ))

(φ/ψ)/(χ/ψ) (3)= (φ/χ)/(ψ/χ) 1 ⋅ γ
(6)
⇒ γ

Table 1: Residual identities, monoid rules, and residual rules for formal composition

Example 2. The classical example of a term rewrite system is Combinatory Logic (CL) having
the three rules, in applicative notation, ι(x) ∶ Ix→ x, κ(x, y) ∶Kxy→ x, and ς(x, y, z) ∶ Sxyz→
xz(yz). We call a term over the signature extended with the so-called rule symbols [20, Ch. 8]
ι, κ, ς (having as arities the number of variables in the respective rules) a multistep, as it can be
assigned a source/target by mapping all such rule symbols in it to their lhs/rhs. This naturally
induces a residual system on multisteps [20, Prop. 8.7.7], which by the above extends to one
on reductions (of multisteps). For example, γ ∶= ς(K,y, Iz) ⋅ κ(Iz, y(Iz)) and δ ∶= SKIι(z) are
co-initial reductions from SKy(Iz) to Iz respectively SKyz. Both these targets are reduced to
z by the respective residual reductions: δ/γ ∶= ι(z) and γ/δ ∶= ς(K,y, z) ⋅ κ(z, y(z)).

Remark 1. We introduced the idea of multisteps as terms over the signature extended with rule
symbols in [20, Ch. 8] as a generic tool in structured rewrite systems, like string [6, p. 226],
higher-order term [2, p. 127], and graph [20, Rem. 9.4.30] rewrite systems.

Then ↠ is a residual system with composition [20, Def. 8.7.38], ≃ is a congruence for / and
⋅ and quotienting ≃ out yields a residual system whose projection order is a partial order [20,
Lem. 8.7.41]. Projection equivalence [20] can alternatively be defined as the homotopy generated
by the diamond property. This will allow us below to relate the former to local homotopy [13].

Definition 2. Square homotopy equivalence ≡ on reductions having the same sources/targets,
is generated by closing φ ⊔ ψ ≡ ψ ⊔ φ for local peaks φ,ψ under composition: if γ ≡ γ′ then
δ ⋅ γ ⋅ ε ≡ δ ⋅ γ′ ⋅ ε. Here φ⊔ψ ∶= φ ⋅ (ψ/φ). Correspondingly, we define γ ⊑ δ if γ ⋅ ε ≡ δ for some ε.

Lemma 1. ≃ = ≡ and ≲ = ⊑.

Example 3. For γ, δ in Ex. 2 we have γ ⋅(δ/γ) ≡ ς(K,y, Iz) ⋅K(ι(z))(yι(z)) ⋅κ(z, yz) ≡ δ ⋅(γ/δ).

Theorem 1. ↠ up to square homotopy has lubs (δ′, γ′ is an upper bound of γ, δ if γ ⋅δ′ ≡ δ ⋅γ′;
least if δ′ ⊑ δ′′, γ′ ⊑ γ′′ for all upper bounds δ′′, γ′′) and left-cancellation (if γ ⋅δ ≡ γ ⋅ε then δ ≡ ε).

2What we refer to as 2-rewrite systems have formal expressions of compositions (and residuations) as objects.
Their rules transform such expressions into reductions of an ordinary (1-)rewrite system →, i.e. into formal
compositions in normal form with respect to the monoid rules. This set-up generalises the 2-rewrite systems as
found in the literature by not giving special status to composition, not assuming rules to operate on reductions
only but on formal expressions. Working modulo the monoid identities yields proper 2-rewrite systems.
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Proof. By Lem. 1 it follows from the same for projection equivalence ≃ instead of square homo-
topy ≡, which holds by virtue of ↠ being a residual system with composition [20, Ex. 8.7.52].
We do that exercise: Left-cancellation follows from (see also the proof of Prop. 1):

(γ ⋅ δ)/(γ ⋅ ε)⇒ ((γ ⋅ δ)/γ)/ε⇒ ((γ/γ) ⋅ (δ/(γ/γ)))/ε⇒⇒ (1 ⋅ (δ/1))/ε⇒⇒ (1 ⋅ δ)/ε⇒ δ/ε

That δ/γ, γ/δ is an upper bound up to ≃ of γ, δ, holds by ↠ being a residual system. To see
it is least consider any δ′′, γ′′ such that γ ⋅ δ′′ ≃ δ ⋅ γ′′. Then (γ ⋅ δ′′)/(δ ⋅ γ′′) ⇒ (γ/(δ ⋅ γ′′)) ⋅
(δ′′/((δ ⋅ γ′′)/γ)) = 1. Therefore [20, Ex. 8.7.40(iii)] both components must be 1 in particular
the 1st γ/(δ ⋅ γ′′)⇒ (γ/δ)/γ′′ = 1. By symmetry (δ/γ)/δ′′ = 1 and we conclude.3

