
Weak orthogonality implies confluence:
the higher-order case

Vincent van Oostrom* and Femke van Raamsdonk**

Abstract

In ~his pape~ we prove confluence for weakly orthogonal Higher-Order Rewriting Systems.
This generalises all the known 'confluence by orthogonality' results.

1 Introduction

This paper deals with higher-order rewriting. There seems to be no generally accepted definition
of 'higher-order'. As far a.s rewriting is concerned, it seems reasonable to consider systems with
rules describing how to transform objects, i.e. expressions over a first-order language to be 'first­
order'. This corresponds to what is done in (first-order) term rewriting systems. A rewriting
system is then to be called 'higher-order' if it may contain rules describing transformations of
functions, not only of objects. In order to be able to write down rules describing transformations
of functions, one should be able to denote functions by terms. After Church, functions are
written a.s a term by means of an operator for abstraction. In the case of Church's >.-calculus,
this operator is denoted by >.. For instance, the term denoting the function f : x H x2 is
>.x.x2 • So, for being 'higher-order' a rewriting system should contain an operator for abstraction
such that functions can be denoted by terms. In this paper, we will use -·-to denote the
abstraction operator for higher-order rewriting systems. As soon a.s one has abstraction, there
is the need to express application of a function to an argument. In the case of >.-calculus, this
is done by an binary application operator, which usually is denoted by juxtaposition of two
terms. E.g. in >.-calculus, (>.x.x2)2 denotes the application of the function f : x H x2 to the
argument 2. In this paper we choose for the applicative style, like in >.-calculus. Note that
instead of having an application operator it is also possible to provide all function symbols and
variables for functions with a fixed arity, i.e. the number of arguments to which they should
be applied. Various formats of higher-order rewriting have been considered recently, which all
have the possibility of expressing 'abstraction' and 'application'. We mention for instance the
Contraction Schemes defined by Aczel, the Combinatory Reduction Systems defined by Klop,
the Higher-order Rewrite Systems defined by Nipkow and the Higher-Order Term Rewriting
Systems introduced by Wolfram. In spite of the common basic features, there are some subtle
differences between these rewriting systems, which makes it difficult to compare their expressive
power and makes it sometimes impossible to apply a result obtained for the one class to systems
of another class.

The main difference between these systems is in the way the application of a function to
an argument is evaluated, (see [OR93]), i.e. the way in which rules are instantiated. In general,

explicitly or implicitly some language is used for instantiating rewrite rules. This language is
a parameter of a Higher-Order Rewriting System, and is called a substitution calculus. Thus
we attempt by introducing Higher-Order Rewriting Systems to unify the existing theory of
higher-order rewriting by preserving the common basic features and by parametrizing over the

• Department of Mathematics and Computer Science, Vrije Universiteit, De Boelela.a.n 1081a., 1081 HV
Amsterdam, email: oostrom@cs.vu.nl
•• CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, email: femke@cwi.nl, supported by NWO/SION
project 612-316-606

380

differences. In addition, having a substitution calculus as a parameter of a rewriting system
could lead to a better understanding of substitution in rewriting.

Intuitively, the rewrite rules of the substitution calculus describe the behaviour of abstrac­
tion, and the rewrite rules of the Higher-Order Rewriting System describe the behaviour of the
operators that are typical for the Higher-Order Rewriting System. Most often the substitution
calculus is a ,\-calculus with ,13-reduction. The operators in the rewrite rule of the substitution
calculus must be in the alphabet of the Higher-Order Rewriting System, otherwise the sub­
stitution calculus has no 'grip' on the terms of the Higher-Order Rewriting System. Further,
performing a substitution should yield a unique result. This is ensured by requiring the sub­
stitution calculus to be confluent and terminating. Some more conditions are imposed on the
rewrite relation of the substitution calculus in order to ensure a smooth interaction with the
rules of the Higher-Order Rewrite System.

Now we will explain informally how to use a substitution calculus. Consider the following
rewrite rule, calculating the derivative of the sum of two arbitrary functions f and g.

d(x.(fx + gx))-+ y.((d(x.fx))y + (d(x.gx))y)

We take the prime example of a substitution calculus, simply typed >.-calculus with ,13-reduction
and f)-expansion, as substitution calculus. A rewrite step due to this rule is obtained by in­
stantiating the variables f and g. In Higher-Order Rewriting Systems, this is not done by a
valuation, on a metalevel, but by means of the substitution calculus. The substitution calculus
is used to substitute terms for bound variables. So, f and g must be turned into bound variables.
Abstracting over f and g yields:

f.g.(d(x.fx + gx))-+ f.g.(y.((d(x.fx))y + (d(x.gx))y))

