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Abstract
This is a collection of five short notes on A-calculus:

An FEasy FEzpansion Ezercise, written at NT'T, Basic Research Lab-
oratories, Atsugi, Japan.

FD ala Church and FD a la Tasit, written at Puri Ulun Carik, Ubud,
Bali, Indonesia.

Zooming-in on Omega and A\zzz.x € rxx, written at TUM, Miinchen,
Germany.

They were written as divertimenti for myself. In the notes some novel
ways of applying known techniques to obtain known results are presented
(except for the last note which actually contains a new result).



An Easy Expansion Exercise

Exercise 3.5.11.(vii) of [Bar84], displays two lambda terms (Az.bxz(bc))c and (Az.zx)(bc)
due to Plotkin, having a common one step beta reduct be(bc), but which do not have a
common beta expand, i.e. are not upward confluent.

Conjecture 3.2.38 of [Oos94], displays two other lambda terms (Az.a(b(x)))(c(d)) and
a((Ay.b(c(y)))d), having a common one step beta reduct a(b(c(d))), but which were conjec-
tured not to have a common beta expand. Here we prove this conjecture by elementary
means.

Suppose s = (Az.a(b(x)))(c(d)) « r - a((Ay.b(c(y)))d) = t. By standardisation [Bar84,
p. 296] the common expand can be reached by standard expansions: s «4 r —, t, which we
may assume to differ already in the first step from r. Let’s display the leftmost of these two
redexes: r =...(Az.M)N ..., and call the standard rewrite contracting this redex ¢ and the
other one 7. By definition of standardisation, the displayed part ... (Az is preserved by 7.

1. If 7 ends in ¢, then since ¢ contains only one A, we must have that z = y and r =
a((A\y.———, which cannot rewrite to s,

2. If 7 ends in s, then since s contains only one A, we must have that z = x and r =
(Az.M)N, with M — a(b(z)) and N — ¢(d). Because of this last fact one can trace
the descendants of N in the standard reduction o : r = (Az.M)N —; Mz := N| —;
a((Ay.b(e(y)))d) =t. We know by confluence that any such descendant must reduce to
c(d). It is trivial to check that ¢t does not contain subterms reducing to ¢(d), so t does
not contain descendants of IV, hence we also have M = M [z := z| -4 a((Ay.b(c(y)))d).
Since M — a(b(z)), this would contradict confluence.

The advantage of our terms over Plotkin’s is that they are also elements of restricted
lambda calculi such as linear and typed lambda calculus (the most complex type needed is
0— 0). Moreover, the terms make clear that different ways of ‘splitting’ a term are one cause
for failure of (local) upward confluence of beta.

As remarked by Paula Severi ([Sev95]) from this every term can be shown to be non-
upward confluent, by using the K-combinator. We do not know whether upward confluence
also fails in linear lambda calculus. As an interesting aside, Statman showed that for combi-
natory logic atoms and only those are upward confluent ([Sta93]).
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FD a la Church

We discuss some variations on a proof by translation into Church’s AI-calculus, of the fact
that all developments are finite in A-calculus.

Introduction We assume the reader to be familiar with the basic syntactic theory of lambda
calculus [Bar84] and only recapitulate main/less familiar no(ta)tions.

DEFINITION 1. The set A of underlined lambda terms is inductively defined by:

var) z € A, for all (countable many) variables z,

(
(app) M, N € A = MN €A,
(

(

|
=

abs) M € A = Az.M € A,
beta) M, N € A = (Az.M)N € A.
The rewrite relation on A is generated by the rule: 3: (Ay.P)Q — ply—al,

A development in A-calculus is the projection (by forgetting the underlining) |My| —g |M1] —p5 ...
of a rewrite My —g My —g ... in A. A term is said to be strongly normalising (SN) if there are
no infinite rewrites starting from it.

THEOREM 2 (Finiteness of Developments (FD)). A is SN.

Although many proofs are known of this theorem, in the rest of this note we will be concerned
with proving it. At several places in literature, it was remarked that FD can be proven by
translating A into some strongly normalising lambda calculus, where the translation preserves
rewriting and reflects SN. In [Kri90], [OR, Ghi], and [RS95] lambda calculus with intersection
types, simply typed lambda calculus, and SN were used as respective target calculi. Here we use
a memo(ry) calculus (A™) as target calculus.