2 Multi-redexes and multi-treks

In [13] rewrite systems are equipped with a notion of residuation inducing a notion of local
homotopy on reductions, based on the four axiomatic properties (SD), (F), (FD), and (PERM).
The properties guarantee that multi-redexes/treks can be developed into reductions, that such
developments have the diamond property, that all developments are locally homotopic, and
finally (the main result) that reductions have lubs and left-cancellation up to local homotopy
(Thm. 2). In fact two sets of four axioms are given in [13], the first one for multi-redexes
and the second more general one for multi-treks. We show that in both cases the main results
of [13] follow by known residual theory for a naturally associated residual system (in the sense
of Sect. 1) on so-called developments, in particular from Thm. 1. We first develop enough
notation to formally express the properties required of a rewrite system → for multi-redexes [13,
Section 2], which informally read:

(self-destruction, SD) no step has a residual after itself;

(finiteness, F) every redex has finitely many residuals after a step;

(finite developments, FD) developments of multi-redexes are finite; and

(permutation, PERM) every peak φ,ψ of steps can be completed by a valley of complete de-
velopments of the residuals of ψ after φ, respectively the residuals of φ after ψ, such that
both legs of the resulting local confluence diagram induce the same redex-trace relation.

We then show that these properties induce a residual system (Def. 1) on developments whose
square homotopy corresponds to local homotopy on reductions, i.e. that Thm. 1 entails Thm. 2:

Theorem 2 (SD,FD,PERM; [13]). ↠ up to local homotopy has lubs and left-cancellation.

Here local homotopy is generated (Def. 5) from the local confluence diagrams given by
(PERM), instead of the square diamonds generating square homotopy (Def. 2). As in the
statement of this main theorem, we qualify (intermediate) results throughout with the properties
used, to enable illustrating that properties are sufficient but not necessary. In [13] residuation
is captured by tracing a redex along a step to its residuals.

Definition 3. A redex-trace relation is a function J⋅⟩⟩ mapping each step φ ∶a→ b to a relation
Jφ⟩⟩ between the redexes of a and b, where ( multi-)redexes are reified (sets of) steps.

3That gives a pushout as witnessed by ε ∶= δ′′/(δ/γ): On the one hand, (δ/γ) ⋅ ε ≃ δ′ ⋅ ((δ/γ)/δ′′) ≃ δ′′ follows
from having a residual system and δ/γ ≲ δ′. On the other hand, (γ/δ) ⋅ ε ≃ ε′′ follows by left-cancellation from
δ ⋅(γ/δ) ⋅ε ≃ γ ⋅(δ/γ) ⋅ε ≃ γ ⋅δ′′ ≃ δ ⋅ε′′ where the 2nd equivalence holds by the above and the others by assumption.

3
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(SD) is formalised as (φ Jφ⟩⟩) = ∅ and (F) as (ψ Jφ⟩⟩) is finite, for any step φ and redex ψ.
Here we use section notation for partial application of relations. The left section of a binary
relation for an object a is (a R) ∶= {b ∣ a R b}. Similarly, the right section is (R a) ∶= {b ∣ b R a}.
This is lifted pointwise to sets by (A R) ∶= ⋃a∈A(a R) and (R A) ∶= ⋃a∈A(R a). Trace relations
naturally extend to reductions and conversions since relations constitute an involutive (typed)
monoid with respect to composition, the identity relation, and converse, so we may e.g. write
⟨⟨←K for the trace relation of ←. We proceed with reifying tracing, labelling objects of the
rewrite system with sets of redexes, which allows to recover the notion of development of [13].

Definition 4. Consider the labelled rewrite system [20, Def. 8.4.5] having for each set Φ of
redexes of a the object aΦ, and for each step φ ∶a→ b the step φΦ from aΦ to b(ΦJφ⟩⟩). A reduction
γ from an object a is a development of Φ if it lifts to a J→⟩⟩-reduction γΦ from aΦ, where J→⟩⟩ is
the restriction of the labelled rewrite system to steps φΦ such that φ∈Φ. We say γ is a complete
development of Φ if its lifting ends in a ∅-labelled object.

(FD) is formalised by all developments are finite,4 and (PERM) by every local peak φ,ψ is
completed by some valley γ, δ of complete developments of (ψ Jφ⟩⟩), (φ Jψ⟩⟩) with Jφ⋅γ⟩⟩ = Jψ ⋅δ⟩⟩.