Suppose we want to instantiate f by x.x2 and g by x.5x (denoting the functions x i--+ x2 and
x >--+ 5x). We can build an expression M, having the left-hand side of the rule and x.x2 and x.5x
as subexpressions, such that it can be reduced by ,13-reduction to the intended instance of the left­
hand side: M = (f.g.d(x.fx+gx))(:z:.x2)(x.5x) '"'*fJ d(x.(x2+5x)) = N. This instance of the left­
hand side then can be rewritten to 'the same' instance of the right-hand side, which is obtained
by replacing the left-hand side in M by the right-hand side and reducing to ,13-normal from: M' =
(f.g.(y.((d(x.fx))y+ (d(x.gx)y))))(x.x2)(x.5x) '"'*fJ y.(d(x.x2)y+ d(x.5x)y) = N'. We then have
a rewrite step N -+ N'. So rewriting in a Higher-Order Rewriting System takes place modulo
the substitution calculus. We have now seen that a rewrite rule is instantiated by placing it in a
suitable context which has the terms by which the variables are to be instantiated as subterros,
and reducing it to normal form in the substitution calculus. Conversely, a term can be rewritten
by a rewrite rule l -+ r, if it can be expanded in the substitution calculus to a term having l
as a subterm. By replacing I by r and reducing the result to normal form in the substitution
calculus, we obtain a rewrite step. In the previous example, d(x.(x3 + 2x)) can be rewritten
to y.(d(x.x3)y + d(x.2x)y), since we have d(x.(x3 + 2x)) p«- f.g.d(x.fx + gx)(x.x3)(x.2x)-+
f.g.(y.\(d(x.fx))y+ (d(x.gx)y)))(x.x3)(x.2x) '"'*fJ y.(d(x.x3)y + d(x.2x)y).

After introducing Higher-Order Rewriting Systems, we prove all weakly orthogonal Higher­
Order Rewriting Systems to be confluent. This extends the confluence results that have been
obtained so far. First because confluence for higher-order rewriting so far has been obtained
under the restriction of orthogonality. In orthogonal systems there are no critical pairs, whereas
in weakly orthogonal systems the presence of trivial critical pairs is allowed. The proofs for
the orthogonal case are done in two ways: by a method due to Tait and Martin-Lof and via
developments. We prove confluence for weakly orthogonal higher-order rewriting in both ways.
Second, our work generalizes work on confluence of higher-order rewriting since the class of
Higher-Order Rewriting Systems contains all recently studied formats of higher-order rewriting.
This is the case because of the parametrization over the substitution calculus. For a presentation
of term rewriting systems, Higher-order Rewrite Systems and Combinatory Reduction Systems
as Higher-Order Rewriting Systems, see [Oos94] .. Complete proofs of the results in this paper
can be found in [Oos94] and in a forthcoming CWI-technical report with the same title as

381

the present paper. As applications of the main result of this paper we mention the following.
All weakly confluent Higher-Order Rewriting Systems as defined by Nipkow are confluent. All
weakly orthogonal Combinatory Reduction Systems as defined by Klop are confluent. Further
this yields a direct proof of (the well-known) confluence of system F with ,617-reduction. '

2 Higher-Order Rewriting Systems: syntax

In this section we give the definition of a Higher-Order Rewriting System. For an extensive ac­
count on higher-order rewriting we refer to [Oos94]. A Higher-Order Rewriting System (HORS)
is defined as a triple consisting of an alphabet, a substitution calculus· and a set of rewrite rules:
'H = (A, SC, n). The alphabet contains an operator for abstraction, by means of which func­
tions can be expressed as terms. We choose for the applicative style, where besides the symbols
for the abstraction operator and the application operator, all other symbols are nullary. There
are two kinds of operator symbols: symbols for substitution operators and symbols for rewrite
or defined operators. The defined operators are the ones whose operational semantics is given
by the rewrite rules of the Higher-Order Rewrite System; they are the 'real' operators. The
substitution operators are used only by the rules of the substitution calculus.

DEFINITION 2.1 An alphabet A of a Higher-Order Rewriting System consists of:
• symbols x y z ... for variables; among them are special symbols 0 1 , 0 2, •.. for distinguished

variables called holes in Var,
• a symbol Ap for the application operation,
• a symbol -·-for abstraction,
• symbols UV W ... for substitution operators in Osc,
• symbols F G H ... for rewrite or defined operators in 07<..

The union of 01<. and Osc is denoted by 0 and its elements are denoted by a. The alphabet of
the substitution calculus, denoted by Asc, consists of the symbols for variables, term forming
symbols for application and abstraction, and of the symbols in Osc. The alphabet A in fact
consists of on the one hand symbols for the substitution calculus, for which, as we will see later
on, rules are defined that give the semantics of abstraction (and its interaction with application),
and on the other hand symbols for the Higher-Order Rewriting System, the semantics of which
is given by the rewrite rules of the Higher-Order Rewriting System itself. Expressions over A
are called preterms.

DEFINITION 2.2 The set Pre Terms of preterms is defined as the least set satisfying:
1 x E Pre Terms for every variable x E Var,
2 a E Pre Terms for every operator a E 0,
3 if Mo E Pre Terms and M1 E Pre Terms, then Ap(Mo, M1) E Pre Terms,
4 if M E Pre Terms and x E Var then x.M E Pre Terms.

A variable x occurs free in a preterm M if it is not in the scope of an abstraction x._ and bound
otherwise. The set of variables that occur free in a preterm M is denoted by :FVar(M), and
the set of variables that occur bound in t is denoted by BVar(M). By the Variable Convention,
one may assume FVar(M) n BVar(M) = 0. If all variables occur bound in a preterm, then the
preterm is said to be closed.

NOTATION 2.3 We write M0M1 for Ap(Mo,M1). We write X1 .. . Xn.M for XJ Xn.M.

A precontext is defined as a preterm in which all occurrences of holes are made explicit. If the
holes occurring in a precontext are among 01, ... , On, then it is called an n-ary precontext,
and it is denoted by C[, ... ,]. A unary precontext is denoted by C[]. For a unary precontext
we usually don't make the index of the hole occurring in it explicit. The result of replacing
occurrences of 0 1, ... ,Dn by closed preterrns M1, .. .,Mn is denoted by C[M1,. . .,M,i]. An
n-ary context is said to be linear if every hole O; (for i = 1, ... , n) occurs exactly once in it.