DEFINITION 3. The set A™ of memo terms is defined by the same clauses as A, but for (beta):
(beta™) M, P, N € A™ = (Az.MP)N € A™, if = has at least one free occurrence in M P.
The embedding function ¢ : A — A™ maps each A-construct except (beta) onto its A™ pendant,
((Az.M)N) =2 (\z.o(M)z)e(N)

The projection function = : A™ — A maps each A™-construct onto the corresponding one for A,
but for (beta™) for which 7 is defined by:

m((Az.MP)N) =4 (A\z.z(M))x(N)
A™ is closed under rewriting and wo: = id. The embedding ¢ can be lifted to rewrite sequences.
LemMA 4 (Lifting). Let 7(M) —g N', then there ewists N, such that M — N and w(N) = N".

Since no B-redexes can be created in A, we need not worry in the proof of the lemma whether
the ‘memory’ P prevents creation of redexes in A™ (cf. [Klo80]). The lemma reduces the question
of strong normalisation of M to the same question of ¢(M).



Church One observes that ¢(M) is a term in (an underlined version of) Church’s Al-calculus.

THEOREM 5 ((global) Conservation). For any non-erasing orthogonal rewriting system, strong and
weak normalisation coincide.

Proor This was first proven by Church for AI-calculus [Chu4l, p. 26, 7 XXXI], and later gen-
eralised by Klop to combinatory reduction systems [K1o80, Thm. I1.5.9.3]. A standard argument
runs as follows. For orthogonal rewriting systems, developments satisfy the diamond property (see
[O0s94] for notation):

=

M—e—»
U

1% U\vV

- —

P—e—»

V\U

O

where the common reduct () can be reached from M either by first developing redexes in U and
then the descendants of V' after U, or by developing redexes in V followed by the descendants of U
after V. If the system is non-erasing, we know moreover that V\U = 0 iff U C V. Let M —e»y N,
where N is a normal form, and consider a (possibly infinite) rewrite sequence d: M —e—»y My —e—yy,
My —e—y, ..., then we have

m
M —o> M; o> M1 =N
| U | |
‘iV Vi ‘ivm+1—®
m
0 0

for some m. This holds, since d must be a development of V-redexes, and all developments are
finite. Repeated application yields the desired result that if a rewrite sequence M — N to normal
form N exists, M must be SN. ®

REMARK 6. The theorem corresponding to Theorem 5 as [Bar84, Thm. 11.3.7] corresponds to
[Bar84, Thm. 11.3.4], reads as follows.

THEOREM 7 ((local) Conservation). For any orthogonal rewriting system non-erasing rewrile steps
reflect SN.

This was recently shown to hold for the class of higher-order rewriting systems [Mel95].

The conservation theorem can be applied to show FD by observing that the rightmost innermost
strategy reduces ¢(M) to normal form, so t(M) and hence M itself is strongly normalising.

Unfortunately, there seems to be a circularity in the argument, since FD is used in the proof
of the Conservation Theorem. However, in the proof only FD for non-erasing rewriting systems
is needed. In [Chud4l, p. 20, 7 XXV] FD for Al-calculus is proven, by bounding the length of
arbitrary developments by that of standard developments (i.e. developments which are standard
in the sense of [Bar84]).!'2 Here we present a method due to Hyland [Hyl73], which can be viewed
at as avoiding the circularity by restricting developments —e— in the proof above to parallel rewrite
steps —f. To show that parallel rewrite steps satisfy the diamond property, one needs that A
satisifies the disjointness property (DP) meaning that all descendants of a redex are disjoint (not
nested). Although the method was originally introduced for underlined A-calculus, we present it
here only for the, technically more convenient, case of underlined AI-calculus.

!For A-calculus this does not hold, and a different notion of ‘standard’ is needed, cf. [RS95].
2Based on the above, one could say that Church had all the tools to prove FD for A-calculus.



Hyland
LEMMA 8. Al = DP.

DEFINITION 9. An M -path o, is a sequence of positions in M, inductively defined by:
(var) € is an z-path,

(app) if o is an M-path, then ¢, 00 is an M N-path, where i7 denotes the path obtained from
T by prefixing each element with i. If o is an N-path, then €, 1o is an M N-path.

(abs) if o is an M-path, then €,00 is an Az.M-path.

(beta) if o is an M-path not ending in z, then ¢,0,000 is an (Az.M)N-path. If o is an
M-path ending in z, and 7 an N-path, then €,0,000, 17 is an (Az.M)N-path. z is said to
be the binding variable for NV on that path.

The usual descendant relation on positions is pointwise extended to paths, with two exceptions.
Positions which do not have a descendant are erased. Positions on a path, which are in the
argument N of the contracted redex, only descend to the copy of NV substituted for the binding
variable for N on that path.