Remark 2. The lifting γΦ of the reduction γ in Def. 4 is unique. Formally, this is a consequence
of the labelling given being a rewrite labelling in the sense of [20, Def. 8.4.5].

Lemma 2 (FD,PERM). ⟨ ○Ð→,1, /⟩ is a residual system with binary joins/diagonals, for ○Ð→
the rewrite system having as objects the objects of →, and as steps a multi-redex aΦ ∶ a ○Ð→ b
if there is a complete development of Φ from a to b; 1a defined as ∅; residual Φ/Ψ defined as
(Φ JΨ⟩⟩), and the binary join/diagonal given by Φ ∪Ψ (cf. [20, Def. 8.7.28]).

Denoting a multi-redex aΦ by just Φ in the lemma, is justified by that a is the source common
to all steps in Φ, and that all complete developments of Φ have the same target. The join being
a step from the source to the target of a residual diamond, justifies calling it a diagonal.

Remark 3. Parallel rewriting ∥Ð→ [7] does constitute a residual system for orthogonal TRSs,
so does give rise to good residual theory [20], but ∥Ð→ does not have joins, e.g. the join of the
single/parallel steps ι(Ix) and Iι(x) should be ι(ι(x)) but although that is a multistep it is not
a parallel step as it nests ι in itself. Hence, by Lem. 2 it cannot be obtained via multi-redexes;
a first indication that the properties in [13] are too strong.5

Definition 5 ([13]). Local homotopy ≡l on reductions with the same sources/targets, is the
equivalence generated by closing φ ⋅ γ ≡l ψ ⋅ δ for peaks φ,ψ and valleys γ, δ given6 by (PERM)
under composition: if γ ≡l γ′ then δ′ ⋅ γ ⋅ ε′ ≡l δ′ ⋅ γ′ ⋅ ε′. We define γ ⊑l δ if γ ⋅ ε ≡l δ for some ε.

We show local homotopy ≡l on finite→-reductions is the same as square homotopy ≡ on finite
○Ð→-reductions. Observe we may embed → ⊆ ○Ð→ by mapping a step φ ∶ φ → ψ to φ{φ} ∶ a ○Ð→ b

assuming (SD), and vice versa ○Ð→ ⊆ ↠ by mapping each multi-redex aΦ to an arbitrary but
fixed complete development of Φ from a. Below the corresponding coercions (and their stepwise

4Since in [13] only finite reductions are defined, (FD) is (must be) circumscribed there as the absence of
infinite sequences of steps all of whose prefixes are developments of the given set.

5Following the rewrite approach, residual systems do not assume that steps are closed under composition.
Indeed, parallel steps are not, but reductions of parallel steps do have compositions and therefore also joins as
follows from Proposition 1. In our example, both reductions ι(Ix) ⋅ ι(x) and Iι(x) ⋅ ι(x) along the two legs of
the diamond are (equivalent) joins of ι(Ix) and Iι(x).

6For a peak, the choice of valley witnessing (PERM) may be non-deterministic. Essentially this follows since
FD makes Newman’s Lemma apply ‘locally’ to developments, allowing to show that independently of the choice
the induced redex-trace relation is the same; see the proof of Lem. 3 and cf. [15, Prop. 2.4.16] and [17, Thm. 2].

4
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extensions to →-reductions respectively ○Ð→-reductions) are denoted by overlining respectively
underlining, but we omit them as much as possible. Note γ = (γ) for any γ.

Remark 4. (FD) entails the equivalence closures of →, ○Ð→ are the same, but their reflexive–
transitive closures may differ if (SD) does not hold: for steps φ ∶ a → b and φ′ ∶ b → c with only
φ Jφ⟩⟩ φ′ non-empty, we have a→ b and indeed also a ○Ð→ c ○←Ð b, but not a ○Ð→→ b.

Lemma 3 (SD,FD,PERM). ≡ = ≡l and ⊑ = ⊑l (after embedding; in both directions).

The main result on multi-redexes of [13] is now a matter of chaining the above results:

Proof of Thm. 2. Lem. 2 for → induces a residual system on ○Ð→. By Prop. 1 that induces a
residual system with composition on ○Ð→→, which by Thm. 1 has lubs and left-cancellation up to
square homotopy. Hence ↠ has lubs and left-cancellation up to local homotopy by Lem. 3.

. . .