382

Positions are defined in a standard way, we denote them by </>, 1(;, X· The set of positions
Pos(M) of a preterm M and the symbol of M at position </>, denoted by </>\M are defined as
usual.

As remarked above, two sets of rules operate on the set ofpreterms. The rewrite rules that
give the semantics of the defined symbols will be defined below. First we will consider require­
ments the substitution calculus should satisfy. For the moment, we ignore typing problems and
we assume the preterms that are considered to be well-formed. For example, if the substitution
calculus is simply typed >--calculus, we assume all terms to be simply typable.

If a preterm contains redexes for the substitution calculus, then substitution is not yet
carried out fully. One would like that calculating the result of substituting yields a result, and
moreover that this result is unique. This is guaranteed by requiring the substitution calculus
to be complete, i.e. confluent and terminating. As we will see later on, rewriting in a Higher­
Order Rewriting System is performed modulo the substitution calculus. Completeness of the
substitution calculus yields that every equivalence class of preterms has a unique representative
which is found by reducing any member of the equivalence class to normal form with respect to
the substitution calculus.

Further, there are two natural requirements on the convertibility relation of the substitu­
tion calculus, namely that it is closed under contexts and closed under substitution. A technical
motivation for them will be given after defining rewrite rules for Higher-Order Rewriting Sys­
tems.

Finally, there is a requirement on the substitution calculus concerning its descendant
relation. In rewriting, one is often interested in tracing what happens to symbols, or rather
to positions of symbols. What happens to a position in a term M during a rewrite sequence
M N is described by means of a descendant relation, relating positions of M to positions of N.
In Higher-Order Rewriting Systems, we will be interested in what happens to defined symbols
during rewrite sequences. Since the rewrite relation of a Higher-Order Rewriting System is
defined via the rewrite relation of its substitution calculus, it is natural to define a descendant
relation for a Higher-Order Rewriting System via the descendant relation of its substitution
calculus. Therefore a substitution calculus should have a descendant relation. For keeping the
definition of a Higher-Order Rewriting System as general as possible, the form of the rules of a
substitution calculus is not specified. Nevertheless one should have some information concerning
their behaviour. Part of that is obtained by imposing two requirements on the descendant
relation of a substitution calculus: we will require it to be 'natural'. First we define what is a
descendant relation of a substitution calculus.

A descendant relation maps a step u : M N to a relation ~ between positions of M
and positions of N. The descendant relation is extended straightforwardly to rewrite sequences
of arbitrary length and to conversions.

DEFINITION 2.4 Let LJ be the descendant relation of the substitution calculus SC. It is said
SC

to be natural if the following holds:
1 Let C[] be a unary context such that u : C[] __,SC D[]. Let the step u' be obtained

by replacing the hole by a closed term M: u' : C[MJ SC D[M]. Then the positions of
M in C[M] are related to the positions of M in D[M] via the positions of the hole, and
the positions of C[] in C[M] are related to the positions of D[J in D[M]. That is, for
4> E Pos(C[]) and 'I/; E Pos(D []), we have

4>~11/J
and for X E Pos(M), 4>' a position of the hole in C[] and 1/J' a position of the hole in D[],
we have t/>1; x~l'lf;'; X·

2 For two reductions to SC-normal form d1 : M -sc M' and d2 : M -+>sc M' we have

~=~I·

383

Both the definition of descendant relation and the one of 'naturality' can be given in more
general setting, but this is beyond the scope of the present paper. See however [Oos94]. In the
following definition the requirements on the substitution calculus that are discussed hitherto are
listed.

DEFINITION 2.5 The rewrite rules of a substitution calculus must satisfy the following require­
ments:
1 {completeness)

The rewrite rules of a substitution calculus generate a confluent and terminating rewrite
relation on the set of expressions over A. The rewrite relation of the substitution calculus is
denoted by -+sc.

2 (closure under contexts)
The conversion relation +-+*sc generated by the rewrite rules of a substitution calculus SC is
closed under contexts, i.e. if M+-+"scM' then C[M]+-+*scC[M').

3 {closure under substitutions)
The conversion relation -·sc generated by the rewrite rules of a substitution calculus is
closed under substitution, i.e. C[] •scC'[) then C[M)+-+*scC'[M).

4 { naturality)
A substitution calculus SC must have a natural descendant relation. It is denoted by LJ .

SC

EXAMPLE 2.6 The prime example of a substitution calculus is simply typed >.-calculus with
.8-reduction and 17-expansion (see [Wol93]), here denoted by >.~. Thls calculus satisfies all the
requirements of a substitution calculus. It is the substitution calculus of Nipkow's Higher-Order
Rewriting Systems ([Nip91]) and Wolfram's Higher-Order Term Rewriting Systemss ([Wol93]).
Another example of a substitution calculus is >.-calculus with double ,B-developments, that is,
>.-calculus where reductions consist of two consecutive developments of .8-redexes. It is the
substitution calculus of Klop's Combinatory Reduction Systems ([Klo80]).

Often we are interested in preterms in which the substitution is carried out completely, that is,
in preterms that do not contain redexes for the substitution calculus.

DEFINITION 2. 7 A preterm that is in normal form with respect to the substitution calculus is
a term. The set of terms is denoted by Terms.

By completeness of the substitution calculus, each equivalence class of preterms contains a
unique term, that is the representative of the equivalence class. All notions defined for preterms
persist for terms, delete if necessary the prefix pre.