Some remarks about paths are in order. Our definition of paths can be viewed as a concrete
version of persistent conclusion-to-conclusion paths as defined in [DR, Sec. 2.4]. Every path starts
at the root, ends in some variable, and descends to exactly one path along any rewrite step. The
positions on a path are in lexicographically increasing order. If some redex is a subterm of another
one, there is some path through both of them.3

Figure 1: Transformation of paths

LeMMA 10. The descendant relation induced by contraction of a redex is a bijective correspondence
on paths.*

3Non-erasingness is essential for this in the case of beta.
4Bijectivity is lost for erasing calculi, causing technical inconveniences both in the statement of the (correspond-
ing) lemma and its proof.



PROOF By a tedious case analysis (cf. [Klo80, Sec. 1.4.3]) or by looking at Figure 1, showing
how paths are transformed by contracting the redex (Az.M)N. Preservation of paths is obvious.
Reflection follows from the observation that no path can visit more than one copy of N. This
holds, since a path visiting one copy of N can only exit from it through a variable position which
was bound outside the entire redex (Az.M)N. ©®

DP can now be proven as follows. Consider an arbitrary path in the initial term of a rewrite
sequence and a redex on that path. By the pointwiseness of the descendant relation on paths, we
have that at most one residual of the redex is on the residual of the path, anywhere along the
rewrite. If two redexes in some term along the rewrite are nested, then there is a path through
them, which means they cannot be residuals of one and the same redex.’
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FD a la Tait

The shortest proof of the fact that all developments in lambda calculus are finite is presented.

We assume the reader to be familiar with the basic syntactic theory of (untyped, underlined)
lambda calculus [Bar84], and only recapitulate main/less familiar no(ta)tions.

DEFINITION 1. The set A of underlined lambda terms is inductively defined by:
(var) = € A, for all (countable many) variables z,
(@) M,NeA = MN €A,
(abs) M e A = \z.M €A,
(beta) M, N e A = (Az.M)N € A.
The rewrite relation on A is generated by the rule: 3: (Ay.P)Q — ply—al,

A development in A (untyped lambda calculus) is the projection (by forgetting the underlining)
|Mo| —pg |Mi| —5 ... of a rewrite My —g M; —g ... in A. A term is said to be strongly
normalising (SN) if there are no infinite rewrites starting from it.

THEOREM 2 (Finiteness of Developments (FD)). A is SN.

PROOF We prove for all A-terms M and substitutions o mapping the free variables of M to A-
terms in SN, M € SN, by induction on the derivation of M € A, from which the theorem follows
taking the identity for o.

o

(var) z° = o(x) € SN, by assumption,

(app) (MN)? = M?N? € SN by induction hypothesis for M and N (note that A° cannot
rewrite to Az.M’, since A is closed under 3),

(abs) (Ax.M)? = Az.M? € SN by induction hypothesis for M,

(beta) ((Az.M)N)? = (Ax.M°)N?. M° and N? are SN by the induction hypothesis, so an
infinite rewrite must be of the form (Az.M°)N? -5 (Az.M')N'" — 5 M'l==N'] —5 ..., but

M'le=N] “p Me==N"1 ¢ SN by induction hypothesis. ®

The proof is based on the following standard (and easy to prove) properties of A, making it a
calculus. (1) A is closed under rewriting. (2) A is closed under substitution. (3) if M —z M' and
N -5 N', then M=N 4 M'==N'l for any variable z.

There are several ways to arrive at this proof. (1) The proof can be viewed upon as a specialisa-
tion of Tait’s computability proof of SN for simply typed lambda calculus (A°) [Tai67], exploiting
the observation that induction-loading on the predicate SN is not necessary here since no redexes
can be created. (2) Removing the indirection via the set SA” in the proof by Van Raamsdonk
and Severi [RS95] gives rise to it. (3) It can be found by looking for a proof which has the same

relationship to De Vrijer’s proof of FD [Vri87], as Tait’s proof has to De Vrijer’s proof of SN for
A% [Vri87].
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Zooming-in on Omega

Q = (Az.zz)Ay.yy is the smallest term in the lambda calculus with S-reduction which is not
normalising. Recently it was observed by Sgrensen that (2 is also generic in the sense that
it can be textually embedded in any non-strongly normalising term. We present a small
variation on his proof using a zoom-in (or constricting) strategy.

Familiarity with the basic syntactic theory and no(ta)tions of the lambda calculus in [Bar84]
is assumed. We write N < M to denote that N can be textually embedded in M, e.g. Ax.xz <
Az.(Az.zz(Ay.x)), but not Ax.zx < (Az.x)Az.x since we assume the Variable Convention. If zx /
<M the term Az.M, the redex (Ax.M)N, and a step contracting that redex are called linear.