Figure 1: Rewrite system satisfying (SD), (FD) and (PERM) but not (F)

Fig. 1 illustrates the result for a system for which (F) does not hold, a second indication
the properties in [13] are too strong. To recover Thms. 1 and 2 of [13] exactly, using (F), it
suffices to observe that the above can be relativised to a collection R of sets of redexes such
that ∅,{φ}∈R for all redexes φ, and Φ∪Ψ, (Φ JΨ⟩⟩)∈R for all co-initial Φ,Ψ∈R, and note that
the finite sets of co-initial steps constitute such a collection. The example in Fig. 1 is rather
artificially infinite, but note that although the notion of multi-redex extends naturally (under
some provisos) and are at the basis of infinitary confluence [20, Ch. 12], (FD) fails for them, a
third indication the properties in [13] are too strong.

We generalise redexes to treks [13], employing t, s, . . . (T,S, . . .) to range over (sets of) them.

Definition 6 ([13]). A trek-trace relation maps each step φ ∶ a → b to a relation Jφ⟩⟩ between
the treks of a and b, where ( multi-)treks of a are elements (subsets) of a set T (a) quasi-ordered
by ≤a having the redexes of a as its minimal elements, and such that ≥a ⋅ Jφ⟩⟩ ⊆ Jφ⟩⟩ ⋅ ≥b.

Intuitively, a trek is a representation of a reduction and ≤ a causal order on the redexes
contracted; the condition ≥a ⋅ Jφ⟩⟩ ⊆ Jφ⟩⟩ ⋅ ≥b then captures that if a redex has a residual so do
the redexes it causes. Accordingly, we restrict φT in J→⟩⟩ (Def. 4) to steps φ in the ≤-downward
closure of T. After these changes and replacing redex by trek everywhere7, everything above
carries over verbatim, in particular Def. 4, Rem. 2, Lem. 2, Rem. 3, Def. 5, Rem. 4, Lem. 3,
the main result Thm. 2, and their proofs, using the following remark in the proof of Lem. 2:

Remark 5. The properties of ≤ make J→⟩⟩ a labelling of itself: if φT is a J→⟩⟩-step and T ≤ T′,
i.e. t ≤ T′ for all t∈T′, then φT

′

is a J→⟩⟩-step by transitivity of ≤ (if only T ⊆ T′ then transitivity
of ≤ is not needed) and (T Jφ⟩⟩) ≤ (T′ Jφ⟩⟩) by ≥ ⋅ J⋅⟩⟩ ⊆ J⋅⟩⟩ ⋅ ≥ and J⋅⟩⟩ being defined pointwise.

7And also ∈ into ≤ when appropriate, and references to [13, Sect. 2] into corresponding ones to [13, Sect. 3].
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Thus we have shown that the axiomatisation of [13] is sufficient but not necessary for
obtaining a good residual theory. Although one often may factor residual theory through these
axioms, there usually is no need to do so, and residual systems can be constructed directly and
inductively [8, 20]. We conclude with two remarks on the (FD) axiom:

(FD) was not included among the axioms of residual systems [20] as we did not see a
motivation for it. More generally, it is an open question whether finiteness or termination
axioms have a place in analysing causality, cf. [21]. Of course, since they give rise to induction
measures, they may be practically useful, and we are indeed happy to use them if and when
available. For instance, in [15] we showed (FD) to be a consequence of termination of the
so-called substitution calculus (SC) [19] underlying a rewrite format. But for infinitary rewrite
systems termination of the SC and hence (FD) are surely too strong, despite that infinitary
confluence of orthogonal systems is still based on causality/multi-redexes (up to some provisos).

(FD) may be hard to attain. The application of multi-treks to deal with Lévy’s extraction
theory for the λβ-calculus in [13, Section 6] is beautiful,8 but in that application (FD) boils
down [13, p. 46] to finiteness of family developments (FFD), cf. [16]. (FFD) is a key result in
term rewriting at the basis of standardisation, (hyper-)normalisation of strategies, the theory
of optimality, and more, but it also is subtle: It was formulated for the λβ-calculus by Lévy,
forming the basis of his beautiful theory of optimality [10], but he resorted [5] to asking the
Dutch, van Daalen (whose proof is employed in [10, Sect. II.1.5]) and de Vrijer [4, Stellingen],
to prove it.9 Melliès showed [12, Section 6.2.2] the result [9, Thm. 6.2.4] underlying the proof
of (FFD) for Klop’s combinatory reduction systems (CRSs) to be incorrect, leaving it and its
consequences such as standardisation in limbo. We proved (FFD) for HRSs, hence CRSs, by
adapting van Daalen’s nifty proof [16], cf. [3].10

Acknowledgments Thanks to the IWC 2021 reviewers for feedback.
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