We will now clarify what is meant by well-formedness of a preterm. The substitution
calculus is meant to substitute terms for bound variables. Let z1 ... Xn.M, Ni, ... , Nn be closed
terms. In order to substitute Ni, ... , Nn for zi, .. ·., Xn in M, one should build a preterm having
z1 ... Xn.M and N1, .. _, N.,.. as subterms, such that it reduces in the substitution calculus to
M[z1 := N1 ... x,. := N,,). Note that this isn't necessarily a SC-normal form, since substituting
N; for x; might yield new redexes for the substitution calculus. Only symbols in Asc should
be used to glue the terms z 1 .. . xn.M, Ni, ..• , N,. together. That is, we build an+ 1-ary linear
context C[, ... ,) that consists solely of symbols in Asc, such that C[x1 ... x,,.M, N1, ... , N,,] ""*SC

M[z1 := N1 ... xn := N,.). The unary linear context C[D,Ni, .. . ,N,,] is called an elco (short
for elementary context) for x1 .. . x,,.M. For the well-formedness of preterms, we require that
whenever a preterm has a sub term of the form elco[x1 ... x,..M, N1 , ••• , N,.], N; is of the form
YI ···Ym·P if and only if x; occurs in Min a subterm of the form elco[x;,Q1, ... ,Qm)· If
elco[x1 .. . x,,.M,N1 , ••• ,N,.J!sc = M', then M' is said to be an instance of M.

Now we come to the point where the rewrite rules of a Higher-Order Rewriting System
can be defined. Usually in rewriting, rewrite rules contain free variables. These are assigned
a value to by an assignment or valuation in order to obtain a rewrite step. So instantiating
a left- or right-hand side is done on a metalevel. In Higher-Order Rewriting Systems, rewrite

384

rules are instantiated by the substitution calculus. Therefore, the variables that are to be
instantiated must be abstracted over 'on the outside'. Consider for instance the term rewriting
rule Fx -+ Gx. In the format or'Higher-Order Rewriting Systems, with simply typed >.-calculus
as substitution calculus, this rule is given by x.Fx-+ x.Gx. The outermost abstractions can be
thought of as universal quantifiers. The left- and right-hand side of a rule must have the same
outermost abstractions. This guarantees that an elco for the left-hand side is also an elco for
the right-hand side.

A common accepted restriction in rewriting is that it should not be possible to introduce
arbitrary terms by rewriting. So usually one requires that all free variables in the right-hand
side of a rule occur in the left-hand side as well. Rules of a Higher-Order Rewriting System
do not contain any free variables at all, so the restriction in this form doesn't make any sense.
Instead, for a rule of the form x1 •.• Xn.lo -+ X1 ••• Xn.ro, one requires that x; occurs free in lo if
it occurs free in r0 •

Next, in term rewriting the left-hand side of a rule is not allowed to be a variable, since
otherwise an arbitrary term could be rewritten. A left-hand side must have a pattern, and
if a term matches this pattern it can be rewritten by the rule in question. A symbol of the
pattern can be traced in order to see what happens during a rewrite sequence. Rewriting in a
Higher-Order Rewriting System takes place modulo the substitution calculus, so if patterns are
to be traced they should be 'rigid' for the substitution calculus. We require the left-hand side
of a rule to be of the form x1 ... Xn .F/1 ... lm with F a defined symbol. Then every instance of
the left-hand side is of the form Fl~ .. . 1:,...

Finally, there is a condition on the 'well-formedness' of the rewrite rules. Let a rewrite
rule have the form x1 .. . x ... lo --> x1 .. . xn.ro. We require that x; occurs in lo in a subterm of
the form elco[x;, yi, ... , Ym] with yi, ... Ym (m 2'. 0) bound in lo, and that x; then occur in ro
in a subterm of the form elco(x;, ui, .. . , um] with ui, ••. , Um arbitrary terms. The requirements
on the form of the rewrite rules of a Higher-Order Rewriting System are listed in the following
definition.

DEFINITION 2.8 A rewrite rule of a Higher-Order Rewriting System is a pair (l, r) of terms,
usually written as l -+ r, satisfying the following requirements:
1 l and r are closed terms, with the same outermost abstractions, say l = x1 ... Xn.lo and

r = X1 •• • Xn.ro,
2 lo is of the form Fl1 .. . lm, with Fa defined symbol which is called the head-symbol ofl-+ r,
3 if x; occurs free in r0 then x; occurs free in 10,

4 for all i E {1, ... , n }, x; occurs in lo in a subterm of the form elco[x;, yi, ... , Ym] with Yj bound
in lo for all j E {1, ... , m} and x; occurs in ro in a subterm of the form elco[x;, ui, ... , u,.]
with Uj arbitrary terms.

This definition of rewrite rule corresponds to the usual one for term rewriting systems and the
ones given by Klop for Combinatory Reduction Systems (Klo80] and Nipkow for Higher-Order
Rewriting Systems (Nip93]. Note that left- and right-hand sides are terms, so they do not contain
redexes for the substitution calculus. It might be interesting to relax the last condition, but we
do not pursue that idea in the present paper.

Now we come to the definition of the rewrite relation induced by the rewrite rules of the
Higher-Order Rewriting System. Usually in rewriting, a term can be rewritten if it equals an
instance of the left-hand side of some rule in some context C[]. It can then be rewritten to
that instance of the right-hand side of the rewrite rule in some context C(]: C(l"] --> C[r0"].