Definition 1 Let co(M). A minimal step contracts the leftmost redex of a minimal oco(N) C M.
A zoom-in strategy ([Mel95, Sec. 6.1]) always contracts a minimal step such that the rewrite
sequence looks like M = C[N]| — C[M'] = C[C'[N']] — C[C'[M"]] = C[C'[C"[N"]]] — .. ..

Observe that in this definition co(M') holds since the leftmost redex in N must be contracted
in any infinite rewrite sequence starting from N by the minimality assumption, hence the zoom-in

strategy is well-defined. This is an instance of a so-called constricting strategy (cf. [Gra95, Rem.
3.3.7)).

Lemma 2 ([Sgr95]) If co(M) then Q@ < M.

Proof It suffices to show that terms in which all non-linear subterms are nested, e.g. Az.xz(Ay.yzy),
are strongly normalising. So consider a totally nested term M such that if R and R’ are non-linear
subterms of M, then R C R’ or R’ C R. Totally nested terms are closed under rewriting since
duplication of non-linear subterms cannot happen by totality and creation of non-linear subterms,
e.g. A\y.(Az.xx)y — Ay.yy, can only happen towards the root by contraction of a non-linear redex
preserving totality. In particular, consider a step C[N] — C[M'] in a zoom-in sequence. By
the minimality assumption N cannot be of the form Az.S or z§, so must look like (/\a:.P)Qg.
Creation of non-linear subterms can only happen if Az.P is non-linear and () contains variables
bound outside N. Since these binders are outside N they stay put afterwards by the definition
of zoom-in strategy, motivating measuring the step by the pair (n,||N||), where n is the number
of non-linear subterms occurring in V. Ordered lexicographically this measure decreases in every
step contradicting infinity of the zoom-in strategy and hence of M. O
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I never did, I never did, I never did want
“Hold-my-hand”;

I never did, I never did, I never did think much of
“Not up there, dear!”

It’s no good saying it. They don’t understand.

A. A. Milne, When We Were Very Young. 1924.

\exx.x & rrx

We toy a bit with the weak Church-Rosser (WCR) property of 3-expansion in the A-calculus.
Azzz.x and zxx are shown to be smallest M\-terms (textually, in shorthand notation) allowing
violation of the blocked and balanced conditions, hence the smallest non-WCR A-terms.

Familiarity with the basic syntactic theory and no(ta)tions of rewriting in general and the A-
calculus in particular is assumed ([Bar84, DJ91]). In C[M[N]p]., r specifies the position of M[N]
and P the set of positions of N (disjoint and below r), where FV(N) C FV(M[N]). The pair
rP is called a pattern (occurrence), P a cut-set and the step f-expanding rP is C[M[N]] ,p—
Cl(Az.M)N].

Definition 1 (Independence) Let TP and sQ be patterns. Ifr || s, then P || sQ (disjointness).
If p < s for some p € P, then rP < sQ (nesting). If r < s and for allp € P, g € Q, p £ ¢
(blocked) and the sets {¢'|qq’ € P} are the same (balanced), then rP B s@ (encompassment).
Two patterns in a A-term and their corresponding B-expansion steps are independent if they are
disjoint or one nests or encompasses the other. Dependence is non-independence, denoted by <.

Note that the three cases of independence roughly correspond to the three possible relative
positions of two distinct S-contraction steps. Disjoint J-redexes give rise to disjoint patterns and
a (-redex inside the argument N (body M) of a redex (Az.M)N results in nested (encompassed)
patterns. Balancedness is vacuously true in the case of affine (-expansion steps, i.e. if the cut-
set contains at most one element. If the cut-set is empty blockedness holds as well, hence the
corresponding ex nihilum step is independent of any other step.

Lemma 2 (WCR) Independent (3-expansion steps are WCR.

Proof By cases for patterns 7P and sQ in C[K[L]p], = R = D[M[N]g]s.
1. If rP || sQ, R = E[K[L], M[N]] in which case E[(Az.K)L, (Ay.M)N] is a common expand.
2. It rP < sQ, R = C[K[L[M[N]]]] and C[(Az.K)L[(Ay.M)N]] is a common expand.

3. If rP® s5Q, then define P| = {p € P|s < p&Bge Q.g<p}and P> = {p€ P|Ig € Q.q¢ < p}.
Then R = C[K[E[z]p, [F[z]p,]|[L]], where E[z := L] = M using blockedness and F'z :=
L] = N using balancedness, and C[(Az.K[(Ay.E[z])F[z]])L] is a common expand. O

The diagrams resulting from the constructions of the common expand of independent steps are
usually referred to as elementary diagrams.