In Higher-Order Rewriting Systems, an instance of a. left- or right-hand side of some rule is
obtained by placing it in an elco and reducing So, a term can be rewritten by a rule l -> r if
it can be expanded by the substitution calculus to a context with l in it. This context should
have an elco for I as subcontext. Then, by replacing l by r and reducing the so-obtained term
to SC-normal form, the result of the rewrite step is obtained. So a rewrite step M --> N is built
up as follows: M sc- C[l]-+ C(r] -»kc N. The step C[I]--> C[r] is called a replacement step.

385

DEFINITION 2.9 Let l _, r be a rewrite rule. A term M rewrites to a term N, or Mis rewritten
to N, notation M-+ N, if M sc«-- C[l] and C[r]-..sc N, with C[Ja unary linear context that
has an elco for l as a subcontext. Let <P be the position of the head-symbol of l in C[ZJ!sc·
The pair (</>, l -- r) is called a redex. The transitive closure of ---> is denoted by _,. +, and its
reflexive-transitive closure by

Note that the interaction between C[] and l (or r) takes place in the subcontext of C[) that
is an elco for /. The term elco[l, u1,. .. , un]lsc with l == x1 ... Xn.lo corresponds to 10 with
a = {x1 >-> u1, ... , Xn ,..... un}· In the definition, one uses a context, and not a precontext.
Moreover, the context has a single occurrence of 0, and rewrite rules are pairs of terms, not of
preterms. That these are not real restrictions is proven in [Oos94]. In the proofs the fact that
the convertibility relation of the substitution calculus is closed under substitution and under
contexts is used. The definition of a Higher-Order Rewriting System is now completed. We
proceed by giving the definitions of orthogonal and weakly orthogonal.

DEFINITION 2.10
• A term M is linear if every variable that occurs free in it M, occurs exactly once in it.
• A rewrite rule l -> r with l = x1 •.. xn.lo and r == xi ... Xn.ro is left-linear if lo is a linear

term.
• A Higher-Order Rewriting System is left-linear if all its rewrite rules are left-linear.

DEFINITION 2.11
• Consider two rewrite rules l.....,. rand g _, d. Let C[] be an elco for l _, r. If D[] is a context

having an elco for g _, d as subcontext, such that C[IJlsc = D[gJlsc and the head-symbol
of g in D[gJlsc is a defined symbol of l in C[l]lsc• then l -+ r and g -+ dare said to be
ambiguous. Let </> be the head-symbol of l -+ r in C[IJlsc and let 1f; be the head-symbol of
gin g.....,. din D[g]lsc· The redex ("if;,g-+ d) is said to be critical for (<P,l _, r). If the
positions are clear from the context, we say that g -+ d is critical for l -+ r.

• Two rewrite rules l -+ r and g -+ d are weakly ambiguous if they are ambiguous with
C[ZJlsc == D[gJlsc as in the previous clause, such that C[rJlsc == D[d]!sc·

• A Higher-Order Rewriting System is ambiguous if there is a pair of ambiguous rewrite rules.
A Higher-Order Rewriting System is non-ambiguous if it is not ambiguous.

• A Higher-Order Rewriting System is weakly non-ambiguous if every pair of ambiguous rewrite
rules is weakly ambiguous.

a pair of weakly ambiguous rewrite steps

386

DEFINITION 2.12 A Higher-Order Rewriting System is orthogonal if it is left-linear and non­
ambiguous_ A Higher-Order Rewriting System is weakly orthogonal if it is left-linear and weakly
non-ambiguous.

3 Confluence for weakly orthogonal Higher-Order Rewriting
Systems

In this section we prove twice that all weakly orthogonal Higher-Order Rewriting Systems are
confluent.

3.1 A proof a la Tait and Martin-Lof

The proof method we employ is due to Ta.it and Martin-Lof. We define a relation =>for 'parallel
rewriting' On Terms, such that its transitive closure equals rewriting. Then we prove the diamond

property for =>. That is, we prove that for any terms M, N, P such that M => N and M => Pa
term Q exists, satisfying N => Q and P => Q. Confluence of rewriting is then an easy corollary.
First the definition of=> is given.

DEFINITION 3.1 A relation => on Terms is defined as follows:
1 x => x for every variable x,
2 a => a for every operator a,
3 if M => M', then x.M => x.M',
4 if Mo => M~ and M 1 => M{, then MoM1 => M~M{.
5 if I _, r is a rewrite rule and C[) is an elco for !, such that C[) => C'[), then C[!J1sc =>

C'[rJ1sc·

The first step of the confluence proof is easy.

PROPOSITION 3.2 The transitive closure of=> equals rewriting.

For the proof of the diamond property we need a result concerning the interaction between
substitution and parallel rewriting, and a Coherence Lemma. We cite them here without proof.

PROPOSITION 3.3
1 Let elco[D, Pi, .. ., Pn] => elco[O, P{, .. ., P~J and M = xi ... xn.Mo => M'.

Then elco[M, Pi, .. ., Pnllsc => elco[M', P{, .. ., P~Hsc.
2 Let C[) be a context with an elco for the term M as subcontext. Suppose C[J => C'[) and

M => M'. Then C[MJlsc => C'[M'Jlsc.

PROOF. The proof of the first part proceeds by induction on the maximal length of the reduction
of elco[M, P1 , ... , Pn] to SC-normal form. The second part is a corollary of the first part. 0

LEMMA 3.4 (Coherence.) Suppose M = MoMi = elco[1, Pi, ... , PnJlsc with l the left-hand side
of some rewrite rule l-> r. Suppose Mo=> No and Mi =>Ni. If in Mo=> No or in M1 => N1
a redex that is critical for l-> r is contmcted, then elco[r, P1, ... , Pnltsc => NoNi.

THEOREM 3.5 The relation=> satisfies the diamond property.

PROOF. Suppose M => N and M => P. We prove a Q exists with N => Q and P => Q by either
considering 'easier' derivations of M => Nor of M => P, where 'easier' means that there are less
applications of the last clause of the definition of=>, or by considering sub derivations of M => N
and of M => P. Let C(M => N) be the number of applications of the last clause of the definition
of=> in the derivation M => N. Let L(M => N) be the length of the derivation of M => N.
The proof proceeds by induction on (C(M => N) + C(M => P), L(M => N) + L(M => P)),
lexicographically ordered. The base case is trivial. We only mention the difficult cases of the
proof of the induction step.
1 If M => N is MoMi => NoNi with Mo => No and M1 => Ni, then there are two possibilities

for the last step of the derivation of M => P. If M => P is MoM1 =>Po Pi, then by induction

387

hypothesis Qo and Q1 exist with No => Qo, Po => Qo, Ni => Qi and Pi => Qi. Define
Q := QoQi. If M => P is due to the last clause of the definition of=>, then M = C(lJlsc
and P = C'(rJ!sc for some rewrite rule l --> r and an elco C[] for l.
• If in Mo => No nor in Mi => Ni a redex that is critical for l -+ r is contracted, then NoNi

is of the form C"(ZJ!sc for some elco C"[] for l. we have the following.

M = G(IJ!sc -::} C'[rJ!sc = P

!I. ~
N = C"(ZJ!sc ==> D[rllsc

• If in Mo ::} No or in Mi => Ni a redex critical for l-+ r is contracted, then we distinguish
two possibilities. If M contains two disjoint redexes that are critical for l r then by
weak orthogonality C[lJ!sc = C(rJ!sc· Then we have

M = C[IJ!sc ==* C'(rJlsc = P

II ' ~~ II ! ;(rJlsc R
N = NoNi Q

So suppose all redexes in M that are critical for l r are nested and suppose at least
one of them is contracted in Mo * No. Suppose the largest redex that is contracted in
Mo * No and that is critical for l r is an instance of g d. So Mo = Do[9l!sc
with Do[] a context with an elco for g as subcontext, and N is of the form D0[dJ!scNi
with Do[J => D0[]. If in C[lJ!sc => C'[lJLsc =: M6M{ no redex critical for g d is
contracted, then M6 is of the form D8[g)!sc· We have

C(IJ!sc = Do(gJ15 cs2 C'[rJ!sc = P

II)~(gJ!scM{ = C'[l]!;; II

j ' R N = D0[dJ!scNi =========> Eo(dJlscQ1

If in C[lJlsc => C'[lJ!sc a redex critical for g -> dis contracted, then we consider two
possibilities. If there are two disjoint redexes in s that are critical for g -> d, then we
have Do[9Jlsc = Do(dJlsc· Then

M = C(ll!sc C'(rl!sc = P

II \(dJ!sc'1~ II
j / R

N = D0(d]!scNi ====~ Q

Suppose next that all redexes in C[lJlsc that are critical for g --> dare nested and suppose
at least one of them is contracted in C(lJlsc => C'(lJ!sc· Let the largest one of them
be an instance of g' -+ d'. So Mo = Eo[g'Jlsc· This instance of g' -> d' is not critical
for l -+ r. So there exists an elco C"[] for I with C(] * c•[] => C'[] such that
C"[IJ!sc = Eo(d'J!scMi. By weak orthogonality, Eo[d'J!sc = Do(dJ!sc· We have

Eo(dJ!scMi = C"(IJ!sc C'[rJ!sc = P

II ' ~~ II ~ ;o[dJ!scMi !
N = D0[d]!scNi Q

388

2 Suppose M ~ N is due to the last clause of the definition of *· Then M = C[lJ!sc and
N = C'[r] for some rewrite rule l -> r and an elco C[J for l. If M ~ P is MoM1 * P0 P1

with Mo ~ Po and M1 ~ P1 then we proceed similar to the previous case. So suppose
M ~ P is also due to the last clause of the definition on ~- Then M = D[gJ!sc and
P = D'[dJlsc for a rewrite rule g -> d and an elco D[) for g. If in C[lJ!sc * C'[lJlsc no
redex critical for g-> dis contracted, then C'[l]!sc = D"[gJlsc· By weak orthogonality, we
have C'[rJlsc = D"[dllsc· Then we have

0

C[lllsc = D[gJ!sc =======> D'[dJ!sc = P

II)'[ll!sc = D"[g]!t?Jl II
R / ~~ R

N=C~k=if~k E~k

If in C[ZJ!sc ~ C'[IJ!sc a redex critical for g -. dis contracted and in D[gJ!sc ~ D'[gJ!sc
a redex critical for l -> r is contracted, then by weak orthogonality C[rJlsc = C[lJ!sc =
D[gJlsc = D[dJ!sc· Then we have

C[lJlsc = D[gJ!sc D'[d]

' ~?)!~ C[rJlsc = D[dJ!sc
~ u

C'[r]!sc ========> Q

3.2 A proof by developments

In this subsection we prove all weakly orthogonal Higher-Order Rewriting Systems to be con­
fluent by extending the method of 'confluence by developments' to the weakly orthogonal case.
Before formalising the proof, we first present the proof idea.