Example 3 (Accidents Syntaxiques) Let I = A\z.z.

1. Az I(I(2)))(IT) =1y II(ID)) 1q111p I((AyI(TIy))I). Since 1 £ € and 111 > 11 neither
step encompasses the other and e{11} = 1{111}, but I((Az.I(Iz))(II)) is a common expand.

2. (AyyyDI = cg00,013 T cgo1,13 (AyIyy)L. Since {p'|00p" € {01,1}} # {p'|01p" € {01,1}}
and {p'|01p’ € {00,01}} # {p'|1p’ € {00,01}} neither step encompasses the other and
€{00,01} < €{01,1}. Nevertheless (Ay.Iyy)((Ay.yyD)I) is a common expand.

3. Write (M, P) (M with memory P) for (Ax.M)P where x ¢ FV (M) and consider a diver-
gence consisting of two ex nihilum steps (L, MY —.5 L g (L,N) for arbitrary M and N.
Since the patterns are equal they encompass each other. Their common expands as computed
in the lemma, ({(L, M), N) and {({L,N), M), differ.

4. IL = L qpe— (L, M). We have e{e} < €, e{e} B €D as well as e)B e{e}. The computed
common expands are (L, M) and (IL,M).



That the weak Church-Rosser property in the first two items holds in spite of dependence of
the initial steps is a bit lucky, as is shown by the next lemma.

Lemma 4 (Non-WCR) Dependent 3-expansion steps from a S-normal form are not WCR.

Proof The proof assumes familiarity with the notions in [Lév78]. We show that the final steps
of two permutation equivalent rewrite sequences are independent (or identical), from which the
lemma follows since all coinitial reductions to normal form are permutation equivalent. For a
contradiction let M —.;—=4;—, N and M —,;—,;—, N, where z;0 and y;7 may be assumed
standard and also z <je; ¥y may be assumed. By = <j., y and standardness of y;7, z/(y;7) = 2’
(z' is z after y;7). By permutation equivalence z'/v = 0, so v < z' and there exists a unique
v <z such that v'/(y;7) = v.

1. If v’ < z, then by standardness of x; o, v'/(z;0) = v". By permutation equivalence v /u = 0,
so u < v" and one easily concludes v = u.

2. Suppose v' = x and contributes to u. Consider the initial labelling of the two rewrite sequences,
then using the first rewrite sequence the label of v occurs with one over/underlining in the
final result since v is contracted as the last step, but using the second sequence it occurs
with at least two over/underlinings in the final result since v contributed to u. quod non.

3. Suppose v' = x and does not contribute to u. If u <;.; v' then one can proceed as in the
first case. Let v’ : C[(A\x.K)L] —p C[K[L]]. The separation of L from the rest can be
maintained along o by standardness, o : C[K[L]] — C[K’[I:”]], where o : K[z] - K’[i:]
and o; : L — L}. We distinguish cases according to where u is contracted.

(a) Let u be inside K'. If no L has descendants after u, o can be lifted to ¢’ : C[(Az.K)L] —
Cl(Ax.K'")L] via 0. If some L, has descendants after u, all descendants of L must be

in normal form L}, so o can be lifted to ¢’ : C[(Az.K)L] - C’[(Am.K’[a?])L’] via 0;;0k.
(b) Let u be inside L}. We lift o to ¢’ : C[(Az.K)L] — C’[()\:cK’[:E])L;] via ;.
(c) no other cases are possible by standardness and since v’ did not contribute to u.

In each of the three cases, v';0;u is permutation equivalent to o';v";U for v = v'/o’

and U/v" = w. Since v""/U = v (v is externall) and U/v"” = u, we have constructed an
independence diagram. O

Example 5 (Non-Accidents) 1. Let (Az.a(b(x)))(cd) —cqi1y a(bled)) 1{1113¢ a((Ay.b(cy))d)
([00s94, Conj. 3.2.38]). One computes as above e{11} = 1{111} (blocks are disturbed) and
we conclude non-WCR from the lemma.

2. Consider the divergence (Az.bx(bc))c —cfo1y be(be) cfo,13 (Az.xx)(be) due to Plotkin ([Bar8y,
Eze. 8.5.11.vii]). One computes as above that e{01} = €{0,1} (either a block or balance are
disturbed) and we conclude non-WCR.

To disturb a block one easily computes that at least 4 symbols nested inside each other are
needed and Azzz.x is the shortest term achieving this. To disturb balance at least 5 symbols are
needed, and zzx has them. It is left to the reader to construct the non-WCR divergences.
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