A classical way to prove confluence for orthogonal rewriting systems is via the Finite
Developments theorem. It states that rewriting all the redexes which are present 'simultaneously'
in an initial term, in any order, is finite, always results in the same term, and induces the same
descendant relation. This implies confluence if any set of redexes is indeed simultaneous.

If a rewriting system is orthogonal, then any set of redexes present in a term is simul­
taneous. Orthogonality in fact consists of three parts. First, distinct actions consume distinct
resources ('consistency'). Second, actions may interact as long as this interaction is finitary
(':finiteness'). Finally, the order in which distinct actions are performed does not influence the
effect on other resources ('parametricity'). In other words, no matter in what order these ac­
tions are performed the effect on their surroundings is always the same. These three conditions
correspond to Axiom 0 in [GLM92).

The standard 'long' proof to show that orthogonal systems are confluent is via the parallel
moves lemma ([HL91)). That is, one can construct the following diagram

in which in N; - N;+1 - M;+I only descendants of the rewrite steps on the opposite side are
contracted. The essence of this construction is, that there exists for each term M; a set of

389

simultaneous redexes U; in M;, such that there exist complete developments d : M; M;+1 -

N;+I and d' : M; __,. N; N;+1 of U;.
What problems do arise, when orthogonality is relaxed to weak orthogonality? The only

problem is that the redex u;+1 might overlap with some redexes in the set V :::: { vj3u E U;.u~v}

of residuals of U; in M;+i · But then we know by weak orthogonality, that there exists some step
u' E V doing exactly the same as u;+l, hence by starting with this step u', we obtain a complete
development of V which 'goes through' M;+2 as was required. For this to work, it is needed
that simultaneity of a set of redexes is preserved by performing a rewrite step. Moreover, one
needs that if the redex u;+1 does not overlap with any redex in V, then the set V U { u;+1 } is
simultaneous again.

After having explained the idea informally. we will formalise it now.

DEFINITION 3.6 Let u : M -+ N be a rewrite step, consisting of the expansion e: M !.,_ C[I),
the replacement step C[I-. r]: C[l)-. C[r] and the reduction d: C(r] _,.! N. The descendant
relation induced by u is defined by IEJ :::: l!J; IC[l-> rjl; ~,where; denotes relation composition.
Descendants of redexes are defined via the descendant of their head-symbol.

DEFINITION 3. 7 Let U :::: { u1, .•• , un} be a set of redexes in a term M, where u; :::: (</!;, l; _, r;)
is a redex at position </>; in M with respect to rule I; _, r;.
1 A rewrite sequenced starting from M is a U-development if only descendants of redexes in

U are reduced along d. It is complete if it ends in a term not containing any descendants of
u.

2 The set U of redexes is called simultaneous if d' : M - C(11, ••• , ln], the head-symbol of I;
descends to </>; along d', with C[,. .. ,] an n-ary linear context.

simultaneous extraction of two redexes

We first prove FD for simultaneous sets of redexes and then show that in an orthogonal
Higher-Order Rewriting System, every set of redexes in a term is simultaneous.

LEMMA 3.8 (Finite Developments) Complete developments of a simultaneous set of rede:ces in a
Higher-Order Rewrite Systems are finite, end in the same term and all have the same descendant
relation.

PR.OOF. The strategy for proving FD consists of the following three parts. Let U :=== VU { u} be
some set of simultaneous redexes in a term M, with u : M --+ M' and L and R the sets of left­
and right-hand sides of V.

390

First, one proves that the rewrite step u can be simulated by a 'V-abstracted rewrite step',
that is, a rewrite step in which we have abstracted over the redexes in V, by replacing these
by variables. This we caJJ the Envelop Lemma. In a diagram:

D[L,l]------- D[L,r]
D[L,l-+ r]

h~ ~r]
g C[l] C[l-+ r] C[r] f

~ ~.
M ------------ M'

By simultaneity of U, one can construct the extraction g. Then one constructs the linear
expansion h[I] : C[l] «-sc D[L,l], and the linear reduction h[r] : D[L,r] -sc C[r] (note
that we define h[l] to be an expansion, while h[r] is defined to be a reduction). The only
thing which remains to be shown is that the path on the outside of the diagram simulates
the one on the inside, that is, lg; D[L, z...., r]; f,I = le; C[l...., r]; ~- This follows by some easy

calculations.
2 Then, one gives a measure on 'abstracted rewrite steps' and shows that this measure decreases

in some well-founded order along a development of U. Hence, every development of U must
be finite. This we call the Develop Lemma. More precisely, let U' be the set of descendants
of U along u. We will construct an extraction g1 : M' ,._sc D'[L'] of U' from M', which
is smaller than g, in the following sense: (D[R,r],n) _..!c Xzex > (D'[R'],n'), where n, n'
are the number of holes in D[] and D'[]. The construction of g' is shown in the following
diagram

D[L,r]

~r]h'[~
C[r] E[L] =: D'[L']

~ /;
M'

Here h'[J is a reduction from D[, r] to its SC-normal form E[], reducing the SC-redexes
created by plugging in the right-hand side r in the context D[,]. Because r might be non­
linear (only left-hand sides were required to be linear), E[J might be a non-linear context.
Now take D'[J to be the linearisation of E[), i.e. a linear context such that the positions
of the holes in E[J and D'[J are the same, hence E[L] = D'[L'] for some appropriate L'.
By closure of reduction under substitution, the reduction h'[L] can be constructed and by
completeness there exists an expansion g' from M' to E[L] = D'[L']. One then shows that
the expansion g' is an extraction of U' from M' into D'[]. Now, in order to prove that the
extraction g' is smaller than the extraction g we remark that by closure of reduction under
substitutions, we have the SC-reduction h'[R] : D[R, r] -sc E[R] = D'[R']. The extraction
g' can only be not smaller than g if h'[R] is an empty reduction, but then D'[) = D'[, r]
which has one hole less than D'[,].

3 Finally, combining the Envelop lemma with the Develop Lemma, one shows that every
complete development of U from M to N can be simulated by a simultaneous extraction of
U from M into some context D[], followed by a sequence of replacement steps from D[L, I]
to D[R, r], followed by a reduction to N. This is shown in the following diagram:

0

391

D[L,l]---,,D,..,.[L=-,-1 --,r],.___.. D[L,r] D[L-+ R,r] ~ D[R,r]

h~ ~r]h'[~ hr1l
g C[l] C[l-+ r] C[r] E[L] E[L _, R] ~ E[R] f

~ ~ ~ 1'
M M' ------------~ N

Every complete U-development ends in the term N, and the descendant relation is the one
induced by g; D[L....,. R, l --+ r]; f, that is, the one induced by following the 'outside' of the
diagram.

Showing that every set of redexes in an orthogonal Higher-Order Rewriting System is
simultaneous can be reduced to showing that every pair of redexes is simultaneous by the
following lemma.

LEMMA 3.9 A Higher-Order Rewriting System is simultaneous if and only if it is pairwise si­
multaneous.

Now one can show that orthogonal Higher-Order Rewriting Systems are pairwise simul­
taneous by reducing this property further to non-ambiguity, and state the following theorem.

THEOREM 3.10 Every orthogonal Higher-Order Rewriting System is confluent.

Here, we are interested in proving confluence for weakly orthogonal systems. In such
systems distinct redexes are not simultaneous if they are ambiguous. However, instead of parallel
simultaneity the following two properties suffice, as was shown above.
1 Simultaneity of a set of redexes is preserved by rewriting,
2 If a redex u is simultaneous with each redex in U, then U U {u} is simultaneous.
The first item follows easily from the proof of the Develop Lemma. The second item follows
from a propery called cubicity.

A Higher-Order Rewriting System is said to be cubic, if every triple of pairwise simulta­
neous redexes is simultaneous.

LEM MA 3.11 Every Higher-Order Rewriting System is cubic.

The next theorem states that every weakly orthogonal Higher-Order Rewriting System is con­
fluent, solving a problem which was raised in [DJK93, Problem 61].

THEOREM 3.12 Every weakly orthogonal Higher-Order Rewriting System is confluent.

PROOF. By the preceding lemma, it suffices to prove that cubicity implies that if u is pairwise
simultaneous with each redex in U, then Uu{ u} is simultaneous. One proves, by induction on the
size of the set V := U U { u} of simultaneous redexes, that there exists a simultaneous extraction
of V from M, using cubicity to ensure that origins of simultaneous redexes are simultaneous
again. 0

Next we show that weakly orthogonal combinations of left-linear confluent Higher-Order
Rewriting Systems (hence of term rewriting systems, Combinatory Reduction Systems and
Higher-order Rewrite Systemss) are confluent, thereby solving a problem which was raised by
the first author in (DJK93, Problem 62].

THEOREM 3.13 Let rt, I be left-linear confluent Higher-Order Rewriting Systems on the same
alphabet having sets of rules n and S. The union rt UI obtained by taking nu S as set of rules,
is confluent if the rules of n are weakly ambiguous with respect to those in S.

392

3.3 Acknowledgements

We thank Jan Willem Klop, Fer-Jan de Vries and Zurab Khasidashvili for discussions and for

remarks on previous versions of this paper.

References

[DJK93] Nachum Dershowitz, Jean-Pierre Jouannaud, and Jan Willem Klop. More problems

in rewriting. Pp. 468-487 ofLNCS 690, Proceedings of Sth RTA, 1993.

(GLM92] Georges Gonthier, Jean-Jacques Levy, and Paul-Andre Mellies. An abstract standard­
isation theorem. Pp. 72-81, Proceedings of 7th LICS, 1992.

(HL91J Gerard Huet and Jean-Jacques Levy. Computations in orthogonal rewriting systems,
I. Ch. 11 of Computational Logic: Essays in Honor of Alan Robinson, 1991.

[Klo80] J.W. Klop. Combinatory Reduction Systems. Mathematical Centre Tracts Nr. 127.

Mathematisch Centrum, Amsterdam, 1980. PhD Thesis.

[Nip91] Tobias Nipkow. Higher-order critical pairs. Pp. 342-349 of Proceedings of 6th LICS,
1991.

(Nip93] Tobias Nipkow. Orthogonal higher-order rewrite systems are confluent. Pp. 306-317
of LNCS 664, Proceedings of TLCA'93, 1993.

[Oos94] Vincent van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD
thesis, Vrije Universiteit, Amsterdam, March 1994.

(OR93] V. van Oostrom and F. van Raamsdonk. Comparing combinatory reduction systems
and higher-order rewrite systems. Technical Report CS-R9361, CWI, 1993. To appear
in LNCS, Proceedings of HOA'93.

(Wol93] D.A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1993.

